1
|
Wagner WJ, Gross ML. Using mass spectrometry-based methods to understand amyloid formation and inhibition of alpha-synuclein and amyloid beta. MASS SPECTROMETRY REVIEWS 2024; 43:782-825. [PMID: 36224716 PMCID: PMC10090239 DOI: 10.1002/mas.21814] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Amyloid fibrils, insoluble β-sheets structures that arise from protein misfolding, are associated with several neurodegenerative disorders. Many small molecules have been investigated to prevent amyloid fibrils from forming; however, there are currently no therapeutics to combat these diseases. Mass spectrometry (MS) is proving to be effective for studying the high order structure (HOS) of aggregating proteins and for determining structural changes accompanying protein-inhibitor interactions. When combined with native MS (nMS), gas-phase ion mobility, protein footprinting, and chemical cross-linking, MS can afford regional and sometimes amino acid spatial resolution of the aggregating protein. The spatial resolution is greater than typical low-resolution spectroscopic, calorimetric, and the traditional ThT fluorescence methods used in amyloid research today. High-resolution approaches can struggle when investigating protein aggregation, as the proteins exist as complex oligomeric mixtures of many sizes and several conformations or polymorphs. Thus, MS is positioned to complement both high- and low-resolution approaches to studying amyloid fibril formation and protein-inhibitor interactions. This review covers basics in MS paired with ion mobility, continuous hydrogen-deuterium exchange (continuous HDX), pulsed hydrogen-deuterium exchange (pulsed HDX), fast photochemical oxidation of proteins (FPOP) and other irreversible labeling methods, and chemical cross-linking. We then review the applications of these approaches to studying amyloid-prone proteins with a focus on amyloid beta and alpha-synuclein. Another focus is the determination of protein-inhibitor interactions. The expectation is that MS will bring new insights to amyloid formation and thereby play an important role to prevent their formation.
Collapse
Affiliation(s)
- Wesley J Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Gowda A, T. C. S, Anil VS, Raghavan S. Phytosynthesis of silver nanoparticles using aqueous sandalwood (Santalum album L.) leaf extract: Divergent effects of SW-AgNPs on proliferating plant and cancer cells. PLoS One 2024; 19:e0300115. [PMID: 38662724 PMCID: PMC11045141 DOI: 10.1371/journal.pone.0300115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/22/2024] [Indexed: 04/28/2024] Open
Abstract
The biogenic approach for the synthesis of metal nanoparticles provides an efficient eco-friendly alternative to chemical synthesis. This study presents a novel route for the biosynthesis of silver nanoparticles using aqueous sandalwood (SW) leaf extract as a source of reducing and capping agents under mild, room temperature synthesis conditions. The bioreduction of Ag+ to Ago nanoparticles (SW-AgNPs) was accompanied by the appearance of brown color, with surface plasmon resonance peak at 340-360 nm. SEM, TEM and AFM imaging confirm SW-AgNP's spherical shape with size range of 10-32 nm. DLS indicates a hydrodynamic size of 49.53 nm with predominant negative Zeta potential, which can contribute to the stability of the nanoparticles. FTIR analysis indicates involvement of sandalwood leaf derived polyphenols, proteins and lipids in the reduction and capping of SW-AgNPs. XRD determines the face-centered-cubic crystalline structure of SW-AgNPs, which is a key factor affecting biological functions of nanoparticles. This study is novel in using cell culture methodologies to evaluate effects of SW-AgNPs on proliferating cells originating from plants and human cancer. Exposure of groundnut calli cells to SW-AgNPs, resulted in enhanced proliferation leading to over 70% higher calli biomass over control, enhanced defense enzyme activities, and secretion of metabolites implicated in biotic stress resistance (Crotonyl isothiocyanate, Butyrolactone, 2-Hydroxy-gamma-butyrolactone, Maltol) and plant cell proliferation (dl-Threitol). MTT and NRU were performed to determine the cytotoxicity of nanoparticles on human cervical cancer cells. SW-AgNPs specifically inhibited cervical cell lines SiHa (IC50-2.65 ppm) and CaSki (IC50-9.49 ppm), indicating potential use in cancer treatment. The opposing effect of SW-AgNPs on cell proliferation of plant calli (enhanced cell proliferation) and human cancer cell lines (inhibition) are both beneficial and point to potential safe application of SW-AgNPs in plant cell culture, agriculture and in cancer treatment.
Collapse
Affiliation(s)
- Archana Gowda
- Department of Plant Biotechnology, University of Agricultural Sciences, GKVK, Bangalore, India
| | - Suman T. C.
- Department of Plant Biotechnology, University of Agricultural Sciences, GKVK, Bangalore, India
| | - Veena S. Anil
- Department of Plant Biotechnology, University of Agricultural Sciences, GKVK, Bangalore, India
| | | |
Collapse
|
3
|
Martinez Morales M, van der Walle CF, Derrick JP. Modulation of the Fibrillation Kinetics and Morphology of a Therapeutic Peptide by Cucurbit[7]uril. Mol Pharm 2023. [PMID: 37327060 DOI: 10.1021/acs.molpharmaceut.3c00185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fibrillation is a challenge commonly encountered in the formulation and development of therapeutic peptides. Cucurbit[7]urils (CB[7]), a group of water soluble macrocycles, have been reported to suppress fibrillation in insulin and human calcitonin through association with Phe and Tyr residues which drive fibril formation. Here, we report the effect of CB[7] on the fibrillation behavior of the HIV fusion inhibitor enfuvirtide (ENF) that contains N-terminal Tyr and C-terminal Phe residues. Thioflavin T fluorescence, CD spectroscopy, and transmission electron microscopy were used to monitor fibrillation behavior. Fibrillation onset showed a strong pH dependency, with pH 6.5 identified as the condition most suitable to monitor the effects of CB[7]. Binding of CB[7] to wild-type ENF was measured by isothermal titration calorimetry and was consistent with a single site (Ka = 2.4 × 105 M-1). A weaker interaction (Ka = 2.8 × 103 M-1) was observed for an ENF mutant with the C-terminal Phe substituted for Ala (ENFm), suggesting that Phe was the specific site for CB[7] recognition. The onset of ENF fibrillation onset was delayed, rather than fully suppressed, in the presence of CB[7]. The ENFm mutant showed a greater delay in fibrillation onset but with no observable effect on fibrillation kinetics in the presence of CB[7]. Interestingly, ENF/CB[7] and ENFm fibrils exhibited comparable morphologies, differing from those observed for ENF alone. The results indicate that CB[7] is capable of modulating fibrillation onset and the resulting ENF fibrils by specifically binding to the C-terminal Phe residue. The work reinforces the potential of CB[7] as an inhibitor of fibrillation and highlights its role in determining fibril morphologies.
