1
|
Jones I, Arias-Garcia M, Pascual-Vargas P, Beykou M, Dent L, Chaudhuri TP, Roumeliotis T, Choudhary J, Sero J, Bakal C. YAP activation is robust to dilution. Mol Omics 2024; 20:554-569. [PMID: 39282972 PMCID: PMC11403994 DOI: 10.1039/d4mo00100a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024]
Abstract
The concentration of many transcription factors exhibits high cell-to-cell variability due to differences in synthesis, degradation, and cell size. Whether the functions of these factors are robust to fluctuations in concentration, and how this may be achieved, is poorly understood. Across two independent panels of breast cancer cells, we show that the average whole cell concentration of YAP decreases as a function of cell area. However, the nuclear concentration distribution remains constant across cells grouped by size, across a 4-8 fold size range, implying unperturbed nuclear translocation despite the falling cell wide concentration. Both the whole cell and nuclear concentration was higher in cells with more DNA and CycA/PCNA expression suggesting periodic synthesis of YAP across the cell cycle offsets dilution due to cell growth and/or cell spreading. The cell area - YAP scaling relationship extended to melanoma and RPE cells. Integrative analysis of imaging and phospho-proteomic data showed the average nuclear YAP concentration across cell lines was predicted by differences in RAS/MAPK signalling, focal adhesion maturation, and nuclear transport processes. Validating the idea that RAS/MAPK and cell cycle regulate YAP translocation, chemical inhibition of MEK or CDK4/6 increased the average nuclear YAP concentration. Together, this study provides an example case, where cytoplasmic dilution of a protein, for example through cell growth, does not limit a cognate cellular function. Here, that same proteins translocation into the nucleus.
Collapse
Affiliation(s)
- Ian Jones
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Mar Arias-Garcia
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Patricia Pascual-Vargas
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Melina Beykou
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Lucas Dent
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Tara Pal Chaudhuri
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Theodoros Roumeliotis
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Jyoti Choudhary
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Julia Sero
- Institute for Mathematical Innovation, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Chris Bakal
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
2
|
Sapudom J, Alatoom A, Tipay PS, Teo JC. Matrix stiffening from collagen fibril density and alignment modulates YAP-mediated T-cell immune suppression. Biomaterials 2024; 315:122900. [PMID: 39461060 DOI: 10.1016/j.biomaterials.2024.122900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/16/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
T-cells are essential components of the immune system, adapting their behavior in response to the mechanical environments they encounter within the body. In pathological conditions like cancer, the extracellular matrix (ECM) often becomes stiffer due to increased density and alignment of collagen fibrils, which can have a significant impact on T-cell function. In this study, we explored how these ECM properties-density and fibrillar alignment-affect T-cell behavior using three-dimensional (3D) collagen matrices that mimic these conditions. Our results show that increased matrix stiffness, whether due to higher density or alignment, significantly suppresses T-cell activation, reduces cytokine production, and limits proliferation, largely through enhanced YAP signaling. Individually, matrix alignment appears to lower actin levels in activated T-cells and changes migration behavior in both resting and activated T-cells, an effect not observed in matrices with randomly oriented fibrils. Notably, inhibiting YAP signaling was able to restore T-cell activation and improve immune responses, suggesting a potential strategy to boost the effectiveness of immunotherapy in stiff ECM environments. Overall, this study provides new insights into how ECM characteristics influence T-cell function, offering potential avenues for overcoming ECM-induced immunosuppression in diseases such as cancer.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Aseel Alatoom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Department of Biomedical and Mechanical Engineering, Tandon School of Engineering, New York University, USA
| | | | - Jeremy Cm Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Department of Biomedical and Mechanical Engineering, Tandon School of Engineering, New York University, USA.
| |
Collapse
|
3
|
Kervarrec T, Westphal D, Pissaloux D, Legrand M, Tirode F, Neuhart A, Drouot F, Becker JC, Macagno N, Seris A, Jouary T, Beltzung F, Jullie ML, Harms PW, Cribier B, Mourah S, Jouenne F, Fromont G, Louveau B, Mancini M, Kazakov DV, de la Fouchardière A, Battistella M. Porocarcinomas with PAK1/2/3 fusions: a series of 12 cases. Histopathology 2024; 85:566-578. [PMID: 38785043 DOI: 10.1111/his.15214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/16/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
AIMS Porocarcinoma is a malignant sweat gland tumour differentiated toward the upper part of the sweat duct and may arise from the transformation of a preexisting benign poroma. In 2019, Sekine et al. demonstrated the presence of YAP1::MAML2 and YAP1::NUTM1 fusions in most poromas and porocarcinomas. Recently, our group identified PAK2-fusions in a subset of benign poromas. Herein we report a series of 12 porocarcinoma cases harbouring PAK1/2/3 fusions. METHODS AND RESULTS Five patients were male and the median age was 79 years (ranges: 59-95). Tumours were located on the trunk (n = 7), on the thigh (n = 3), neck (n = 1), or groin area (n = 1). Four patients developed distant metastases. Microscopically, seven cases harboured a benign poroma component and a malignant invasive part. Ductal formations were observed in all, while infundibular/horn cysts and cells with vacuolated cytoplasm were detected in seven and six tumours, respectively. In three cases, the invasive component consisted of a proliferation of elongated cells, some of which formed pseudovascular spaces, whereas the others harboured a predominant solid or trabecular growth pattern. Immunohistochemical staining for CEA and EMA confirmed the presence of ducts. Focal androgen receptor expression was detected in three specimens. Whole RNA sequencing evidenced LAMTOR1::PAK1 (n = 2), ZDHHC5::PAK1 (n = 2), DLG1::PAK2, CTDSP1::PAK1, CTNND1::PAK1, SSR1::PAK3, CTNNA1::PAK2, RNF13::PAK2, ROBO1::PAK2, and CD47::PAK2. Activating mutation of HRAS (G13V, n = 3, G13R, n = 1, Q61L, n = 2) was present in six cases. CONCLUSION Our study suggests that PAK1/2/3 fusions is the oncogenic driver of a subset of porocarcinomas lacking YAP1 rearrangement.
Collapse
Affiliation(s)
- Thibault Kervarrec
- Department of Pathology, Centre Hospitalier Universitaire de Tours, Université de Tours, Tours, France
- "Biologie des infections à polyomavirus" Team, UMR INRA ISP 1282, Université de Tours, Tours, France
- CARADERM Network
| | - Danna Westphal
- National Center for Tumour Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Department of Dermatology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Daniel Pissaloux
- Department of Biopathology, Center Léon Bérard, Lyon, France
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Equipe Labellisée Ligue contre le Cancer, Lyon, France
| | - Mélanie Legrand
- Department of Pathology, Centre Hospitalier Universitaire de Tours, Université de Tours, Tours, France
| | - Franck Tirode
- Department of Biopathology, Center Léon Bérard, Lyon, France
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Equipe Labellisée Ligue contre le Cancer, Lyon, France
| | - Anne Neuhart
- Department of Biopathology, Center Léon Bérard, Lyon, France
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Equipe Labellisée Ligue contre le Cancer, Lyon, France
| | | | - Jürgen C Becker
- Department of Translational Skin Cancer Research, University Hospital Essen, Essen, Germany
- Department of Dermatology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Pa German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nicolas Macagno
- CARADERM Network
- Department of Pathology, Timone University Hospital, Marseille, France
| | - Alice Seris
- CARADERM Network
- Service de Dermatologie, Centre hospitalier de Pau, Pau, France
| | - Thomas Jouary
- CARADERM Network
- Service de Dermatologie, Centre hospitalier de Pau, Pau, France
| | - Fanny Beltzung
- Department of Pathology, Hôpital Haut-Lévêque, CHU de Bordeaux, Pessac, France
| | - Marie-Laure Jullie
- CARADERM Network
- Department of Pathology, Hôpital Haut-Lévêque, CHU de Bordeaux, Pessac, France
| | - Paul W Harms
- Department of Pathology, Michigan Medicine/University of Michigan, Ann Arbor, MI, USA
- Department of Dermatology, Michigan Medicine/University of Michigan, Ann Arbor, MI, USA
| | - Bernard Cribier
- Dermatology Clinic, Hopitaux Universitaires & Université de Strasbourg, Hopital Civil, Strasbourg, France
| | - Samia Mourah
- Department of Pharmacology and Solid Tumor Genomics, Saint Louis Hospital, Paris University, AP-HP, Paris, France
| | - Fanélie Jouenne
- Department of Pharmacology and Solid Tumor Genomics, Saint Louis Hospital, Paris University, AP-HP, Paris, France
| | - Gaelle Fromont
- Department of Pathology, Centre Hospitalier Universitaire de Tours, Université de Tours, Tours, France
| | - Baptiste Louveau
- Department of Pharmacology and Solid Tumor Genomics, Saint Louis Hospital, Paris University, AP-HP, Paris, France
| | - Maxence Mancini
- Department of Pharmacology and Solid Tumor Genomics, Saint Louis Hospital, Paris University, AP-HP, Paris, France
| | - Dmitry V Kazakov
- IDP Dermatohistopathologie Institut, Pathologie Institut Enge, Zurich, Switzerland
| | - Arnaud de la Fouchardière
- CARADERM Network
- National Center for Tumour Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Department of Dermatology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Maxime Battistella
- CARADERM Network
- Department of Pathology, APHP Hôpital Saint Louis, INSERM U976, Université Paris Cité7, Paris, France
| |
Collapse
|
4
|
Xu X, Wang W, Liu Y, Bäckemo J, Heuchel M, Wang W, Nie Y, Iqbal I, Kratz K, Lendlein A, Ma N. Substrates mimicking the blastocyst geometry revert pluripotent stem cell to naivety. NATURE MATERIALS 2024:10.1038/s41563-024-01971-4. [PMID: 39134648 DOI: 10.1038/s41563-024-01971-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/11/2024] [Indexed: 09/22/2024]
Abstract
Naive pluripotent stem cells have the highest developmental potential but their in vivo existence in the blastocyst is transient. Here we report a blastocyst motif substrate for the in vitro reversion of mouse and human pluripotent stem cells to a naive state. The substrate features randomly varied microstructures, which we call motifs, mimicking the geometry of the blastocyst. Motifs representing mouse-blastocyst-scaled curvature ranging between 15 and 62 mm-1 were the most efficient in promoting reversion to naivety, as determined by time-resolved correlative analysis. In these substrates, apical constriction enhances E-cadherin/RAC1 signalling and activates the mechanosensitive nuclear transducer YAP, promoting the histone modification of pluripotency genes. This results in enhanced levels of pluripotency transcription factor NANOG, which persist even after cells are removed from the substrate. Pluripotent stem cells cultured in blastocyst motif substrates display a higher development potential in generating embryoid bodies and teratomas. These findings shed light on naivety-promoting substrate design and their large-scale implementation.
Collapse
Affiliation(s)
- Xun Xu
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Weiwei Wang
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Yue Liu
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Johan Bäckemo
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Matthias Heuchel
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Wei Wang
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Yan Nie
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Imran Iqbal
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Karl Kratz
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine, Berlin and Teltow, Teltow, Germany
| | - Andreas Lendlein
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.
- Institute of Chemistry, University of Potsdam, Potsdam, Germany.