Collapse
Affiliation(s)
- Marcello Martinez Morales
- Dosage Form Design & Development, AstraZeneca, Aaron Klug Building, Granta Park, Cambridge CB21 6GH, U.K
- School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PL, U.K
| | | | - Jeremy P Derrick
- School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
4
|
Lü MH, Wang ZP, Xing LZ, Zhang W, Han F, Huang GL, Liu W, Zhang YX, Xu J, Cui J. Hybrids of polyphenolic/quinone acids, the potential preventive and therapeutic drugs for PD: Disaggregate α-Syn fibrils, inhibit inclusions, and repair damaged neurons in mice. Eur J Med Chem 2023; 249:115122. [PMID: 36680987 DOI: 10.1016/j.ejmech.2023.115122] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Neurotoxic α-Syn fibers, the main components of Lewy bodies, play a key role in the development of PD characterized by a progressive loss of dopaminergic neurons. Here, we designed and synthesized the hybrids of polyphenolic/quinone acids. The candidate compounds showed high α-Syn aggregation inhibitory activities in vitro with IC50 down to 1.6 μM. The inhibition went through the aggregation process by stabilizing the conformation of α-Syn proteostasis and preventing β-sheets aggregation, especially in the lag phase. Furthermore, the candidate drugs could disintegrate the preformed varisized aggregates into pony-size aggregates and functional monomers and continually inhibit the re-aggregation. The activities of anti-aggregation and aggregates depolymerization result in the reduction of inclusions in neuron cells. The candidate drugs also show high anti-oxidation and low cytotoxicity. They finally repair the damaged neurons in 6-OHDA-lesioned C57 mice and significantly improve PD-like symptoms of the PD model mice. The hybrids are promising molecules for PD prevention and therapy.© 2022 Elsevier Masson SAS. All rights reserved.
Collapse
Affiliation(s)
- Ming-Huan Lü
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, China
| | - Zhen-Ping Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Li-Zi Xing
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Wei Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Feng Han
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Guo-Long Huang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Wei Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Yun-Xiao Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China.
| | - Ji Xu
- School of Basic Medical Science, Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Kexue Road 100, Zhengzhou, 45000, China.
| | - Jinquan Cui
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, China.
| |
Collapse
|
5
|
Estaun-Panzano J, Arotcarena ML, Bezard E. Monitoring α-synuclein aggregation. Neurobiol Dis 2023; 176:105966. [PMID: 36527982 PMCID: PMC9875312 DOI: 10.1016/j.nbd.2022.105966] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Synucleinopathies, including Parkinson's disease (PD), dementia with Lewy Bodies (DLB), and multiple system atrophy (MSA), are characterized by the misfolding and subsequent aggregation of alpha-synuclein (α-syn) that accumulates in cytoplasmic inclusions bodies in the cells of affected brain regions. Since the seminal report of likely-aggregated α-syn presence within the Lewy bodies by Spillantini et al. in 1997, the keyword "synuclein aggregation" has appeared in over 6000 papers (Source: PubMed October 2022). Studying, observing, describing, and quantifying α-syn aggregation is therefore of paramount importance, whether it happens in tubo, in vitro, in post-mortem samples, or in vivo. The past few years have witnessed tremendous progress in understanding aggregation mechanisms and identifying various polymorphs. In this context of growing complexity, it is of utmost importance to understand what tools we possess, what exact information they provide, and in what context they may be applied. Nonetheless, it is also crucial to rationalize the relevance of the information and the limitations of these methods for gauging the final result. In this review, we present the main techniques that have shaped the current views about α-syn structure and dynamics, with particular emphasis on the recent breakthroughs that may change our understanding of synucleinopathies.
Collapse
Affiliation(s)
| | | | - Erwan Bezard
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, United Kingdom.
| |
Collapse
|
6
|
Pancoe SX, Wang YJ, Shimogawa M, Perez RM, Giannakoulias S, Petersson EJ. Effects of Mutations and Post-Translational Modifications on α-Synuclein In Vitro Aggregation. J Mol Biol 2022; 434:167859. [PMID: 36270580 PMCID: PMC9922159 DOI: 10.1016/j.jmb.2022.167859] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Fibrillar aggregates of the α-synuclein (αS) protein are the hallmark of Parkinson's Disease and related neurodegenerative disorders. Characterization of the effects of mutations and post-translational modifications (PTMs) on the αS aggregation rate can provide insight into the mechanism of fibril formation, which remains elusive in spite of intense study. A comprehensive collection (375 examples) of mutant and PTM aggregation rate data measured using the fluorescent probe thioflavin T is presented, as well as a summary of the effects of fluorescent labeling on αS aggregation (20 examples). A curated set of 131 single mutant de novo aggregation experiments are normalized to wild type controls and analyzed in terms of structural data for the monomer and fibrillar forms of αS. These tabulated data serve as a resource to the community to help in interpretation of aggregation experiments and to potentially be used as inputs for computational models of aggregation.
Collapse
Affiliation(s)
- Samantha X Pancoe
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Yanxin J Wang
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Marie Shimogawa
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Ryann M Perez
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Sam Giannakoulias
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Mehra S, Ahlawat S, Kumar H, Datta D, Navalkar A, Singh N, Patel K, Gadhe L, Kadu P, Kumar R, Jha NN, Sakunthala A, Sawner AS, Padinhateeri R, Udgaonkar JB, Agarwal V, Maji SK. α-Synuclein aggregation intermediates form fibril polymorphs with distinct prion-like properties. J Mol Biol 2022; 434:167761. [PMID: 35907572 DOI: 10.1016/j.jmb.2022.167761] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022]
Abstract
α-Synuclein (α-Syn) amyloids in synucleinopathies are suggested to be structurally and functionally diverse, reminiscent of prion-like strains. But how the aggregation of the same precursor protein results in the formation of fibril polymorphs remains elusive. Here, we demonstrate the structure-function relationship of two polymorphs, pre-matured fibrils (PMFs) and helix-matured fibrils (HMFs), based on α-Syn aggregation intermediates. These polymorphs display the structural differences as demonstrated by solid-state NMR and mass spectrometry studies and also possess different cellular activities such as seeding, internalization, and cell-to-cell transfer of aggregates. HMFs with a compact core structure exhibit low seeding potency but readily internalize and transfer from one cell to another. The less structured PMFs lack transcellular transfer ability but induce abundant α-Syn pathology and trigger the formation of aggresomes in cells. Overall, the study highlights that the conformational heterogeneity in the aggregation pathway may lead to fibril polymorphs with distinct prion-like behavior.
Collapse
Affiliation(s)
- Surabhi Mehra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Sahil Ahlawat
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad-500 046, India
| | - Harish Kumar
- Indian Institute of Science Education and Research, Pune- 411 008, India; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Debalina Datta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Nitu Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Komal Patel
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Laxmikant Gadhe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Narendra N Jha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Arunima Sakunthala
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Ajay S Sawner
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Jayant B Udgaonkar
- Indian Institute of Science Education and Research, Pune- 411 008, India; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Vipin Agarwal
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad-500 046, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
8
|
Han F, Jiang B, Lü MH, Wang ZP, Liu W, Zhang YX, Xu J. Hybrids of polyphenolic acids and xanthone, the potential preventive and therapeutic effects on PD: Design, synthesis, in vitro anti-aggregation of α-synuclein, and disaggregation against the existed α-synuclein oligomer and fibril. Bioorg Med Chem 2022; 66:116818. [PMID: 35584603 DOI: 10.1016/j.bmc.2022.116818] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022]
Abstract
The misfolding and aggregation of α-Syn are the central mechanism linking and facilitating the other pathological mechanisms of PD. Maintaining α-Syn proteostasis by suitable inhibitors is an effective means to prevent PD. Disintegrating the neurotoxic oligomers and fibrils into the normal functional α-Syn by inhibitors is a more efficient way for PD treatment. This work synthesized two series hybrids of polyphenolic acids and xanthone. The hybrids possess a sheet-like conjugated skeleton and higher binding energies with α-Syn residues. Some compounds present well α-Syn aggregation inhibitory activities in vitro (IC50 down to 2.58 μM). The inhibitory action goes throughout the aggregation process from lag to the stationary phase by stabilizing α-Syn proteostasis conformation and preventing β-sheets aggregation. The candidate compounds with appropriate LogP values (2.02-3.11) present good disintegration abilities against the existed α-Syn oligomers and fibrils. The preliminary mechanism studies suggest that the inhibitors could quickly and randomly bind to the specific site closed to the β-sheet domain in the fibril, resulting in unstable and collapse of the protein fibril, yielding a complex system with aggregates of different sizes and monomers.
Collapse
Affiliation(s)
- Feng Han
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Bing Jiang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Ming-Huan Lü
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Zhen-Ping Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Wei Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Yun-Xiao Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China.
| | - Ji Xu
- Deparment of Pharmacology, School of Basic Medical Science, Zhengzhou University, Kexue Road 100, 450001 Zhengzhou, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Kexue Road 100, 450001 Zhengzhou, China.
| |
Collapse
|
9
|
Jiang B, Han F, Lü MH, Wang ZP, Liu W, Zhang YX, Xu J, Li RJ. Bis-chalcone polyphenols with potential preventive and therapeutic effects on PD: Design, synthesis and in vitro disaggregation activity against α-synuclein oligomers and fibrils. Eur J Med Chem 2022; 239:114529. [PMID: 35728509 DOI: 10.1016/j.ejmech.2022.114529] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/15/2022]
Abstract
α-Syn fibrils, which are neurotoxic, play a key role in the development of PD. Maintaining α-Syn proteostasis by suitable molecule ligands is an effective approach to prevent aggregation. Disintegrating the existed oligomers and fibrils into individual α-Syn by small molecular compounds is a more efficient way to treat PD. This work designed and synthesized two series of bis-chalcone polyphenol compounds, which possess a sheet-like conjugated skeleton with stronger H-bonding, π-stacking, and hydrophobic interaction with α-Syn protein residues. Some compounds have shown high α-Syn aggregation inhibitory activities in vitro with IC50 down to 0.64 μM. The inhibition goes throughout the aggregation process from the lag to the stationary phase by stabilizing α-Syn proteostasis conformation and preventing β-sheets aggregation, especially in the lag phase. In addition, the inhibitors present good disintegration abilities against the existed α-Syn oligomers and fibrils. The preliminary mechanism studies suggest that the inhibitors could quickly and randomly bind to the specific site closed to the β-sheet domain in the fibril, resulting in unstable and collapse of the protein fibril and yielding a complex system with aggregates of different sizes and monomers. The inhibitors, which could penetrate the blood-brain barrier, are expected to develop into the drug candidates for PD targeting α-Syn aggregation.