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine, Berlin and Teltow, Teltow, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| | - Nan Ma
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine, Berlin and Teltow, Teltow, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Chen J, Tsai YH, Linden AK, Kessler JA, Peng CY. YAP and TAZ differentially regulate postnatal cortical progenitor proliferation and astrocyte differentiation. J Cell Sci 2024; 137:jcs261516. [PMID: 38639242 DOI: 10.1242/jcs.261516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
WW domain-containing transcription regulator 1 (WWTR1, referred to here as TAZ) and Yes-associated protein (YAP, also known as YAP1) are transcriptional co-activators traditionally studied together as a part of the Hippo pathway, and are best known for their roles in stem cell proliferation and differentiation. Despite their similarities, TAZ and YAP can exert divergent cellular effects by differentially interacting with other signaling pathways that regulate stem cell maintenance or differentiation. In this study, we show in mouse neural stem and progenitor cells (NPCs) that TAZ regulates astrocytic differentiation and maturation, and that TAZ mediates some, but not all, of the effects of bone morphogenetic protein (BMP) signaling on astrocytic development. By contrast, both TAZ and YAP mediate the effects on NPC fate of β1-integrin (ITGB1) and integrin-linked kinase signaling, and these effects are dependent on extracellular matrix cues. These findings demonstrate that TAZ and YAP perform divergent functions in the regulation of astrocyte differentiation, where YAP regulates cell cycle states of astrocytic progenitors and TAZ regulates differentiation and maturation from astrocytic progenitors into astrocytes.
Collapse
Affiliation(s)
- Jessie Chen
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yung-Hsu Tsai
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Anne K Linden
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| | - John A Kessler
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chian-Yu Peng
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
6
|
Doddihal V, Mann FG, Ross EJ, McKinney MC, Guerrero-Hernández C, Brewster CE, McKinney SA, Sánchez Alvarado A. A PAK family kinase and the Hippo/Yorkie pathway modulate WNT signaling to functionally integrate body axes during regeneration. Proc Natl Acad Sci U S A 2024; 121:e2321919121. [PMID: 38713625 PMCID: PMC11098123 DOI: 10.1073/pnas.2321919121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/03/2024] [Indexed: 05/09/2024] Open
Abstract
Successful regeneration of missing tissues requires seamless integration of positional information along the body axes. Planarians, which regenerate from almost any injury, use conserved, developmentally important signaling pathways to pattern the body axes. However, the molecular mechanisms which facilitate cross talk between these signaling pathways to integrate positional information remain poorly understood. Here, we report a p21-activated kinase (smed-pak1) which functionally integrates the anterior-posterior (AP) and the medio-lateral (ML) axes. pak1 inhibits WNT/β-catenin signaling along the AP axis and, functions synergistically with the β-catenin-independent WNT signaling of the ML axis. Furthermore, this functional integration is dependent on warts and merlin-the components of the Hippo/Yorkie (YKI) pathway. Hippo/YKI pathway is a critical regulator of body size in flies and mice, but our data suggest the pathway regulates body axes patterning in planarians. Our study provides a signaling network integrating positional information which can mediate coordinated growth and patterning during planarian regeneration.
Collapse
Affiliation(s)
- Viraj Doddihal
- Stowers Institute for Medical Research, Kansas City, MO64110
| | | | - Eric J. Ross
- Stowers Institute for Medical Research, Kansas City, MO64110
| | | | | | | | | | | |
Collapse
|
7
|
Liu H, Zhang J, Zhao Y, Fan Z, Yang Y, Mao Y, Yang J, Ma S. CD93 regulates breast cancer growth and vasculogenic mimicry through the PI3K/AKT/SP2 signaling pathway activated by integrin β1. J Biochem Mol Toxicol 2024; 38:e23688. [PMID: 38511888 DOI: 10.1002/jbt.23688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/25/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
In women, breast cancer (BC) accounts for 7%-10% of all cancer cases and is one of the most common cancers. To identify a new method for treating BC, the role of CD93 and its underlying mechanism were explored. MDA-MB-231 cells were used in this study and transfected with si-CD93, si-MMRN2, oe-CD93, si-integrin β1, or oe-SP2 lentivirus. After MDA-MB-231 cells were transfected with si-NC or si-CD93, they were injected into nude mice by subcutaneous injection at a dose of 5 × 106/mouse to construct a BC animal model. The expression of genes and proteins and cell migration, invasion and vasculogenic mimicry were detected by RT‒qPCR, western blot, immunohistochemistry, immunofluorescence, Transwell, and angiogenesis assays. In pathological samples and BC cell lines, CD93 was highly expressed. Functionally, CD93 promoted the proliferation, migration, and vasculogenic mimicry of MDA-MB-231 cells. Moreover, CD93 interacts with MMRN2 and integrin β1. Knockdown of CD93 and MMRN2 can inhibit the activation of integrin β1, thereby inhibiting the PI3K/AKT/SP2 signaling pathway and inhibiting BC growth and vasculogenic mimicry. In conclusion, the binding of CD93 to MMRN2 can activate integrin β1, thereby activating the PI3K/AKT/SP2 signaling pathway and subsequently promoting BC growth and vasculogenic mimicry.
Collapse
Affiliation(s)
- Hong Liu
- Department of Thyroid & Breast Surgery, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, China
| | - Jianhui Zhang
- Department of Thyroid & Breast Surgery, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, China
| | - Yanjun Zhao
- Department of Thyroid & Breast Surgery, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, China
| | - Zhixiong Fan
- Department of Thyroid & Breast Surgery, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, China
| | - Yongheng Yang
- Department of Thyroid & Breast Surgery, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, China
| | - Yuanyuan Mao
- Department of Radiology, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Jingyuan Yang
- Department of Thyroid & Breast Surgery, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, China
| | - Shungao Ma
- Department of Clinical Laboratory, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, China
| |
Collapse
|
8
|
Papavassiliou KA, Sofianidi AA, Papavassiliou AG. YAP/TAZ-TEAD signalling axis: A new therapeutic target in malignant pleural mesothelioma. J Cell Mol Med 2024; 28:e18330. [PMID: 38606782 PMCID: PMC11010261 DOI: 10.1111/jcmm.18330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
The Hippo signalling pathway, a highly conserved signalling cassette, regulates organ size by controlling cell growth, apoptosis and stem cell self-renewal. The tumourigenic potential of this pathway is largely attributed to the activity of YAP/TAZ, which activate the TEAD1-4 transcription factors, leading to the expression of genes involved in cell proliferation and suppression of cell death. Aberrant regulation of the YAP/TAZ-TEAD signalling axis is commonly observed in malignant pleural mesothelioma (MPM), an insidious neoplasm of the pleural tissue that lines the chest cavity and covers the lungs with poor prognosis. Given the limited effectiveness of current treatments, targeting the YAP/TAZ-TEAD signalling cascade has emerged as a promising therapeutic strategy in MPM. Several inhibitors of the YAP/TAZ-TEAD signalling axis are presently undergoing clinical development, with the goal of advancing them to clinical use in the near future.
Collapse
Affiliation(s)
- Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, ‘Sotiria’ Hospital, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Amalia A. Sofianidi
- Department of Biological Chemistry, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
9
|
Hou S, Zhao T, Deng B, Li C, Li W, Huang H, Hang Q. USP10 promotes migration and cisplatin resistance in esophageal squamous cell carcinoma cells. Med Oncol 2023; 41:33. [PMID: 38150085 DOI: 10.1007/s12032-023-02272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023]
Abstract
Cisplatin-based chemotherapy is the main treatment option for advanced or metastatic esophageal squamous cell carcinoma (ESCC). However, most ESCC patients develop drug resistance within 2 years after receiving cisplatin chemotherapy. Ubiquitin-specific protease 10 (USP10) is abnormally expressed in a variety of cancers, but the mechanistic roles of USP10 in ESCC are still obscure. Here, the effects of USP10 on the migration and cisplatin resistance of ESCC in vivo and in vitro and the underlying mechanisms have been investigated by bioinformatics analysis, RT-PCR, western blotting, immunoprecipitation, immunohistochemistry, cell migration and MTS cell proliferation assays, deubiquitination assay, and mouse tail vein injection model. USP10 was significantly up-regulated in ESCC tissues compared with adjacent normal tissues in both public databases and clinical samples and was closely associated with overall survival. Subsequent results revealed that USP10 contributed to the migration and cisplatin resistance of ESCC cells, while knocking down USP10 in cisplatin-resistant cells exhibited opposite effects in vitro and in vivo. Further Co-IP experiments showed that integrin β1 and YAP might be targets for USP10 deubiquitination. Moreover, deficiency of USP10 significantly inhibited the migrative and chemo-resistant abilities of ESCC cells, which could be majorly reversed by integrin β1 or YAP reconstitution. Altogether, USP10 was required for migration and cisplatin resistance in ESCC through deubiquinating and stabilizing integrin β1/YAP, highlighting that inhibition of USP10 may be a potential therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Sicong Hou
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Tiantian Zhao
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Bin Deng
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Caimin Li
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Wenqian Li
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Haifeng Huang
- Department of Laboratory Medicine, The First People's Hospital of Yancheng, Yancheng, 224006, Jiangsu Province, China
- Department of Laboratory Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224006, Jiangsu Province, China
| | - Qinglei Hang
- Department of Laboratory Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, China.
| |
Collapse
|
10
|
Schaefer A, Hodge RG, Zhang H, Hobbs GA, Dilly J, Huynh M, Goodwin CM, Zhang F, Diehl JN, Pierobon M, Baldelli E, Javaid S, Guthrie K, Rashid NU, Petricoin EF, Cox AD, Hahn WC, Aguirre AJ, Bass AJ, Der CJ. RHOA L57V drives the development of diffuse gastric cancer through IGF1R-PAK1-YAP1 signaling. Sci Signal 2023; 16:eadg5289. [PMID: 38113333 PMCID: PMC10791543 DOI: 10.1126/scisignal.adg5289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 11/03/2023] [Indexed: 12/21/2023]
Abstract
Cancer-associated mutations in the guanosine triphosphatase (GTPase) RHOA are found at different locations from the mutational hotspots in the structurally and biochemically related RAS. Tyr42-to-Cys (Y42C) and Leu57-to-Val (L57V) substitutions are the two most prevalent RHOA mutations in diffuse gastric cancer (DGC). RHOAY42C exhibits a gain-of-function phenotype and is an oncogenic driver in DGC. Here, we determined how RHOAL57V promotes DGC growth. In mouse gastric organoids with deletion of Cdh1, which encodes the cell adhesion protein E-cadherin, the expression of RHOAL57V, but not of wild-type RHOA, induced an abnormal morphology similar to that of patient-derived DGC organoids. RHOAL57V also exhibited a gain-of-function phenotype and promoted F-actin stress fiber formation and cell migration. RHOAL57V retained interaction with effectors but exhibited impaired RHOA-intrinsic and GAP-catalyzed GTP hydrolysis, which favored formation of the active GTP-bound state. Introduction of missense mutations at KRAS residues analogous to Tyr42 and Leu57 in RHOA did not activate KRAS oncogenic potential, indicating distinct functional effects in otherwise highly related GTPases. Both RHOA mutants stimulated the transcriptional co-activator YAP1 through actin dynamics to promote DGC progression; however, RHOAL57V additionally did so by activating the kinases IGF1R and PAK1, distinct from the FAK-mediated mechanism induced by RHOAY42C. Our results reveal that RHOAL57V and RHOAY42C drive the development of DGC through distinct biochemical and signaling mechanisms.