Collapse
Affiliation(s)
- Bing Jiang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052, Zhengzhou, China
| | - Feng Han
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052, Zhengzhou, China
| | - Ming-Huan Lü
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052, Zhengzhou, China
| | - Zhen-Ping Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052, Zhengzhou, China
| | - Wei Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052, Zhengzhou, China
| | - Yun-Xiao Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052, Zhengzhou, China.
| | - Ji Xu
- Department of Pharmacology, School of Basic Medical Science, Zhengzhou University, Kexue Road 100, 450001, Zhengzhou, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Kexue Road 100, 450001, Zhengzhou, China.
| | - Rui-Jun Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052, Zhengzhou, China.
| |
Collapse
|
10
|
Loureiro JA, Andrade S, Goderis L, Gomez-Gutierrez R, Soto C, Morales R, Pereira MC. (De)stabilization of Alpha-Synuclein Fibrillary Aggregation by Charged and Uncharged Surfactants. Int J Mol Sci 2021; 22:ijms222212509. [PMID: 34830391 PMCID: PMC8624236 DOI: 10.3390/ijms222212509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder. An important hallmark of PD involves the pathological aggregation of proteins in structures known as Lewy bodies. The major component of these proteinaceous inclusions is alpha (α)-synuclein. In different conditions, α-synuclein can assume conformations rich in either α-helix or β-sheets. The mechanisms of α-synuclein misfolding, aggregation, and fibrillation remain unknown, but it is thought that β-sheet conformation of α-synuclein is responsible for its associated toxic mechanisms. To gain fundamental insights into the process of α-synuclein misfolding and aggregation, the secondary structure of this protein in the presence of charged and non-charged surfactant solutions was characterized. The selected surfactants were (anionic) sodium dodecyl sulphate (SDS), (cationic) cetyltrimethylammonium chloride (CTAC), and (uncharged) octyl β-D-glucopyranoside (OG). The effect of surfactants in α-synuclein misfolding was assessed by ultra-structural analyses, in vitro aggregation assays, and secondary structure analyses. The α-synuclein aggregation in the presence of negatively charged SDS suggests that SDS-monomer complexes stimulate the aggregation process. A reduction in the electrostatic repulsion between N- and C-terminal and in the hydrophobic interactions between the NAC (non-amyloid beta component) region and the C-terminal seems to be important to undergo aggregation. Fourier transform infrared spectroscopy (FTIR) measurements show that β-sheet structures comprise the assembly of the fibrils.
Collapse
Affiliation(s)
- Joana Angélica Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal;
- Correspondence: (J.A.L.); (M.C.P.)
| | - Stéphanie Andrade
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal;
| | - Lies Goderis
- Faculty of Pharmaceutical Sciences, Ghent University, Sint-Pietersnieuwstraat 25, B-9000 Ghent, Belgium;
| | - Ruben Gomez-Gutierrez
- Department of Neurology, The University of Texas Health Science Centre at Houston, Houston, TX 77030, USA; (R.G.-G.); (C.S.); (R.M.)
- Department of Cell Biology, University of Malaga, 29071 Malaga, Spain
| | - Claudio Soto
- Department of Neurology, The University of Texas Health Science Centre at Houston, Houston, TX 77030, USA; (R.G.-G.); (C.S.); (R.M.)
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Centre at Houston, Houston, TX 77030, USA; (R.G.-G.); (C.S.); (R.M.)
- CIBQA, Universidad Bernardo O’Higgins, Santiago 1497, Chile
| | - Maria Carmo Pereira
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal;
- Correspondence: (J.A.L.); (M.C.P.)
| |
Collapse
|
11
|
Shimogawa M, Petersson EJ. New strategies for fluorescently labeling proteins in the study of amyloids. Curr Opin Chem Biol 2021; 64:57-66. [PMID: 34091264 PMCID: PMC8585672 DOI: 10.1016/j.cbpa.2021.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 01/25/2023]
Abstract
Amyloid proteins are widely studied, both for their unusual biophysical properties and their association with disorders such as Alzheimer's and Parkinson's disease. Fluorescence-based methods using site-specifically labeled proteins can provide information on the details of their structural dynamics and their roles in specific biological processes. Here, we describe the application of different labeling methods and novel fluorescent probe strategies to the study of amyloid proteins, both for in vitro biophysical experiments and for in vivo imaging. These labeling tools can be elegantly used to answer important questions on the function and pathology of amyloid proteins.
Collapse
Affiliation(s)
- Marie Shimogawa
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Kumar H, Udgaonkar JB. The Lys 280 → Gln mutation mimicking disease-linked acetylation of Lys 280 in tau extends the structural core of fibrils and modulates their catalytic properties. Protein Sci 2021; 30:785-803. [PMID: 33496017 DOI: 10.1002/pro.4030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/31/2022]
Abstract
Amyloid fibrillar aggregates isolated from the brains of patients with neurodegenerative diseases invariably have post-translational modifications (PTMs). The roles that PTMs play in modulating the structures and polymorphism of amyloid aggregates, and hence their ability to catalyze the conversion of monomeric protein to their fibrillar structure is, however, poorly understood. This is particularly true in the case of tau aggregates, where specific folds of fibrillar tau have been implicated in specific tauopathies. Several PTMs, including acetylation at Lys 280, increase aggregation of tau in the brain, and increase neurodegeneration. In this study, tau-K18 K280Q, in which the Lys 280 → Gln mutation is used to mimic acetylation at Lys 280, is shown, using HX-MS measurements, to form fibrils with a structural core that is longer than that of tau-K18 fibrils. Measurements of critical concentrations show that the binding affinity of monomeric tau-K18 for its fibrillar counterpart is only marginally more than that of monomeric tau-K18 K280Q for its fibrillar counterpart. Quantitative analysis of the kinetics of seeded aggregation, using a simple Michaelis-Menten-like model, in which the monomer first binds and then undergoes conformational conversion to β-strand, shows that the fibrils of tau-K18 K280Q convert monomeric protein more slowly than do fibrils of tau-K18. In contrast, monomeric tau-K18 K280Q is converted faster to fibrils than is monomeric tau-K18. Thus, the effect of Lys 280 acetylation on tau aggregate propagation in brain cells is expected to depend on the amount of acetylated tau present, and on whether the propagating seed is acetylated at Lys 280 or not.