Collapse
Affiliation(s)
- Antje Schaefer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard G. Hodge
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haisheng Zhang
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - G. Aaron Hobbs
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Julien Dilly
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Minh Huynh
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig M. Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Feifei Zhang
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - J. Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Sehrish Javaid
- Program in Oral and Craniofacial Biomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karson Guthrie
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Naim U. Rashid
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Adrienne D. Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Program in Oral and Craniofacial Biomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William C. Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Andrew J. Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Adam J. Bass
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Herbert Irving Comprehensive Cancer Center at Columbia University, New York, NY 10032, USA
| | - Channing J. Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Program in Oral and Craniofacial Biomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Xiang J, Zhang N, Du A, Li J, Luo M, Wang Y, Liu M, Yang L, Li X, Wang L, Liu Q, Chen D, Wang T, Bian X, Qin Z, Su L, Wen L, Wang B. A Ubiquitin-Dependent Switch on MEF2D Senses Pro-Metastatic Niche Signals to Facilitate Intrahepatic Metastasis of Liver Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305550. [PMID: 37828611 PMCID: PMC10724427 DOI: 10.1002/advs.202305550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Indexed: 10/14/2023]
Abstract
Effective treatment for metastasis, a leading cause of cancer-associated death, is still lacking. To seed on a distal organ, disseminated cancer cells (DCCs) must adapt to the local tissue microenvironment. However, it remains elusive how DCCs respond the pro-metastatic niche signals. Here, systemic motif-enrichment identified myocyte enhancer factor 2D (MEF2D) as a critical sensor of niche signals to regulate DCCs adhesion and colonization, leading to intrahepatic metastasis and recurrence of liver cancer. In this context, MEF2D transactivates Itgb1 (coding β1-integrin) and Itgb4 (coding β4-integrin) to execute temporally unique functions, where ITGB1 recognizes extracellular matrix for early seeding, and ITGB4 acts as a novel sensor of neutrophil extracellular traps-DNA (NETs-DNA) for subsequent chemotaxis and colonization. In turn, an integrin-FAK circuit promotes a phosphorylation-dependent USP14-orchastrated deubiquitination switch to stabilize MEF2D via circumventing degradation by the E3-ubiquitin-ligase MDM2. Clinically, the USP14(pS432)-MEF2D-ITGB1/4 feedback loop is often hyper-active and indicative of inferior outcomes in human malignancies, while its blockade abrogated intrahepatic metastasis of DCCs. Together, DCCs exploit a deubiquitination-dependent switch on MEF2D to integrate niche signals in the liver mesenchyme, thereby amplifying the pro-metastatic integrin-FAK signaling. Disruption of this feedback loop is clinically applicable with fast-track potential to block microenvironmental cues driving metastasis.
Collapse
Affiliation(s)
- Junyu Xiang
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Ni Zhang
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Aibei Du
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Jinyang Li
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Mengyun Luo
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Yuzhu Wang
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Meng Liu
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Luming Yang
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Xianfeng Li
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Lin Wang
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Qin Liu
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Dongfeng Chen
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Tao Wang
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Xiu‐wu Bian
- Institute of Pathology and Southwest Cancer Centerand Key Laboratory of Tumor Immunopathology of Ministry of Education of ChinaSouthwest HospitalArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Zhong‐yi Qin
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
- Institute of Pathology and Southwest Cancer Centerand Key Laboratory of Tumor Immunopathology of Ministry of Education of ChinaSouthwest HospitalArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Li Su
- Department of Oncology and HematologyChongqing Hospital of Traditional Chinese MedicineChongqing400030China
| | - Liangzhi Wen
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
| | - Bin Wang
- Department of GastroenterologyChongqing Key Laboratory of Digestive MalignanciesDaping HospitalArmy Medical University (Third Military Medical University)Chongqing400042China
- Institute of Pathology and Southwest Cancer Centerand Key Laboratory of Tumor Immunopathology of Ministry of Education of ChinaSouthwest HospitalArmy Medical University (Third Military Medical University)Chongqing400038China
- Jinfeng LaboratoryChongqing401329China
| |
Collapse
|
12
|
Jokl E, Mullan AF, Simpson K, Birchall L, Pearmain L, Martin K, Pritchett J, Raza S, Shah R, Hodson NW, Williams CJ, Camacho E, Zeef L, Donaldson I, Athwal VS, Hanley NA, Piper Hanley K. PAK1-dependent mechanotransduction enables myofibroblast nuclear adaptation and chromatin organization during fibrosis. Cell Rep 2023; 42:113414. [PMID: 37967011 DOI: 10.1016/j.celrep.2023.113414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/14/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023] Open
Abstract
Myofibroblasts are responsible for scarring during fibrosis. The scar propagates mechanical signals inducing a radical transformation in myofibroblast cell state and increasing profibrotic phenotype. Here, we show mechanical stress from progressive scarring induces nuclear softening and de-repression of heterochromatin. The parallel loss of H3K9Me3 enables a permissive state for distinct chromatin accessibility and profibrotic gene regulation. Integrating chromatin accessibility profiles with RNA expression provides insight into the transcription network underlying the switch in profibrotic myofibroblast states, emphasizing mechanoadaptive regulation of PAK1 as key drivers. Through genetic manipulation in liver and lung fibrosis, loss of PAK1-dependent signaling impairs the mechanoadaptive response in vitro and dramatically improves fibrosis in vivo. Moreover, we provide human validation for mechanisms underpinning PAK1-mediated mechanotransduction in liver and lung fibrosis. Collectively, these observations provide insight into the nuclear mechanics driving the profibrotic chromatin landscape in fibrosis, highlighting actomyosin-dependent mechanisms as potential therapeutic targets in fibrosis.
Collapse
Affiliation(s)
- Elliot Jokl
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK; Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Aoibheann F Mullan
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Kara Simpson
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK; Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Lindsay Birchall
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK; Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Laurence Pearmain
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK; Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Katherine Martin
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK; Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - James Pritchett
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Sayyid Raza
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK; Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Rajesh Shah
- Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | - Nigel W Hodson
- Core Facilities, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Craig J Williams
- Department of Materials, University of Manchester, Manchester, UK
| | - Elizabeth Camacho
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, University of Manchester, Manchester, UK
| | - Leo Zeef
- Core Facilities, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Ian Donaldson
- Core Facilities, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Varinder S Athwal
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK; Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK; Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | - Neil A Hanley
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK; Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK; College of Medical & Dental Sciences, University of Birmingham, Birmingham, UK
| | - Karen Piper Hanley
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK; Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK.
| |
Collapse
|
13
|
Kichina JV, Maslov A, Kandel ES. PAK1 and Therapy Resistance in Melanoma. Cells 2023; 12:2373. [PMID: 37830586 PMCID: PMC10572217 DOI: 10.3390/cells12192373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Malignant melanoma claims more lives than any other skin malignancy. While primary melanomas are usually cured via surgical excision, the metastatic form of the disease portents a poor prognosis. Decades of intense research has yielded an extensive armamentarium of anti-melanoma therapies, ranging from genotoxic chemo- and radiotherapies to targeted interventions in specific signaling pathways and immune functions. Unfortunately, even the most up-to-date embodiments of these therapies are not curative for the majority of metastatic melanoma patients, and the need to improve their efficacy is widely recognized. Here, we review the reports that implicate p21-regulated kinase 1 (PAK1) and PAK1-related pathways in the response of melanoma to various therapeutic modalities. Ample data suggest that PAK1 may decrease cell sensitivity to programmed cell death, provide additional stimulation to growth-promoting molecular pathways, and contribute to the creation of an immunosuppressive tumor microenvironment. Accordingly, there is mounting evidence that the concomitant inhibition of PAK1 enhances the potency of various anti-melanoma regimens. Overall, the available information suggests that a safe and effective inhibition of PAK1-dependent molecular processes would enhance the potency of the currently available anti-melanoma treatments, although considerable challenges in implementing such strategies still exist.
Collapse
Affiliation(s)
- Julia V. Kichina
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton St., Buffalo, NY 14263, USA
| | - Alexei Maslov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm & Carlton St., Buffalo, NY 14263, USA
| | - Eugene S. Kandel
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm & Carlton St., Buffalo, NY 14263, USA
| |
Collapse
|
14
|
Senju Y, Hibino E. Moesin-ezrin-radixin-like protein merlin: Its conserved and distinct functions from those of ERM proteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184076. [PMID: 36302494 DOI: 10.1016/j.bbamem.2022.184076] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yosuke Senju
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan.
| | - Emi Hibino
- Graduate School of Pharmaceutical Sciences, Nagoya University, Aichi, Japan
| |
Collapse
|
15
|
Wang WR, Li J, Gu JT, Hu BW, Qin W, Zhu YN, Guo ZX, Ma YX, Tay F, Jiao K, Niu L. Optimization of Lactoferrin-Derived Amyloid Coating for Enhancing Soft Tissue Seal and Antibacterial Activity of Titanium Implants. Adv Healthc Mater 2023; 12:e2203086. [PMID: 36594680 DOI: 10.1002/adhm.202203086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Indexed: 01/04/2023]
Abstract
A poor seal of the titanium implant-soft tissue interface provokes bacterial invasion, aggravates inflammation, and ultimately results in implant failure. To ensure the long-term success of titanium implants, lactoferrin-derived amyloid is coated on the titanium surface to increase the expression of cell integrins and hemidesmosomes, with the goal of promoting soft tissue seal and imparting antibacterial activity to the implants. The lactoferrin-derived amyloid coated titanium structures contain a large number of amino and carboxyl groups on their surfaces, and promote proliferation and adhesion of epithelial cells and fibroblasts via the PI3K/AKT pathway. The amyloid coating also has a strong positive charge and possesses potent antibacterial activities against Staphylococcus aureus and Porphyromonas gingivalis. In a rat immediate implantation model, the amyloid-coated titanium implants form gingival junctional epithelium at the transmucosal region that resembles the junctional epithelium in natural teeth. This provides a strong soft tissue seal to wall off infection. Taken together, lactoferrin-derived amyloid is a dual-function transparent coating that promotes soft tissue seal and possesses antibacterial activity. These unique properties enable the synthesized amyloid to be used as potential biological implant coatings.
Collapse
Affiliation(s)
- Wan-Rong Wang
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Jing Li
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Jun-Ting Gu
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Bo-Wen Hu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Wen Qin
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Yi-Na Zhu
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Zhen-Xing Guo
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Yu-Xuan Ma
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Franklin Tay
- Department of Endodontics, the Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Kai Jiao
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Lina Niu
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
16
|
Hennigan RF, Thomson CS, Stachowski K, Nassar N, Ratner N. Merlin tumor suppressor function is regulated by PIP2-mediated dimerization. PLoS One 2023; 18:e0281876. [PMID: 36809290 PMCID: PMC9942953 DOI: 10.1371/journal.pone.0281876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
Neurofibromatosis Type 2 is an inherited disease characterized by Schwann cell tumors of cranial and peripheral nerves. The NF2 gene encodes Merlin, a member of the ERM family consisting of an N-terminal FERM domain, a central α-helical region, and a C-terminal domain. Changes in the intermolecular FERM-CTD interaction allow Merlin to transition between an open, FERM accessible conformation and a closed, FERM-inaccessible conformation, modulating Merlin activity. Merlin has been shown to dimerize, but the regulation and function Merlin dimerization is not clear. We used a nanobody based binding assay to show that Merlin dimerizes via a FERM-FERM interaction, orientated with each C-terminus close to each other. Patient derived and structural mutants show that dimerization controls interactions with specific binding partners, including HIPPO pathway components, and correlates with tumor suppressor activity. Gel filtration experiments showed that dimerization occurs after a PIP2 mediated transition from closed to open conformation monomers. This process requires the first 18 amino acids of the FERM domain and is inhibited by phosphorylation at serine 518. The discovery that active, open conformation Merlin is a dimer represents a new paradigm for Merlin function with implications for the development of therapies designed to compensate for Merlin loss.
Collapse
Affiliation(s)
- Robert F. Hennigan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States of America
- * E-mail:
| | - Craig S. Thomson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States of America
| | - Kye Stachowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States of America
| | - Nicolas Nassar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States of America
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States of America
| |
Collapse
|
17
|
Lee M, Du H, Winer DA, Clemente-Casares X, Tsai S. Mechanosensing in macrophages and dendritic cells in steady-state and disease. Front Cell Dev Biol 2022; 10:1044729. [PMID: 36467420 PMCID: PMC9712790 DOI: 10.3389/fcell.2022.1044729] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
Macrophages and dendritic cells are myeloid cells that play critical roles in immune responses. Macrophages help to maintain homeostasis through tissue regeneration and the clearance of dead cells, but also mediate inflammatory processes against invading pathogens. As the most potent antigen-presenting cells, dendritic cells are important in connecting innate to adaptive immune responses via activation of T cells, and inducing tolerance under physiological conditions. While it is known that macrophages and dendritic cells respond to biochemical cues in the microenvironment, the role of extracellular mechanical stimuli is becoming increasingly apparent. Immune cell mechanotransduction is an emerging field, where accumulating evidence suggests a role for extracellular physical cues coming from tissue stiffness in promoting immune cell recruitment, activation, metabolism and inflammatory function. Additionally, many diseases such as pulmonary fibrosis, cardiovascular disease, cancer, and cirrhosis are associated with changes to the tissue biophysical environment. This review will discuss current knowledge about the effects of biophysical cues including matrix stiffness, topography, and mechanical forces on macrophage and dendritic cell behavior under steady-state and pathophysiological conditions. In addition, we will also provide insight on molecular mediators and signaling pathways important in macrophage and dendritic cell mechanotransduction.
Collapse
Affiliation(s)
- Megan Lee
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Huixun Du
- Buck Institute for Research on Aging, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Daniel A. Winer
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Pathology, University Health Network, Toronto, ON, Canada
- Buck Institute for Research on Aging, Novato, CA, United States
| | - Xavier Clemente-Casares
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Sue Tsai
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Gonzalez‐Molina J, Kirchhof KM, Rathod B, Moyano‐Galceran L, Calvo‐Noriega M, Kokaraki G, Bjørkøy A, Ehnman M, Carlson JW, Lehti K. Mechanical Confinement and DDR1 Signaling Synergize to Regulate Collagen-Induced Apoptosis in Rhabdomyosarcoma Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202552. [PMID: 35957513 PMCID: PMC9534977 DOI: 10.1002/advs.202202552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Fibrillar collagens promote cell proliferation, migration, and survival in various epithelial cancers and are generally associated with tumor aggressiveness. However, the impact of fibrillar collagens on soft tissue sarcoma behavior remains poorly understood. Unexpectedly, this study finds that fibrillar collagen-related gene expression is associated with favorable patient prognosis in rhabdomyosarcoma. By developing and using collagen matrices with distinct stiffness and in vivo-like microarchitectures, this study uncovers that the activation of DDR1 has pro-apoptotic and of integrin β1 pro-survival function, specifically in 3D rhabdomyosarcoma cell cultures. It demonstrates that rhabdomyosarcoma cell-intrinsic or extrinsic matrix remodeling promotes cell survival. Mechanistically, the 3D-specific collagen-induced apoptosis results from a dual DDR1-independent and a synergistic DDR1-dependent TRPV4-mediated response to mechanical confinement. Altogether, these results indicate that dense microfibrillar collagen-rich microenvironments are detrimental to rhabdomyosarcoma cells through an apoptotic response orchestrated by the induction of DDR1 signaling and mechanical confinement. This mechanism helps to explain the preference of rhabdomyosarcoma cells to grow in and metastasize to low fibrillar collagen microenvironments such as the lung.
Collapse
Affiliation(s)
- Jordi Gonzalez‐Molina
- Department of MicrobiologyTumor and Cell BiologyKarolinska InstitutetSolnavägen 9Solna17165Sweden
- Department of Oncology‐PathologyKarolinska InstitutetKarolinskavägenSolna17164Sweden
| | - Katharina Miria Kirchhof
- Department of MicrobiologyTumor and Cell BiologyKarolinska InstitutetSolnavägen 9Solna17165Sweden
| | - Bhavik Rathod
- Department of MicrobiologyTumor and Cell BiologyKarolinska InstitutetSolnavägen 9Solna17165Sweden
- Department of Laboratory MedicineDivision of PathologyKarolinska InstitutetAlfred Nobels Allé 8Stockholm14152Sweden
| | - Lidia Moyano‐Galceran
- Department of MicrobiologyTumor and Cell BiologyKarolinska InstitutetSolnavägen 9Solna17165Sweden
| | - Maria Calvo‐Noriega
- Department of MicrobiologyTumor and Cell BiologyKarolinska InstitutetSolnavägen 9Solna17165Sweden
| | - Georgia Kokaraki
- Department of Oncology‐PathologyKarolinska InstitutetKarolinskavägenSolna17164Sweden
- Keck School of MedicineUniversity of Southern California1975 Zonal AveLos AngelesCA90033USA
| | - Astrid Bjørkøy
- Department of PhysicsNorwegian University of Science and TechnologyHøgskoleringen 5TrondheimNO‐7491Norway
| | - Monika Ehnman
- Department of Oncology‐PathologyKarolinska InstitutetKarolinskavägenSolna17164Sweden
| | - Joseph W. Carlson
- Department of Oncology‐PathologyKarolinska InstitutetKarolinskavägenSolna17164Sweden
- Keck School of MedicineUniversity of Southern California1975 Zonal AveLos AngelesCA90033USA
| | - Kaisa Lehti
- Department of MicrobiologyTumor and Cell BiologyKarolinska InstitutetSolnavägen 9Solna17165Sweden
- Department of Biomedical Laboratory ScienceNorwegian University of Science and TechnologyErling Skjalgssons gate 1TrondheimNO‐7491Norway
| |
Collapse
|
19
|
Dent P, Booth L, Poklepovic A, Hancock JF. Neratinib as a Potential Therapeutic for Mutant RAS and Osimertinib-Resistant Tumours. EUROPEAN MEDICAL JOURNAL 2022. [DOI: 10.33590/emj/10197202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neratinib was developed as an irreversible catalytic inhibitor of ERBB2, which also acts to inhibit ERBB1 and ERBB4. Neratinib is U.S. Food and Drug Administration (FDA)-approved as a neo-adjuvant therapy for use in HER2+ breast cancer. More recently, chemical biology analyses and the authors’ own bench work have demonstrated that neratinib has additional targets, which open up the possibility of using the drug in cell types that either lack ERBB receptor family expression or who rely on survival signalling downstream of growth factor receptors. Neratinib rapidly disrupted mutant RAS nanoclustering, which was followed by mutant rat sarcoma virus proteins translocating via LC3-associated phagocytosis into the cytosol where they were degraded by macroautophagy. Neratinib catalytically inhibited the MAP4K mammalian STE20-like protein kinase 4 and also caused its degradation via macroautophagy. This resulted in ezrin dephosphorylation and the plasma membrane becoming flaccid. Neratinib disrupted the nanoclustering of RAC1, which was associated with dephosphorylation of PAK1 and Merlin, and with increased phosphorylation of the Merlin binding partners large tumour suppressor kinase 1/2, YAP, and TAZ. YAP and TAZ exited the nucleus. Neratinib retained its anti-tumour efficacy against NSCLC cells made resistant to either afatinib or to osimertinib. Collectively, these findings argue that the possibilities for the further development of neratinib as cancer therapeutic in malignancies that do not express or over-express members of the ERBB receptor family are potentially wide-ranging.
Collapse
|
20
|
Wang C, Yang J. Mechanical forces: The missing link between idiopathic pulmonary fibrosis and lung cancer. Eur J Cell Biol 2022; 101:151234. [DOI: 10.1016/j.ejcb.2022.151234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
|
21
|
Liu C, Yu Q, Yuan Z, Guo Q, Liao X, Han F, Feng T, Liu G, Zhao R, Zhu Z, Mao H, Zhu C, Li B. Engineering the viscoelasticity of gelatin methacryloyl (GelMA) hydrogels via small “dynamic bridges” to regulate BMSC behaviors for osteochondral regeneration. Bioact Mater 2022; 25:445-459. [PMID: 37056254 PMCID: PMC10087107 DOI: 10.1016/j.bioactmat.2022.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/27/2022] [Accepted: 07/24/2022] [Indexed: 11/02/2022] Open
Abstract
The dynamic extracellular matrix (ECM) constantly affects the behaviors of cells. To mimic the dynamics of ECM with controllable stiffness and energy dissipation, this study proposes a strategy in which a small molecule, 3,4-dihydroxybenzaldehyde (DB), was used as fast "dynamic bridges'' to construct viscoelastic gelatin methacryloyl (GelMA)-based hydrogels. The storage modulus and loss modulus of hydrogels were independently adjusted by the covalent crosslinking density and by the number of dynamic bonds. The hydrogels exhibited self-healing property, injectability, excellent adhesion and mechanical properties. Moreover, the in vitro results revealed that the viscous dissipation of hydrogels favored the spreading, proliferation, osteogenesis and chondrogenesis of bone marrow mesenchymal stem cells (BMSCs), but suppressed their adipogenesis. RNA-sequencing and immunofluorescence suggested that the viscous dissipation of hydrogels activated Yes-associated protein (YAP) by stabilizing integrin β1, and further promoted nuclear translocation of smad2/3 and β-catenin to enhance chondrogenesis and osteogenesis. As a result, the viscoelastic GelMA hydrogels with highest loss modulus showed best effect in cartilage and subchondral bone repair. Taken together, findings from this study reveal an effective strategy to fabricate viscoelastic hydrogels for modulating the interactions between cells and dynamic ECM to promote tissue regeneration.
Collapse
|
22
|
THY1-mediated mechanisms converge to drive YAP activation in skin homeostasis and repair. Nat Cell Biol 2022; 24:1049-1063. [PMID: 35798842 DOI: 10.1038/s41556-022-00944-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/18/2022] [Indexed: 12/24/2022]
Abstract
Anchored cells of the basal epidermis constantly undergo proliferation in an overcrowded environment. An important regulator of epidermal proliferation is YAP, which can be controlled by both cell-matrix and cell-cell interactions. Here, we report that THY1, a GPI-anchored protein, inhibits epidermal YAP activity through converging molecular mechanisms. THY1 deficiency leads to increased adhesion by activating the integrin-β1-SRC module. Notably, regardless of high cellular densities, the absence of THY1 leads to the dissociation of an adherens junction complex that enables the release and translocation of YAP. Due to increased YAP-dependent proliferation, Thy1-/- mice display enhanced wound repair and hair follicle regeneration. Taken together, our work reveals THY1 as a crucial regulator of cell-matrix and cell-cell interactions that controls YAP activity in skin homeostasis and regeneration.
Collapse
|
23
|
Unraveling the Biology of Epithelioid Hemangioendothelioma, a TAZ-CAMTA1 Fusion Driven Sarcoma. Cancers (Basel) 2022; 14:cancers14122980. [PMID: 35740643 PMCID: PMC9221450 DOI: 10.3390/cancers14122980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Epithelioid hemangioendothelioma (EHE) is a rare vascular cancer that involves a gain-of-function gene fusion involving TAZ, a transcriptional coactivator, and one of two end effectors of the Hippo pathway. Although the activity of TAZ and/or YAP, a paralog of TAZ, is consistently altered in many cancers, genetic alterations involving YAP/TAZ are rare, and the precise mechanisms by which YAP/TAZ are activated are not well understood in most cancers. Because WWTR1(TAZ)–CAMTA1 is the only genetic alteration in approximately half of EHE, EHE is a genetically clean and homogenous system for understanding how the dysregulation of TAZ promotes tumorigenesis. Therefore, by using EHE as a model system, we hope to elucidate the essential biological pathways mediated by TAZ and identify mechanisms to target them. The findings of EHE research can be applied to other cancers that are addicted to high YAP/TAZ activity. Abstract The activities of YAP and TAZ, the end effectors of the Hippo pathway, are consistently altered in cancer, and this dysregulation drives aggressive tumor phenotypes. While the actions of these two proteins aid in tumorigenesis in the majority of cancers, the dysregulation of these proteins is rarely sufficient for initial tumor development. Herein, we present a unique TAZ-driven cancer, epithelioid hemangioendothelioma (EHE), which harbors a WWTR1(TAZ)–CAMTA1 gene fusion in at least 90% of cases. Recent investigations have elucidated the mechanisms by which YAP/TAP-fusion oncoproteins function and drive tumorigenesis. This review presents a critical evaluation of this recent work, with a particular focus on how the oncoproteins alter the normal activity of TAZ and YAP, and, concurrently, we generate a framework for how we can target the gene fusions in patients. Since EHE represents a paradigm of YAP/TAZ dysregulation in cancer, targeted therapies for EHE may also be effective against other YAP/TAZ-dependent cancers.