Collapse
Affiliation(s)
- Harish Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India.,Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
13
|
Pravin N, Kumar R, Tripathi S, Kumar P, Mohite GM, Navalkar A, Panigrahi R, Singh N, Gadhe LG, Manchanda S, Shimozawa M, Nilsson P, Johansson J, Kumar A, Maji SK, Shanmugam M. Benzimidazole-based fluorophores for the detection of amyloid fibrils with higher sensitivity than Thioflavin-T. J Neurochem 2020; 156:1003-1019. [PMID: 32750740 DOI: 10.1111/jnc.15138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022]
Abstract
Protein aggregation into amyloid fibrils is a key feature of a multitude of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Prion disease. To detect amyloid fibrils, fluorophores with high sensitivity and better efficiency coupled with the low toxicity are in high demand even to date. In this pursuit, we have unveiled two benzimidazole-based fluorescence sensors ([C15 H15 N3 ] (C1) and [C16 H16 N3 O2 ] (C2), which possess exceptional affinity toward different amyloid fibrils in its submicromolar concentration (8 × 10-9 M), whereas under a similar concentration, the gold standard Thioflavin-T (ThT) fails to bind with amyloid fibrils. These fluorescent markers bind to α-Syn amyloid fibrils as well as amyloid fibrils forming other proteins/peptides including Aβ42 amyloid fibrils. The 1 H-15 N heteronuclear quantum correlation spectroscopy nuclear magnetic resonance data collected on wild-type α-Syn monomer with and without the fluorophores (C1 and C2) reveal that there is weak or no interactions between C1 or C2 with residues in α-Syn monomer, which indirectly reflects the specific binding ability of C1 and C2 to the α-Syn amyloid fibrils. Detailed studies further suggest that C1 and C2 can detect/bind with the α-Syn amyloid fibril as low as 100 × 10-9 M. Extremely low or no cytotoxicity is observed for C1 and C2 and they do not interfere with α-Syn fibrillation kinetics, unlike ThT. Both C1/C2 not only shows selective binding with amyloid fibrils forming various proteins/peptides but also displays excellent affinity and selectivity toward α-Syn amyloid aggregates in SH-SY5Y cells and Aβ42 amyloid plaques in animal brain tissues. Overall, our data show that the developed dyes could be used for the detection of amyloid fibrils including α-Syn and Aβ42 amyloids with higher sensitivity as compared to currently used ThT.
Collapse
Affiliation(s)
- Narayanaperumal Pravin
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Shalini Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Pardeep Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Ganesh M Mohite
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Rajlaxmi Panigrahi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Namrata Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Laxmikant G Gadhe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Shaffi Manchanda
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Makoto Shimozawa
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Per Nilsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Jan Johansson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Maheswaran Shanmugam
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
14
|
Nakajima K, Yamazaki T, Kimura Y, So M, Goto Y, Ogi H. Time-Resolved Observation of Evolution of Amyloid-β Oligomer with Temporary Salt Crystals. J Phys Chem Lett 2020; 11:6176-6184. [PMID: 32687370 DOI: 10.1021/acs.jpclett.0c01487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The aggregation behavior of amyloid-β (Aβ) peptides remains unclarified despite the fact that it is closely related to the pathogenic mechanism of Alzheimer's disease. Aβ peptides form diverse oligomers with various diameters before nucleation, making clarification of the mechanism involved a complex problem with conventional macroscopic analysis methods. Time-resolved single-molecule level analysis in bulk solution is thus required to fully understand their early stage aggregation behavior. Here, we perform time-resolved observation of the aggregation dynamics of Aβ oligomers in bulk solution using liquid-state transmission electron microscopy. Our observations reveal previously unknown behaviors. The most important discovery is that a salt crystal can precipitate even with a concentration much lower than its solubility, and it then dissolves in a short time, during which the aggregation reaction of Aβ peptides is significantly accelerated. These findings will provide new insights in the evolution of the Aβ oligomer.
Collapse
Affiliation(s)
- Kichitaro Nakajima
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoya Yamazaki
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-8638, Japan
| | - Yuki Kimura
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-8638, Japan
| | - Masatomo So
- Institute of Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuji Goto
- Institute of Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hirotsugu Ogi
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Stephens AD, Zacharopoulou M, Moons R, Fusco G, Seetaloo N, Chiki A, Woodhams PJ, Mela I, Lashuel HA, Phillips JJ, De Simone A, Sobott F, Schierle GSK. Extent of N-terminus exposure of monomeric alpha-synuclein determines its aggregation propensity. Nat Commun 2020; 11:2820. [PMID: 32499486 PMCID: PMC7272411 DOI: 10.1038/s41467-020-16564-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/01/2020] [Indexed: 02/02/2023] Open
Abstract
As an intrinsically disordered protein, monomeric alpha-synuclein (aSyn) occupies a large conformational space. Certain conformations lead to aggregation prone and non-aggregation prone intermediates, but identifying these within the dynamic ensemble of monomeric conformations is difficult. Herein, we used the biologically relevant calcium ion to investigate the conformation of monomeric aSyn in relation to its aggregation propensity. We observe that the more exposed the N-terminus and the beginning of the NAC region of aSyn are, the more aggregation prone monomeric aSyn conformations become. Solvent exposure of the N-terminus of aSyn occurs upon release of C-terminus interactions when calcium binds, but the level of exposure and aSyn's aggregation propensity is sequence and post translational modification dependent. Identifying aggregation prone conformations of monomeric aSyn and the environmental conditions they form under will allow us to design new therapeutics targeted to the monomeric protein.