Collapse
|
24
|
Ha-RasV12-Induced Multilayer Cellular Aggregates Is Mediated by Rac1 Activation Rather Than YAP Activation. Biomedicines 2022; 10:biomedicines10050977. [PMID: 35625714 PMCID: PMC9138672 DOI: 10.3390/biomedicines10050977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
We demonstrate that Ha-RasV12 overexpression induces the nuclear translocation of Hippo effector Yes-associated protein (YAP) in MDCK cells via the hippo-independent pathway at the confluent stage. Ha-RasV12 overexpression leads to the downregulation of Caveolin-1 (Cav1) and the disruption of junction integrity. It has been shown that the disruption of actin belt integrity causes YAP nuclear translocation in epithelial cells at high density. Therefore, we hypothesized that Ha-RasV12-decreased Cav1 leads to the disruption of cell junction integrity, which subsequently facilitates YAP nuclear retention. We revealed that Ha-RasV12 downregulated Cav1 through the ERK pathway. Furthermore, the distribution and expression of Cav1 mediated the cell junction integrity and YAP nuclear localization. This suggests that the downregulation of Cav1 induced by Ha-RasV12 disrupted the cell junction integrity and promoted YAP nuclear translocation. We further indicated the consequence of Ha-RasV12-induced YAP activation. Surprisingly, the activation of YAP is not required for Ha-RasV12-induced multilayer cellular aggregates. Instead, Ha-RasV12 triggered the ERK-Rac pathway to promote cellular aggregate formation. Moreover, the overexpression of constitutively active Rac is sufficient to trigger cellular aggregation in MDCK cells at the confluent stage. This highlights that Rac activity is essential for cellular aggregates.
Collapse
|
25
|
Molecular Pathways Involved in the Anti-Cancer Activity of Flavonols: A Focus on Myricetin and Kaempferol. Int J Mol Sci 2022; 23:ijms23084411. [PMID: 35457229 PMCID: PMC9026553 DOI: 10.3390/ijms23084411] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 12/22/2022] Open
Abstract
Natural compounds have always represented valuable allies in the battle against several illnesses, particularly cancer. In this field, flavonoids are known to modulate a wide panel of mechanisms involved in tumorigenesis, thus rendering them worthy candidates for both cancer prevention and treatment. In particular, it was reported that flavonoids regulate apoptosis, as well as hamper migration and proliferation, crucial events for the progression of cancer. In this review, we collect recent evidence concerning the anti-cancer properties of the flavonols myricetin and kaempferol, discussing their mechanisms of action to give a thorough overview of their noteworthy capabilities, which are comparable to those of their most famous analogue, namely quercetin. On the whole, these flavonols possess great potential, and hence further study is highly advised to allow a proper definition of their pharmaco-toxicological profile and assess their potential use in protocols of chemoprevention and adjuvant therapies.
Collapse
|
26
|
The Molecular Interaction of Collagen with Cell Receptors for Biological Function. Polymers (Basel) 2022; 14:polym14050876. [PMID: 35267698 PMCID: PMC8912536 DOI: 10.3390/polym14050876] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/25/2023] Open
Abstract
Collagen, an extracellular protein, covers the entire human body and has several important biological functions in normal physiology. Recently, collagen from non-human sources has attracted attention for therapeutic management and biomedical applications. In this regard, both land-based animals such as cow, pig, chicken, camel, and sheep, and marine-based resources such as fish, octopus, starfish, sea-cucumber, and jellyfish are widely used for collagen extraction. The extracted collagen is transformed into collagen peptides, hydrolysates, films, hydrogels, scaffolds, sponges and 3D matrix for food and biomedical applications. In addition, many strategic ideas are continuously emerging to develop innovative advanced collagen biomaterials. For this purpose, it is important to understand the fundamental perception of how collagen communicates with receptors of biological cells to trigger cell signaling pathways. Therefore, this review discloses the molecular interaction of collagen with cell receptor molecules to carry out cellular signaling in biological pathways. By understanding the actual mechanism, this review opens up several new concepts to carry out next level research in collagen biomaterials.
Collapse
|
27
|
The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer. Clin Sci (Lond) 2022; 136:197-222. [PMID: 35119068 PMCID: PMC8819670 DOI: 10.1042/cs20201474] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
Tumorigenesis is a highly complex process, involving many interrelated and cross-acting signalling pathways. One such pathway that has garnered much attention in the field of cancer research over the last decade is the Hippo signalling pathway. Consisting of two antagonistic modules, the pathway plays an integral role in both tumour suppressive and oncogenic processes, generally via regulation of a diverse set of genes involved in a range of biological functions. This review discusses the history of the pathway within the context of cancer and explores some of the most recent discoveries as to how this critical transducer of cellular signalling can influence cancer progression. A special focus is on the various recent efforts to therapeutically target the key effectors of the pathway in both preclinical and clinical settings.
Collapse
|
28
|
Tian Q, Gao H, Zhou Y, Zhu L, Yang J, Wang B, Liu P, Yang J. RICH1 inhibits breast cancer stem cell traits through activating kinases cascade of Hippo signaling by competing with Merlin for binding to Amot-p80. Cell Death Dis 2022; 13:71. [PMID: 35064101 PMCID: PMC8782888 DOI: 10.1038/s41419-022-04516-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 01/02/2023]
Abstract
Cancer stem cells (CSCs) are regarded as the root of tumor recurrence and distant metastasis, as well as the major cause of resistance to conventional cancer therapies. Elucidating the mechanism of regulating CSCs is of great significance for the development of CSCs-targeting therapy strategies. YAP/TAZ are identified as key regulators of CSCs-related traits on breast cancer cells; however, the upstream regulatory mechanism of Hippo kinases cascade involved in regulating YAP/TAZ remains elusive. In this study, we found that the low expression of RICH1 in breast cancer was associated with poor prognosis. Depletion of RICH1 promoted the stemness and disrupted the normal epithelial architecture of MCF10A cells. Besides, RICH1 inhibited the migration and invasion of breast cancer cells and sensitized these cells to chemotherapeutic drugs. Mechanistically, RICH1 activated the kinases cascade of Hippo signaling via displacing Amot-p80 from the complex with Merlin. Further studies revealed that the deletion of the BAR domain of RICH1 abolished the function of attenuating the binding of Amot-p80 and Merlin, illustrating that the competitive binding to Amot-p80 with Merlin was mediated by the BAR domain of RICH1. In conclusion, our work elucidated the role and molecular mechanism of RICH1 in stemness regulation of breast cancer, and might provide opportunities for CSCs-targeting therapy.
Collapse
Affiliation(s)
- Qi Tian
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huan Gao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Zhou
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lizhe Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiao Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Jin Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
29
|
Ruivo CF, Bastos N, Adem B, Batista I, Duraes C, Melo CA, Castaldo SA, Campos‐Laborie F, Moutinho-Ribeiro P, Morão B, Costa-Pinto A, Silva S, Osorio H, Ciordia S, Costa JL, Goodrich D, Cavadas B, Pereira L, Kouzarides T, Macedo G, Maio R, Carneiro F, Cravo M, Kalluri R, Machado JC, Melo SA. Extracellular Vesicles from Pancreatic Cancer Stem Cells Lead an Intratumor Communication Network (EVNet) to fuel tumour progression. Gut 2022; 71:gutjnl-2021-324994. [PMID: 35012996 PMCID: PMC9271144 DOI: 10.1136/gutjnl-2021-324994] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Intratumor heterogeneity drives cancer progression and therapy resistance. However, it has yet to be determined whether and how subpopulations of cancer cells interact and how this interaction affects the tumour. DESIGN We have studied the spontaneous flow of extracellular vesicles (EVs) between subpopulations of cancer cells: cancer stem cells (CSC) and non-stem cancer cells (NSCC). To determine the biological significance of the most frequent communication route, we used pancreatic ductal adenocarcinoma (PDAC) orthotopic models, patient-derived xenografts (PDXs) and genetically engineered mouse models (GEMMs). RESULTS We demonstrate that PDAC tumours establish an organised communication network between subpopulations of cancer cells using EVs called the EVNet). The EVNet is plastic and reshapes in response to its environment. Communication within the EVNet occurs preferentially from CSC to NSCC. Inhibition of this communication route by impairing Rab27a function in orthotopic xenographs, GEMMs and PDXs is sufficient to hamper tumour growth and phenocopies the inhibition of communication in the whole tumour. Mechanistically, we provide evidence that CSC EVs use agrin protein to promote Yes1 associated transcriptional regulator (YAP) activation via LDL receptor related protein 4 (LRP-4). Ex vivo treatment of PDXs with antiagrin significantly impairs proliferation and decreases the levels of activated YAP.Patients with high levels of agrin and low inactive YAP show worse disease-free survival. In addition, patients with a higher number of circulating agrin+ EVs show a significant increased risk of disease progression. CONCLUSION PDAC tumours establish a cooperation network mediated by EVs that is led by CSC and agrin, which allows tumours to adapt and thrive. Targeting agrin could make targeted therapy possible for patients with PDAC and has a significant impact on CSC that feeds the tumour and is at the centre of therapy resistance.
Collapse
Affiliation(s)
- Carolina F Ruivo
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- ICBAS Instituto de Ciencias Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Nuno Bastos
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- ICBAS Instituto de Ciencias Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Barbara Adem
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- ICBAS Instituto de Ciencias Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Ines Batista
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- ICBAS Instituto de Ciencias Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Cecilia Duraes
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | | | - Stephanie A Castaldo
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | | | - Pedro Moutinho-Ribeiro
- FMUP Faculty of Medicine University of Porto, Porto, Portugal
- CHUSJ Centro Hospitalar Universitário de São João, Porto, Portugal
| | | | - Ana Costa-Pinto
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Soraia Silva
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Hugo Osorio
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- FMUP Faculty of Medicine University of Porto, Porto, Portugal
| | - Sergio Ciordia
- Proteomics Facility, Spanish National Center for Biotechnology, Madrid, Spain
| | - Jose Luis Costa
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- FMUP Faculty of Medicine University of Porto, Porto, Portugal
| | | | - Bruno Cavadas
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Luisa Pereira
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | | | - Guilherme Macedo
- FMUP Faculty of Medicine University of Porto, Porto, Portugal
- CHUSJ Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Rui Maio
- Hospital Beatriz Ângelo, Loures, Portugal
- Hospital da Luz, Lisbon, Portugal
- NOVA Medical School, Lisbon, Portugal
| | - Fatima Carneiro
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- FMUP Faculty of Medicine University of Porto, Porto, Portugal
- CHUSJ Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Marília Cravo
- Hospital da Luz, Lisbon, Portugal
- FMUL Faculty of Medicine University of Lisbon, Lisbon, Portugal
| | - Raghu Kalluri
- Cancer Biology, University Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jose Carlos Machado
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- FMUP Faculty of Medicine University of Porto, Porto, Portugal
| | - Sonia A Melo
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- FMUP Faculty of Medicine University of Porto, Porto, Portugal
| |
Collapse
|
30
|
Lim YX, Lin H, Seah SH, Lim YP. Reciprocal Regulation of Hippo and WBP2 Signalling-Implications in Cancer Therapy. Cells 2021; 10:cells10113130. [PMID: 34831354 PMCID: PMC8625973 DOI: 10.3390/cells10113130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/08/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
Cancer is a global health problem. The delineation of molecular mechanisms pertinent to cancer initiation and development has spurred cancer therapy in the form of precision medicine. The Hippo signalling pathway is a tumour suppressor pathway implicated in a multitude of cancers. Elucidation of the Hippo pathway has revealed an increasing number of regulators that are implicated, some being potential therapeutic targets for cancer interventions. WW domain-binding protein 2 (WBP2) is an oncogenic transcriptional co-factor that interacts, amongst others, with two other transcriptional co-activators, YAP and TAZ, in the Hippo pathway. WBP2 was recently discovered to modulate the upstream Hippo signalling components by associating with LATS2 and WWC3. Exacerbating the complexity of the WBP2/Hippo network, WBP2 itself is reciprocally regulated by Hippo-mediated microRNA biogenesis, contributing to a positive feedback loop that further drives carcinogenesis. Here, we summarise the biological mechanisms of WBP2/Hippo reciprocal regulation and propose therapeutic strategies to overcome Hippo defects in cancers through targeting WBP2.