Collapse
Affiliation(s)
- Amberley D Stephens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, UK
| | - Maria Zacharopoulou
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, UK
| | - Rani Moons
- Department of Chemistry, University of Antwerp, Antwerp, Belgium
| | - Giuliana Fusco
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Neeleema Seetaloo
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Anass Chiki
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Philippa J Woodhams
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, UK
| | - Ioanna Mela
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, UK
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | | | | | - Frank Sobott
- Department of Chemistry, University of Antwerp, Antwerp, Belgium
- School of Molecular and Cellular Biology and The Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, UK
| | - Gabriele S Kaminski Schierle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, UK.
| |
Collapse
|
16
|
Lv G, Kumar A, Huang Y, Eliezer D. A Protofilament-Protofilament Interface in the Structure of Mouse α-Synuclein Fibrils. Biophys J 2019; 114:2811-2819. [PMID: 29925018 DOI: 10.1016/j.bpj.2018.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022] Open
Abstract
Fibrillar α-synuclein (AS) is the major component of Lewy bodies, the pathological hallmark of Parkinson's disease. Using solid-state nuclear magnetic resonance (ssNMR), we previously reported a structural characterization of mouse AS (mAS) fibrils and found that the secondary structure of the mAS fibrils is highly similar to a form of human AS (hAS) fibrils. Recently, a three-dimensional structure of these same hAS fibrils was determined by ssNMR and scanning transmission electron microscopy. Using medium- and long-range distance restraints obtained from ssNMR spectra, we found that the single protofilament structure of mAS fibrils is also similar to that of the hAS fibrils. However, residue-specific water accessibility of mAS fibrils probed by water polarization transfer ssNMR measurements indicates that residues S42-T44 and G84-V95 are largely protected from water even though they are located at the edge of the protofilament. Some of the corresponding resonances also exhibit peak doubling. These observations suggest that these residues may be involved in, to our knowledge, a novel protofilament-protofilament interface. We propose a structural model of mAS fibrils that incorporates this dimer interface.
Collapse
Affiliation(s)
- Guohua Lv
- Department of Biochemistry, Weill Cornell Medical College, New York, New York; Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany.
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, India; Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
17
|
Srivastava AK, Pittman JM, Zerweck J, Venkata BS, Moore PC, Sachleben JR, Meredith SC. β-Amyloid aggregation and heterogeneous nucleation. Protein Sci 2019; 28:1567-1581. [PMID: 31276610 PMCID: PMC6699094 DOI: 10.1002/pro.3674] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 01/09/2023]
Abstract
In this article, we consider the role of heterogeneous nucleation in β-amyloid aggregation. Heterogeneous nucleation is more common and occurs at lower levels of supersaturation than homogeneous nucleation. The nucleation period is also the stage at which most of the polymorphism of amyloids arises, this being one of the defining features of amyloids. We focus on several well-known heterogeneous nucleators of β-amyloid, including lipid surfaces, especially those enriched in gangliosides and cholesterol, and divalent metal ions. These two broad classes of nucleators affect β-amyloid particularly in light of the amphiphilicity of these peptides: the N-terminal region, which is largely polar and charged, contains the metal binding site, whereas the C-terminal region is aliphatic and is important in lipid binding. Notably, these two classes of nucleators can interact cooperatively, aggregation begetting greater aggregation.
Collapse
Affiliation(s)
- Atul K. Srivastava
- Department of PathologyThe University of ChicagoChicagoIllinois
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIllinois
| | - Jay M. Pittman
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIllinois
| | - Jonathan Zerweck
- Department of PathologyThe University of ChicagoChicagoIllinois
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIllinois
| | - Bharat S. Venkata
- Department of PathologyThe University of ChicagoChicagoIllinois
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIllinois
| | | | | | - Stephen C. Meredith
- Department of PathologyThe University of ChicagoChicagoIllinois
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIllinois
| |
Collapse
|
18
|
Dasari AKR, Kayed R, Wi S, Lim KH. Tau Interacts with the C-Terminal Region of α-Synuclein, Promoting Formation of Toxic Aggregates with Distinct Molecular Conformations. Biochemistry 2019; 58:2814-2821. [PMID: 31132261 DOI: 10.1021/acs.biochem.9b00215] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An increasing body of evidence suggests that aggregation-prone proteins associated with various neurodegenerative diseases synergistically promote their mutual aggregation, leading to the co-occurrence of multiple neurodegenerative diseases in the same patient. Here we investigated teh molecular basis of synergistic interactions between the two pathological proteins, tau and α-synuclein, using various biophysical techniques including transmission electron microscopy (TEM), circular dichroism (CD), and solution and solid-state NMR. Our biophysical analyses of α-synuclein aggregation in the absence and presence of tau reveal that tau monomers promote the formation of α-synuclein oligomers and subsequently fibril formation. Solution NMR results also indicate that monomeric forms of tau selectively interact with the C-terminal region of the α-synuclein monomer, accelerating α-synuclein aggregation. In addition, a combined use of TEM and solid-state NMR spectroscopy reveals that the synergistic interactions lead to the formation of toxic α-synuclein aggregates with a distinct morphology and molecular conformation. The filamentous α-synuclein aggregates as well as α-synuclein monomers were also able to induce tau aggregation.
Collapse
Affiliation(s)
- Anvesh K R Dasari
- Department of Chemistry , East Carolina University , Grenville , North Carolina 27858 , United States
| | - Rakez Kayed
- Departments of Neurology, Neuroscience and Cell Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Sungsool Wi
- Center of Interdisciplinary Magnetic Resonance (CIMAR) , National High Magnetic Field Laboratory (NHMFL) , 1800 East Paul Dirac Drive , Tallahassee , Florida 32310 , United States
| | - Kwang Hun Lim
- Department of Chemistry , East Carolina University , Grenville , North Carolina 27858 , United States
| |
Collapse
|
19
|
Kumar H, Udgaonkar JB. Mechanistic approaches to understand the prion-like propagation of aggregates of the human tau protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:922-932. [PMID: 30986567 DOI: 10.1016/j.bbapap.2019.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022]
Abstract
The dynamic nature of the tau protein under physiological conditions is likely to be critical for it to perform its diverse functions inside a cell. Under some conditions, this intrinsically disordered protein assembles into pathogenic aggregates that are self-perpetuating, toxic and infectious in nature. The role of liquid-liquid phase separation in the initiation of the aggregation reaction remains to be delineated. Depending on the nature of the aggregate, its structure, and its localization, neurodegenerative disorders with diverse clinical features are manifested. The prion-like mechanism by which these aggregates propagate and spread across the brain is not well understood. Various factors (PTMs, mutations) have been strongly associated with the pathological aggregates of tau. However, little is known about how these factors modulate the pathological properties linked to aggregation. This review describes the current progress towards understanding the mechanism of propagation of tau aggregates.
Collapse
Affiliation(s)
- Harish Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India; Indian Institute of Science Education and Research, Pune 411008, India.
| |
Collapse
|
20
|
Sequence- and seed-structure-dependent polymorphic fibrils of alpha-synuclein. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1410-1420. [PMID: 30790619 DOI: 10.1016/j.bbadis.2019.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/08/2019] [Accepted: 02/14/2019] [Indexed: 12/15/2022]
Abstract
Synucleinopathies comprise a diverse group of neurodegenerative diseases including Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. These share a common pathological feature, the deposition of alpha-synuclein (a-syn) in neurons or oligodendroglia. A-syn is highly conserved in vertebrates, but the primary sequence of mouse a-syn differs from that of human at seven positions. However, structural differences of their aggregates remain to be fully characterized. In this study, we found that human and mouse a-syn aggregated in vitro formed morphologically distinct amyloid fibrils exhibiting twisted and straight structures, respectively. Furthermore, we identified different protease-resistant core regions, long and short, in human and mouse a-syn aggregates. Interestingly, among the seven unconserved amino acids, only A53T substitution, one of the familial PD mutations, was responsible for structural conversion to the straight-type. Finally, we checked whether the structural differences are transmissible by seeding and found that human a-syn seeded with A53T aggregates formed straight-type fibrils with short protease-resistant cores. These results suggest that a-syn aggregates form sequence-dependent polymorphic fibrils upon spontaneous aggregation but become seed structure-dependent upon seeding.
Collapse
|
21
|
Bopardikar M, Bhattacharya A, Rao Kakita VM, Rachineni K, Borde LC, Choudhary S, Koti Ainavarapu SR, Hosur RV. Triphala inhibits alpha-synuclein fibrillization and their interaction study by NMR provides insights into the self-association of the protein. RSC Adv 2019; 9:28470-28477. [PMID: 35529629 PMCID: PMC9071048 DOI: 10.1039/c9ra05551g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/31/2019] [Indexed: 11/21/2022] Open
Abstract
The process of assembly and accumulation of the intrinsically disordered protein (IDP), alpha-synuclein (αSyn) into amyloid fibrils is a pathogenic process leading to several neurodegenerative disorders such as Parkinson's disease, multiple system atrophy and others. Although several molecules are known to inhibit αSyn fibrillization, the mechanism of inhibition is just beginning to emerge. Here, we report the inhibition of fibrillization of αSyn by Triphala, a herbal preparation in the traditional Indian medical system of Ayurveda. Triphala was found to be a rich source of polyphenols which are known to act as amyloid inhibitors. ThT fluorescence and TEM studies showed that Triphala inhibited the fibrillization of αSyn. However, it was observed that Triphala does not disaggregate preformed αSyn fibrils. Further, native-PAGE showed that Triphala reduces the propensity of αSyn to oligomerize during the lag phase of fibrillization. Our NMR results showed that certain stretches of residues in the N-terminal and NAC regions of αSyn play an anchor role in the self-association process of the protein, thereby providing mechanistic insights into the early events during αSyn fibrillization. Triphala inhibits αSyn self-association by interacting with anchoring regions which are responsible for αSyn oligomerization.![]()
Collapse
Affiliation(s)
- Mandar Bopardikar
- Department of Chemical Sciences
- Tata Institute of Fundamental Research
- Mumbai 400005
- India
| | - Anusri Bhattacharya
- UM-DAE Centre for Excellence in Basic Sciences
- University of Mumbai
- Kalina Campus
- Mumbai 400098
- India
| | - Veera Mohana Rao Kakita
- UM-DAE Centre for Excellence in Basic Sciences
- University of Mumbai
- Kalina Campus
- Mumbai 400098
- India
| | - Kavitha Rachineni
- UM-DAE Centre for Excellence in Basic Sciences
- University of Mumbai
- Kalina Campus
- Mumbai 400098
- India
| | - Lalit C. Borde
- Department of Biological Sciences
- Tata Institute of Fundamental Research
- Mumbai 400005
- India
| | - Sinjan Choudhary
- UM-DAE Centre for Excellence in Basic Sciences
- University of Mumbai
- Kalina Campus
- Mumbai 400098
- India
| | | | - Ramakrishna V. Hosur
- Department of Chemical Sciences
- Tata Institute of Fundamental Research
- Mumbai 400005
- India
- UM-DAE Centre for Excellence in Basic Sciences
| |
Collapse
|
22
|
Dos-Santos-Pereira M, Acuña L, Hamadat S, Rocca J, González-Lizárraga F, Chehín R, Sepulveda-Diaz J, Del-Bel E, Raisman-Vozari R, Michel PP. Microglial glutamate release evoked by α-synuclein aggregates is prevented by dopamine. Glia 2018; 66:2353-2365. [PMID: 30394585 DOI: 10.1002/glia.23472] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 01/11/2023]
Abstract
When activated, microglial cells have the potential not only to secrete typical proinflammatory mediators but also to release the neurotransmitter glutamate in amounts that may promote excitotoxicity. Here, we wished to determine the potential of the Parkinson's disease (PD) protein α-Synuclein (αS) to stimulate glutamate release using cultures of purified microglial cells. We established that glutamate release was robustly increased when microglial cultures were treated with fibrillary aggregates of αS but not with the native monomeric protein. Promotion of microglial glutamate release by αS aggregates (αSa) required concomitant engagement of TLR2 and P2X7 receptors. Downstream to cell surface receptors, the release process was mediated by activation of a signaling cascade sequentially involving phosphoinositide 3-kinase (PI3K) and NADPH oxidase, a superoxide-producing enzyme. Inhibition of the Xc- antiporter, a plasma membrane exchange system that imports extracellular l-cystine and exports intracellular glutamate, prevented the release of glutamate induced by αSa, indicating that system Xc- was the final effector element in the release process downstream to NADPH oxidase activation. Of interest, the stimulation of glutamate release by αSa was abrogated by dopamine through an antioxidant effect requiring D1 dopamine receptor activation and PI3K inhibition. Altogether, present data suggest that the activation of microglial cells by αSa may possibly result in a toxic build-up of extracellular glutamate contributing to excitotoxic stress in PD. The deficit in dopamine that characterizes this disorder may further aggravate this process in a vicious circle mechanism.