Collapse
Affiliation(s)
- Yvonne Xinyi Lim
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore 119077, Singapore; (Y.X.L.); (H.L.); (S.H.S.)
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore
| | - Hexian Lin
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore 119077, Singapore; (Y.X.L.); (H.L.); (S.H.S.)
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore
| | - Sock Hong Seah
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore 119077, Singapore; (Y.X.L.); (H.L.); (S.H.S.)
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Yoon Pin Lim
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore
- Correspondence:
| |
Collapse
|
31
|
Wrestling and Wrapping: A Perspective on SUMO Proteins in Schwann Cells. Biomolecules 2021; 11:biom11071055. [PMID: 34356679 PMCID: PMC8301837 DOI: 10.3390/biom11071055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022] Open
Abstract
Schwann cell development and peripheral nerve myelination are finely orchestrated multistep processes; some of the underlying mechanisms are well described and others remain unknown. Many posttranslational modifications (PTMs) like phosphorylation and ubiquitination have been reported to play a role during the normal development of the peripheral nervous system (PNS) and in demyelinating neuropathies. However, a relatively novel PTM, SUMOylation, has not been studied in these contexts. SUMOylation involves the covalent attachment of one or more small ubiquitin-like modifier (SUMO) proteins to a substrate, which affects the function, cellular localization, and further PTMs of the conjugated protein. SUMOylation also regulates other proteins indirectly by facilitating non-covalent protein–protein interaction via SUMO interaction motifs (SIM). This pathway has important consequences on diverse cellular processes, and dysregulation of this pathway has been reported in several diseases including neurological and degenerative conditions. In this article, we revise the scarce literature on SUMOylation in Schwann cells and the PNS, we propose putative substrate proteins, and we speculate on potential mechanisms underlying the possible involvement of this PTM in peripheral myelination and neuropathies.
Collapse
|
32
|
Ikeuchi M, Yuki R, Saito Y, Nakayama Y. The tumor suppressor LATS2 reduces v-Src-induced membrane blebs in a kinase activity-independent manner. FASEB J 2021; 35:e21242. [PMID: 33368671 DOI: 10.1096/fj.202001909r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/05/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022]
Abstract
When cells with excess DNA, such as tetraploid cells, undergo cell division, it can contribute to cellular transformation via asymmetrical chromosome segregation-generated genetic diversity. Cell cycle progression of tetraploid cells is suppressed by large tumor suppressor 2 (LATS2) kinase-induced inhibitory phosphorylation of the transcriptional coactivator Yes-associated protein (YAP). We recently reported that the oncogene v-Src induces tetraploidy and promotes cell cycle progression of tetraploid cells by suppressing LATS2 activity. We explore here the mechanism by which v-Src suppresses LATS2 activity and the role of LATS2 in v-Src-expressing cells. LATS2 was directly phosphorylated by v-Src and the proto-oncogene c-Src, resulting in decreased LATS2 kinase activity. This kinase-deficient LATS2 accumulated in a YAP transcriptional activity-dependent manner, and knockdown of either LATS2 or the LATS2-binding partner moesin-ezrin-radixin-like protein (Merlin) accelerated v-Src-induced membrane bleb formation. Upon v-Src expression, the interaction of Merlin with LATS2 was increased possibly due to a decrease in Merlin phosphorylation at Ser518, the dephosphorylation of which is required for the open conformation of Merlin and interaction with LATS2. LATS2 was colocalized with Merlin at the plasma membrane in a manner that depends on the Merlin-binding region of LATS2. The bleb formation in v-Src-expressing and LATS2-knockdown cells was rescued by the reexpression of wild-type or kinase-dead LATS2 but not the LATS2 mutant lacking the Merlin-binding region. These results suggest that the kinase-deficient LATS2 plays a role with Merlin at the plasma membrane in the maintenance of cortical rigidity in v-Src-expressing cells, which may cause tumor suppression.
Collapse
Affiliation(s)
- Masayoshi Ikeuchi
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan.,DC1, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ryuzaburo Yuki
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Youhei Saito
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuji Nakayama
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
33
|
Carneiro TNR, Bim LV, Buzatto VC, Galdeno V, Asprino PF, Lee EA, Galante PAF, Cerutti JM. Evidence of Cooperation between Hippo Pathway and RAS Mutation in Thyroid Carcinomas. Cancers (Basel) 2021; 13:2306. [PMID: 34065786 PMCID: PMC8151534 DOI: 10.3390/cancers13102306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/30/2022] Open
Abstract
Thyroid cancer incidences have been steadily increasing worldwide and are projected to become the fourth leading cancer diagnosis by 2030. Improved diagnosis and prognosis predictions for this type of cancer depend on understanding its genetic bases and disease biology. RAS mutations have been found in a wide range of thyroid tumors, from benign to aggressive thyroid carcinomas. Based on that and in vivo studies, it has been suggested that RAS cooperates with other driver mutations to induce tumorigenesis. This study aims to identify genetic alterations or pathways that cooperate with the RAS mutation in the pathogenesis of thyroid cancer. From a cohort of 120 thyroid carcinomas, 11 RAS-mutated samples were identified. The samples were subjected to RNA-Sequencing analyses. The mutation analysis in our eleven RAS-positive cases uncovered that four genes that belong to the Hippo pathway were mutated. The gene expression analysis revealed that this pathway was dysregulated in the RAS-positive samples. We additionally explored the mutational status and expression profiling of 60 RAS-positive papillary thyroid carcinomas (PTC) from The Cancer Genome Atlas (TCGA) cohort. Altogether, the mutational landscape and pathway enrichment analysis (gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of Genes and Genome (KEGG)) detected the Hippo pathway as dysregulated in RAS-positive thyroid carcinomas. Finally, we suggest a crosstalk between the Hippo and other signaling pathways, such as Wnt and BMP.
Collapse
Affiliation(s)
- Thaise Nayane Ribeiro Carneiro
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo, SP 04039-032, Brazil; (T.N.R.C.); (L.V.B.)
| | - Larissa Valdemarin Bim
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo, SP 04039-032, Brazil; (T.N.R.C.); (L.V.B.)
| | - Vanessa Candiotti Buzatto
- Centro de Oncologia Molecular, Hospital Sírio-libanês, Rua Professor Daher Cutait 69, Bela Vista, São Paulo, SP 01308-060, Brazil; (V.C.B.); (V.G.); (P.F.A.); (P.A.F.G.)
| | - Vanessa Galdeno
- Centro de Oncologia Molecular, Hospital Sírio-libanês, Rua Professor Daher Cutait 69, Bela Vista, São Paulo, SP 01308-060, Brazil; (V.C.B.); (V.G.); (P.F.A.); (P.A.F.G.)
| | - Paula Fontes Asprino
- Centro de Oncologia Molecular, Hospital Sírio-libanês, Rua Professor Daher Cutait 69, Bela Vista, São Paulo, SP 01308-060, Brazil; (V.C.B.); (V.G.); (P.F.A.); (P.A.F.G.)
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, 3 Blackfan Circle, CLS (Center for Life Science) Building 15th Floor, Office 15020 | Lab 15072, Boston, MA 02115, USA;
| | - Pedro Alexandre Favoretto Galante
- Centro de Oncologia Molecular, Hospital Sírio-libanês, Rua Professor Daher Cutait 69, Bela Vista, São Paulo, SP 01308-060, Brazil; (V.C.B.); (V.G.); (P.F.A.); (P.A.F.G.)
| | - Janete Maria Cerutti
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo, SP 04039-032, Brazil; (T.N.R.C.); (L.V.B.)
| |
Collapse
|
34
|
Xu Z, Orkwis JA, Harris GM. Cell Shape and Matrix Stiffness Impact Schwann Cell Plasticity via YAP/TAZ and Rho GTPases. Int J Mol Sci 2021; 22:ijms22094821. [PMID: 34062912 PMCID: PMC8124465 DOI: 10.3390/ijms22094821] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Schwann cells (SCs) are a highly plastic cell type capable of undergoing phenotypic changes following injury or disease. SCs are able to upregulate genes associated with nerve regeneration and ultimately achieve functional recovery. During the regeneration process, the extracellular matrix (ECM) and cell morphology play a cooperative, critical role in regulating SCs, and therefore highly impact nerve regeneration outcomes. However, the roles of the ECM and mechanotransduction relating to SC phenotype are largely unknown. Here, we describe the role that matrix stiffness and cell morphology play in SC phenotype specification via known mechanotransducers YAP/TAZ and RhoA. Using engineered microenvironments to precisely control ECM stiffness, cell shape, and cell spreading, we show that ECM stiffness and SC spreading downregulated SC regenerative associated proteins by the activation of RhoA and YAP/TAZ. Additionally, cell elongation promoted a distinct SC regenerative capacity by the upregulation of Rac1/MKK7/JNK, both necessary for the ECM and morphology changes found during nerve regeneration. These results confirm the role of ECM signaling in peripheral nerve regeneration as well as provide insight to the design of future biomaterials and cellular therapies for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Zhenyuan Xu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (Z.X.); (J.A.O.)
| | - Jacob A. Orkwis
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (Z.X.); (J.A.O.)
| | - Greg M. Harris
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (Z.X.); (J.A.O.)
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence: ; Tel.: +1-(513)-556-4167
| |
Collapse
|
35
|
Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S, Qiao Y. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther 2021; 6:153. [PMID: 33888679 PMCID: PMC8062524 DOI: 10.1038/s41392-021-00544-0] [Citation(s) in RCA: 312] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) is one of the major components of tumors that plays multiple crucial roles, including mechanical support, modulation of the microenvironment, and a source of signaling molecules. The quantity and cross-linking status of ECM components are major factors determining tissue stiffness. During tumorigenesis, the interplay between cancer cells and the tumor microenvironment (TME) often results in the stiffness of the ECM, leading to aberrant mechanotransduction and further malignant transformation. Therefore, a comprehensive understanding of ECM dysregulation in the TME would contribute to the discovery of promising therapeutic targets for cancer treatment. Herein, we summarized the knowledge concerning the following: (1) major ECM constituents and their functions in both normal and malignant conditions; (2) the interplay between cancer cells and the ECM in the TME; (3) key receptors for mechanotransduction and their alteration during carcinogenesis; and (4) the current therapeutic strategies targeting aberrant ECM for cancer treatment.
Collapse
Affiliation(s)
- Jiacheng Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Lele Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Dalong Wan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shengzhang Lin
- School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, China.
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China.