Collapse
Affiliation(s)
- Mauricio Dos-Santos-Pereira
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F-75013, France.,Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Leonardo Acuña
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F-75013, France.,Instituto de Patología Experimental (CONICET-UNSa), Salta, Argentina
| | - Sabah Hamadat
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F-75013, France
| | - Jeremy Rocca
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F-75013, France
| | - Florencia González-Lizárraga
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F-75013, France.,Instituto de Medicina Molecular y Celular Aplicada (IMMCA) CONICET/UNT and SIPROSA, Tucumán, Argentina
| | - Rosana Chehín
- Instituto de Medicina Molecular y Celular Aplicada (IMMCA) CONICET/UNT and SIPROSA, Tucumán, Argentina
| | - Julia Sepulveda-Diaz
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F-75013, France
| | - Elaine Del-Bel
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Rita Raisman-Vozari
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F-75013, France
| | - Patrick P Michel
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F-75013, France
| |
Collapse
|
23
|
Mechanism of aggregation and membrane interactions of mammalian prion protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018. [DOI: 10.1016/j.bbamem.2018.02.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Haney CM, Petersson EJ. Fluorescence spectroscopy reveals N-terminal order in fibrillar forms of α-synuclein. Chem Commun (Camb) 2018; 54:833-836. [PMID: 29313531 PMCID: PMC5961496 DOI: 10.1039/c7cc08601f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The neuronal protein α-synuclein (αS) plays a key role in Parkinson's disease, forming inclusions termed Lewy bodies and Lewy neurites. Recent improvements in cryo-electron diffraction and solid state NMR (ssNMR) have led to the elucidation of the structures of peptides derived from the αS fibril core and full-length human αS in fibrils. Despite the valuable insight offered by these methods, there are still several questions about the structures' relevance to pathological aggregates. Herein, we present fluorescence data collected in vitro under the conditions which fibrils are typically assembled. Our data suggest that, in solution, fibrils are largely structured as observed by ssNMR. However, we observe significant disparities in the αS N-terminus as compared to ssNMR data, which provide insight on its important role in αS aggregation and fibril structure.
Collapse
Affiliation(s)
- Conor M. Haney
- Department of Chemistry, University of Pennsylvania, 213 South 34th Street, Philadelphia, PA 19104, USA. ; Tel: +1-215-746-2221
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, 213 South 34th Street, Philadelphia, PA 19104, USA. ; Tel: +1-215-746-2221
| |
Collapse
|
25
|
Fauerbach JA, Jovin TM. Pre-aggregation kinetics and intermediates of α-synuclein monitored by the ESIPT probe 7MFE. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 47:345-362. [PMID: 29255947 PMCID: PMC5982440 DOI: 10.1007/s00249-017-1272-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 01/04/2023]
Abstract
The defining feature of the extensive family of amyloid diseases is the formation of networks of entangled elongated protein fibrils and amorphous aggregates exhibiting crossed β-sheet secondary structure. The time course of amyloid conversion has been studied extensively in vitro with the proteins involved in the neurodegenerative pathology of Parkinson's disease (α-synuclein), Alzheimer's disease (Tau) and Huntington's disease (Huntingtin). Although much is known about the thermodynamics and kinetics of the transition from a soluble, intrinsically disordered monomer to the fibrillar end state, the putative oligomeric intermediates, currently considered to be the major initiators of cellular toxicity, are as yet poorly defined. We have detected and characterized amyloid precursors by monitoring AS aggregation with ESIPT (excited state intramolecular protein transfer) probes, one of which, 7MFE [7-(3-maleimido-N-propanamide)-2-(4-diethyaminophenyl)-3-hydroxychromone], is introduced here and compared with a related compound, 6MFC, used previously. A series of 140 spectra for sparsely labeled AS was acquired during the course of aggregation, and resolved into the relative contributions (spectra, intensities) of discrete molecular species including the monomeric, fibrillar, and ensemble of intermediate forms. Based on these findings, a kinetic scheme was devised to simulate progress curves as a function of key parameters. An essential feature of the model, one not previously invoked in schemes of amyloid aggregation, is the catalysis of molecular fuzziness by discrete colloidal nanoparticles arising spontaneously via monomer condensation upon exposure of AS to ≥ 37 °C.
Collapse
Affiliation(s)
- Jonathan A Fauerbach
- Miltenyi Biotec GmbH, Friedrich-Ebert Str. 42, 51429, Bergisch-Gladbach, Germany
| | - Thomas M Jovin
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|