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China.
| |
Collapse
|
36
|
Liu H, Liu K, Dong Z. The Role of p21-Activated Kinases in Cancer and Beyond: Where Are We Heading? Front Cell Dev Biol 2021; 9:641381. [PMID: 33796531 PMCID: PMC8007885 DOI: 10.3389/fcell.2021.641381] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The p21-activated kinases (PAKs), downstream effectors of Ras-related Rho GTPase Cdc42 and Rac, are serine/threonine kinases. Biologically, PAKs participate in various cellular processes, including growth, apoptosis, mitosis, immune response, motility, inflammation, and gene expression, making PAKs the nexus of several pathogenic and oncogenic signaling pathways. PAKs were proved to play critical roles in human diseases, including cancer, infectious diseases, neurological disorders, diabetes, pancreatic acinar diseases, and cardiac disorders. In this review, we systematically discuss the structure, function, alteration, and molecular mechanisms of PAKs that are involved in the pathogenic and oncogenic effects, as well as PAK inhibitors, which may be developed and deployed in cancer therapy, anti-viral infection, and other diseases. Furthermore, we highlight the critical questions of PAKs in future research, which provide an opportunity to offer input and guidance on new directions for PAKs in pathogenic, oncogenic, and drug discovery research.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| |
Collapse
|
37
|
Feltri ML, Weaver MR, Belin S, Poitelon Y. The Hippo pathway: Horizons for innovative treatments of peripheral nerve diseases. J Peripher Nerv Syst 2021; 26:4-16. [PMID: 33449435 DOI: 10.1111/jns.12431] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 12/19/2022]
Abstract
Initially identified in Drosophila, the Hippo signaling pathway regulates how cells respond to their environment by controlling proliferation, migration and differentiation. Many recent studies have focused on characterizing Hippo pathway function and regulation in mammalian cells. Here, we present a brief overview of the major components of the Hippo pathway, as well as their regulation and function. We comprehensively review the studies that have contributed to our understanding of the Hippo pathway in the function of the peripheral nervous system and in peripheral nerve diseases. Finally, we discuss innovative approaches that aim to modulate Hippo pathway components in diseases of the peripheral nervous system.
Collapse
Affiliation(s)
- M Laura Feltri
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Michael R Weaver
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Sophie Belin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| |
Collapse
|
38
|
Li Y, Sun C, Tan Y, Zhang H, Li Y, Zou H. ITGB1 enhances the Radioresistance of human Non-small Cell Lung Cancer Cells by modulating the DNA damage response and YAP1-induced Epithelial-mesenchymal Transition. Int J Biol Sci 2021; 17:635-650. [PMID: 33613118 PMCID: PMC7893583 DOI: 10.7150/ijbs.52319] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives: Radiotherapy has played a limited role in the treatment of non-small cell lung cancer (NSCLC) due to the risk of tumour radioresistance. We previously established the radioresistant non-small cell lung cancer (NSCLC) cell line H460R. In this study, we identified differentially expressed genes between these radioresistant H460R cells and their radiosensitive parent line. We further evaluated the role of a differentially expressed gene, ITGB1, in NSCLC cell radioresistance and as a potential target for improving radiosensitivity. Materials and Methods: The radiosensitivity of NSCLC cells was evaluated by flow cytometry, colony formation assays, immunofluorescence, and Western blotting. Bioinformatics assay was used to identify the effect of ITGB1 and YAP1 expression in NSCLC tissues. Results: ITGB1 mRNA and protein expression levels were higher in H460R than in the parental H460 cells. We observed lower clonogenic survival and cell viability and a higher rate of apoptosis of ITGB1-knockdown A549 and H460R cells than of wild type cells post-irradiation. Transfection with an ITGB1 short hairpin (sh) RNA enhanced radiation-induced DNA damage and G2/M phase arrest. Moreover, ITGB1 induced epithelial-mesenchymal transition (EMT) of NSCLC cells. Silencing ITGB1 suppressed the expression and intracellular translocation of Yes-associated protein 1 (YAP1), a downstream effector of ITGB1. Conclusions: ITGB1 may induce radioresistance via affecting DNA repair and YAP1-induced EMT. Taken together, our data suggest that ITGB1 is an attractive therapeutic target to overcome NSCLC cell radioresistance.
Collapse
Affiliation(s)
- Yuexian Li
- Department of Oncology, Shengjing Hospital affiliated with China Medical University, Shenyang 110004, China
| | - Cheng Sun
- Department of Oncology, Shengjing Hospital affiliated with China Medical University, Shenyang 110004, China
| | - Yonggang Tan
- Department of Oncology, Shengjing Hospital affiliated with China Medical University, Shenyang 110004, China
| | - Heying Zhang
- Department of Oncology, Shengjing Hospital affiliated with China Medical University, Shenyang 110004, China
| | - Yuchao Li
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases
| | - Huawei Zou
- Department of Oncology, Shengjing Hospital affiliated with China Medical University, Shenyang 110004, China
| |
Collapse
|
39
|
Silva AC, Pereira C, Fonseca ACRG, Pinto-do-Ó P, Nascimento DS. Bearing My Heart: The Role of Extracellular Matrix on Cardiac Development, Homeostasis, and Injury Response. Front Cell Dev Biol 2021; 8:621644. [PMID: 33511134 PMCID: PMC7835513 DOI: 10.3389/fcell.2020.621644] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is an essential component of the heart that imparts fundamental cellular processes during organ development and homeostasis. Most cardiovascular diseases involve severe remodeling of the ECM, culminating in the formation of fibrotic tissue that is deleterious to organ function. Treatment schemes effective at managing fibrosis and promoting physiological ECM repair are not yet in reach. Of note, the composition of the cardiac ECM changes significantly in a short period after birth, concurrent with the loss of the regenerative capacity of the heart. This highlights the importance of understanding ECM composition and function headed for the development of more efficient therapies. In this review, we explore the impact of ECM alterations, throughout heart ontogeny and disease, on cardiac cells and debate available approaches to deeper insights on cell–ECM interactions, toward the design of new regenerative therapies.
Collapse
Affiliation(s)
- Ana Catarina Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Gladstone Institutes, San Francisco, CA, United States
| | - Cassilda Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Catarina R G Fonseca
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Perpétua Pinto-do-Ó
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Diana S Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
40
|
Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, Fussenegger M, Deng X. An overview of signaling pathways regulating YAP/TAZ activity. Cell Mol Life Sci 2021; 78:497-512. [PMID: 32748155 PMCID: PMC11071991 DOI: 10.1007/s00018-020-03579-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/07/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
YAP and TAZ are ubiquitously expressed homologous proteins originally identified as penultimate effectors of the Hippo signaling pathway, which plays a key role in maintaining mammalian tissue/organ size. Presently, it is known that YAP/TAZ also interact with various non-Hippo signaling pathways, and have diverse roles in multiple biological processes, including cell proliferation, tissue regeneration, cell lineage fate determination, tumorigenesis, and mechanosensing. In this review, we first examine the various microenvironmental cues and signaling pathways that regulate YAP/TAZ activation, through the Hippo and non-Hippo signaling pathways. This is followed by a brief summary of the interactions of YAP/TAZ with TEAD1-4 and a diverse array of other non-TEAD transcription factors. Finally, we offer a critical perspective on how increasing knowledge of the regulatory mechanisms of YAP/TAZ signaling might open the door to novel therapeutic applications in the interrelated fields of biomaterials, tissue engineering, regenerative medicine and synthetic biology.
Collapse
Affiliation(s)
- Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
- Faculty of Science and Technology, Sunway University, Selangor Darul Ehsan, Malaysia
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Dominique Aubel
- IUTA, Departement Genie Biologique, Universite, Claude Bernard Lyon 1, Villeurbanne Cedex, France
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH-Zurich, Mattenstrasse 26, Basel, 4058, Switzerland.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
41
|
Vanyai HK, Prin F, Guillermin O, Marzook B, Boeing S, Howson A, Saunders RE, Snoeks T, Howell M, Mohun TJ, Thompson B. Control of skeletal morphogenesis by the Hippo-YAP/TAZ pathway. Development 2020; 147:dev187187. [PMID: 32994166 PMCID: PMC7673359 DOI: 10.1242/dev.187187] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
The Hippo-YAP/TAZ pathway is an important regulator of tissue growth, but can also control cell fate or tissue morphogenesis. Here, we investigate the function of the Hippo pathway during the development of cartilage, which forms the majority of the skeleton. Previously, YAP was proposed to inhibit skeletal size by repressing chondrocyte proliferation and differentiation. We find that, in vitro, Yap/Taz double knockout impairs murine chondrocyte proliferation, whereas constitutively nuclear nls-YAP5SA accelerates proliferation, in line with the canonical role of this pathway in most tissues. However, in vivo, cartilage-specific knockout of Yap/Taz does not prevent chondrocyte proliferation, differentiation or skeletal growth, but rather results in various skeletal deformities including cleft palate. Cartilage-specific expression of nls-YAP5SA or knockout of Lats1/2 do not increase cartilage growth, but instead lead to catastrophic malformations resembling chondrodysplasia or achondrogenesis. Physiological YAP target genes in cartilage include Ctgf, Cyr61 and several matrix remodelling enzymes. Thus, YAP/TAZ activity controls chondrocyte proliferation in vitro, possibly reflecting a regenerative response, but is dispensable for chondrocyte proliferation in vivo, and instead functions to control cartilage morphogenesis via regulation of the extracellular matrix.
Collapse
Affiliation(s)
- Hannah K Vanyai
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Fabrice Prin
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Oriane Guillermin
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Bishara Marzook
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Stefan Boeing
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Alexander Howson
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Rebecca E Saunders
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Thomas Snoeks
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Michael Howell
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Timothy J Mohun
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Barry Thompson
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
- EMBL Australia, Department of Cancer Biology & Therapeutics, The John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, 2601, Canberra, Australia
| |
Collapse
|
42
|
Landry NM, Dixon IMC. Fibroblast mechanosensing, SKI and Hippo signaling and the cardiac fibroblast phenotype: Looking beyond TGF-β. Cell Signal 2020; 76:109802. [PMID: 33017619 DOI: 10.1016/j.cellsig.2020.109802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022]
Abstract
Cardiac fibroblast activation to hyper-synthetic myofibroblasts following a pathological stimulus or in response to a substrate with increased stiffness may be a key tipping point for the evolution of cardiac fibrosis. Cardiac fibrosis per se is associated with progressive loss of heart pump function and is a primary contributor to heart failure. While TGF-β is a common cytokine stimulus associated with fibroblast activation, a druggable target to quell this driver of fibrosis has remained an elusive therapeutic goal due to its ubiquitous use by different cell types and also in the signaling complexity associated with SMADs and other effector pathways. More recently, mechanical stimulus of fibroblastic cells has been revealed as a major point of activation; this includes cardiac fibroblasts. Further, the complexity of TGF-β signaling has been offset by the discovery of members of the SKI family of proteins and their inherent anti-fibrotic properties. In this respect, SKI is a protein that may bind a number of TGF-β associated proteins including SMADs, as well as signaling proteins from other pathways, including Hippo. As SKI is also known to directly deactivate cardiac myofibroblasts to fibroblasts, this mode of action is a putative candidate for further study into the amelioration of cardiac fibrosis. Herein we provide a synthesis of this topic and highlight novel candidate pathways to explore in the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Natalie M Landry
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Ian M C Dixon
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
43
|
Bertrand AA, Malapati SH, Yamaguchi DT, Lee JC. The Intersection of Mechanotransduction and Regenerative Osteogenic Materials. Adv Healthc Mater 2020; 9:e2000709. [PMID: 32940024 PMCID: PMC7864218 DOI: 10.1002/adhm.202000709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/14/2020] [Indexed: 12/23/2022]
Abstract
Mechanical signals play a central role in cell fate determination and differentiation in both physiologic and pathologic circumstances. Such signals may be delivered using materials to generate discrete microenvironments for the purposes of tissue regeneration and have garnered increasing attention in recent years. Unlike the addition of progenitor cells or growth factors, delivery of a microenvironment is particularly attractive in that it may reduce the known untoward consequences of the former two strategies, such as excessive proliferation and potential malignant transformation. Additionally, the ability to spatially modulate the fabrication of materials allows for the creation of multiple microenvironments, particularly attractive for regenerating complex tissues. While many regenerative materials have been developed and tested for augmentation of specific cellular responses, the intersection between cell biology and material interactions have been difficult to dissect due to the complexity of both physical and chemical interactions. Specifically, modulating materials to target individual signaling pathways is an avenue of interdisciplinary research that may lead to a more effective method of optimizing regenerative materials. In this work, the aim is to summarize the major mechanotransduction pathways for osteogenic differentiation and to consolidate the known materials and material properties that activate such pathways.
Collapse
Affiliation(s)
- Anthony A. Bertrand
- Division of Plastic and Reconstructive Surgery, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California
| | - Sri Harshini Malapati
- Division of Plastic and Reconstructive Surgery, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California
| | - Dean T. Yamaguchi
- Division of Plastic and Reconstructive Surgery, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, California
| | - Justine C. Lee
- Division of Plastic and Reconstructive Surgery, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, California
- UCLA Molecular Biology Institute, Los Angeles, California
| |
Collapse
|
44
|
Kegelman CD, Collins JM, Nijsure MP, Eastburn EA, Boerckel JD. Gone Caving: Roles of the Transcriptional Regulators YAP and TAZ in Skeletal Development. Curr Osteoporos Rep 2020; 18:526-540. [PMID: 32712794 PMCID: PMC8040027 DOI: 10.1007/s11914-020-00605-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The development of the skeleton is controlled by cellular decisions determined by the coordinated activation of multiple transcription factors. Recent evidence suggests that the transcriptional regulator proteins, Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), could have important roles in directing the activity of these transcriptional programs. However, in vitro evidence for the roles of YAP and TAZ in skeletal cells has been hopelessly contradictory. The goals of this review are to provide a cross-sectional view on the state of the field and to synthesize the available data toward a unified perspective. RECENT FINDINGS YAP and TAZ are regulated by diverse upstream signals and interact downstream with multiple transcription factors involved in skeletal development, positioning YAP and TAZ as important signal integration nodes in an hourglass-shaped signaling pathway. Here, we provide a survey of putative transcriptional co-effectors for YAP and TAZ in skeletal cells. Synthesizing the in vitro data, we conclude that TAZ is consistently pro-osteogenic in function, while YAP can exhibit either pro- or anti-osteogenic activity depending on cell type and context. Synthesizing the in vivo data, we conclude that YAP and TAZ combinatorially promote developmental bone formation, bone matrix homeostasis, and endochondral fracture repair by regulating a variety of transcriptional programs depending on developmental stage. Here, we discuss the current understanding of the roles of the transcriptional regulators YAP and TAZ in skeletal development, and provide recommendations for continued study of molecular mechanisms, mechanotransduction, and therapeutic implications for skeletal disease.
Collapse
Affiliation(s)
- Christopher D Kegelman
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph M Collins
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Madhura P Nijsure
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily A Eastburn
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel D Boerckel
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
45
|
Butyrate-containing structured lipids inhibit RAC1 and epithelial-to-mesenchymal transition markers: a chemopreventive mechanism against hepatocarcinogenesis. J Nutr Biochem 2020; 86:108496. [PMID: 32920087 DOI: 10.1016/j.jnutbio.2020.108496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/18/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive human cancers. The rising incidence of HCC worldwide and its resistance to pharmacotherapy indicate that the prevention of HCC development may be the most impactful strategy to improve HCC-related morbidity and mortality. Among the broad range of chemopreventive agents, the use of dietary and nutritional agents is an attractive and promising approach; however, a better understanding of the mechanisms of their potential cancer suppressive action is needed to justify their use. In the present study, we investigated the underlying molecular pathways associated with the previously observed suppressive effect of butyrate-containing structured lipids (STLs) against liver carcinogenesis using a rat "resistant hepatocyte" model of hepatocarcinogenesis that resembles the development of HCC in humans. Using whole transcriptome analysis, we demonstrate that the HCC suppressive effect of butyrate-containing STLs is associated with the inhibition of the cell migration, cytoskeleton organization, and epithelial-to-mesenchymal transition (EMT), mediated by the reduced levels of RACGAP1 and RAC1 proteins. Mechanistically, the inhibition of the Racgap1 and Rac1 oncogenes is associated with cytosine DNA and histone H3K27 promoter methylation. Inhibition of the RACGAP1/RAC1 oncogenic signaling pathways and EMT may be a valuable approach for liver cancer prevention.
Collapse
|
46
|
Méndez-Maldonado K, Vega-López GA, Aybar MJ, Velasco I. Neurogenesis From Neural Crest Cells: Molecular Mechanisms in the Formation of Cranial Nerves and Ganglia. Front Cell Dev Biol 2020; 8:635. [PMID: 32850790 PMCID: PMC7427511 DOI: 10.3389/fcell.2020.00635] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
The neural crest (NC) is a transient multipotent cell population that originates in the dorsal neural tube. Cells of the NC are highly migratory, as they travel considerable distances through the body to reach their final sites. Derivatives of the NC are neurons and glia of the peripheral nervous system (PNS) and the enteric nervous system as well as non-neural cells. Different signaling pathways triggered by Bone Morphogenetic Proteins (BMPs), Fibroblast Growth Factors (FGFs), Wnt proteins, Notch ligands, retinoic acid (RA), and Receptor Tyrosine Kinases (RTKs) participate in the processes of induction, specification, cell migration and neural differentiation of the NC. A specific set of signaling pathways and transcription factors are initially expressed in the neural plate border and then in the NC cell precursors to the formation of cranial nerves. The molecular mechanisms of control during embryonic development have been gradually elucidated, pointing to an important role of transcriptional regulators when neural differentiation occurs. However, some of these proteins have an important participation in malformations of the cranial portion and their mutation results in aberrant neurogenesis. This review aims to give an overview of the role of cell signaling and of the function of transcription factors involved in the specification of ganglia precursors and neurogenesis to form the NC-derived cranial nerves during organogenesis.
Collapse
Affiliation(s)
- Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Guillermo A Vega-López
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| |
Collapse
|
47
|
Expression of the type 1 lysophosphatidic acid receptor in osteoblastic cell lineage controls both bone mineralization and osteocyte specification. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158715. [DOI: 10.1016/j.bbalip.2020.158715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 11/23/2022]
|
48
|
Selig M, Lauer JC, Hart ML, Rolauffs B. Mechanotransduction and Stiffness-Sensing: Mechanisms and Opportunities to Control Multiple Molecular Aspects of Cell Phenotype as a Design Cornerstone of Cell-Instructive Biomaterials for Articular Cartilage Repair. Int J Mol Sci 2020; 21:E5399. [PMID: 32751354 PMCID: PMC7432012 DOI: 10.3390/ijms21155399] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/23/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Since material stiffness controls many cell functions, we reviewed the currently available knowledge on stiffness sensing and elucidated what is known in the context of clinical and experimental articular cartilage (AC) repair. Remarkably, no stiffness information on the various biomaterials for clinical AC repair was accessible. Using mRNA expression profiles and morphology as surrogate markers of stiffness-related effects, we deduced that the various clinically available biomaterials control chondrocyte (CH) phenotype well, but not to equal extents, and only in non-degenerative settings. Ample evidence demonstrates that multiple molecular aspects of CH and mesenchymal stromal cell (MSC) phenotype are susceptible to material stiffness, because proliferation, migration, lineage determination, shape, cytoskeletal properties, expression profiles, cell surface receptor composition, integrin subunit expression, and nuclear shape and composition of CHs and/or MSCs are stiffness-regulated. Moreover, material stiffness modulates MSC immuno-modulatory and angiogenic properties, transforming growth factor beta 1 (TGF-β1)-induced lineage determination, and CH re-differentiation/de-differentiation, collagen type II fragment production, and TGF-β1- and interleukin 1 beta (IL-1β)-induced changes in cell stiffness and traction force. We then integrated the available molecular signaling data into a stiffness-regulated CH phenotype model. Overall, we recommend using material stiffness for controlling cell phenotype, as this would be a promising design cornerstone for novel future-oriented, cell-instructive biomaterials for clinical high-quality AC repair tissue.
Collapse
Affiliation(s)
- Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Jasmin C. Lauer
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Melanie L. Hart
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
| |
Collapse
|
49
|
Block MR, Brunner M, Ziegelmeyer T, Lallemand D, Pezet M, Chevalier G, Rondé P, Gauthier-Rouviere C, Wehrle-Haller B, Bouvard D. The mechano-sensitive response of β1 integrin promotes SRC-positive late endosome recycling and activation of Yes-associated protein. J Biol Chem 2020; 295:13474-13487. [PMID: 32690605 DOI: 10.1074/jbc.ra120.013503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/02/2020] [Indexed: 11/06/2022] Open
Abstract
Yes-associated protein (YAP) signaling has emerged as a crucial pathway in several normal and pathological processes. Although the main upstream effectors that regulate its activity have been extensively studied, the role of the endosomal system has been far less characterized. Here, we identified the late endosomal/lysosomal adaptor MAPK and mTOR activator (LAMTOR) complex as an important regulator of YAP signaling in a preosteoblast cell line. We found that p18/LAMTOR1-mediated peripheral positioning of late endosomes allows delivery of SRC proto-oncogene, nonreceptor tyrosine kinase (SRC) to the plasma membrane and promotes activation of an SRC-dependent signaling cascade that controls YAP nuclear shuttling. Moreover, β1 integrin engagement and mechano-sensitive cues, such as external stiffness and related cell contractility, controlled LAMTOR targeting to the cell periphery and thereby late endosome recycling and had a major impact on YAP signaling. Our findings identify the late endosome recycling pathway as a key mechanism that controls YAP activity and explains YAP mechano-sensitivity.
Collapse
Affiliation(s)
- Marc R Block
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France
| | - Molly Brunner
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France
| | - Théo Ziegelmeyer
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France
| | | | - Mylène Pezet
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France
| | - Genevieve Chevalier
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France
| | - Philippe Rondé
- Laboratoire de Bioimagerie et Pathologies, CNRS UMR 7021, Université de Strasbourg, Strasbourg, France
| | - Cécile Gauthier-Rouviere
- Montpellier Cell Biology Research Center (CRBM), University of Montpellier, CNRS, Montpellier, France
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Daniel Bouvard
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France.
| |
Collapse
|
50
|
Yang Q, Zhao Y, Chen Y, Chang Y, Huang A, Xu T, Li G, Wu G. PAK6 promotes cervical cancer progression through activation of the Wnt/β-catenin signaling pathway. Oncol Lett 2020; 20:2387-2395. [PMID: 32782556 PMCID: PMC7400107 DOI: 10.3892/ol.2020.11797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
p21-activated kinase 6 (PAK6), a member of the serine/threonine kinase family, has been reported to be involved in numerous types of cancers. The present study aimed to investigate the role of PAK6 in cervical cancer. In the present study, PAK6 expression was evaluated in tissue microarrays and cell lines by using immunohistochemistry and western blotting. The mRNA level of PAK6 was evaluated by reverse transcription quantitative PCR. The Wnt/β-catenin signaling-related protein expression was detected by western blotting following short hairpin (sh)RNA-mediated PAK6 knockdown or PAK6 overexpression. Cell proliferation was determined using Cell Countink Kit-8. Migration, invasion and colony formation were further assessed following PAK6 knockdown or overexpression. Co-immunoprecipitation (Co-IP) and fluorescence colocalization microscopy were used to detect the interaction between PAK6 and GSK3β. The results from tissue microarray revealed that the expression levels of PAK6 in cervical cancer tissues were upregulated. The downregulation of PAK6 expression levels using shRNA not only decreased cell growth and proliferation, but it also inhibited the migration and invasion of HeLa cells. Conversely, the overexpression of PAK6 promoted the proliferation, migration and invasion of HeLa cells. In addition, the expression levels of proteins involved in the Wnt/β-catenin signaling pathway were modified in the PAK6 knockdown group, including downregulation of GSK3β phosphorylation and Cyclin D1 protein, and upregulation of β-catenin phosphorylation and E-cadherin. In contrast, following the overexpression of PAK6, the Wnt/β-catenin signaling pathway was activated. Further investigation using fluorescence microscopy and Co-IP assays indicated that PAK6 may interact with GSK3β. In conclusion, the findings of the present study suggested that PAK6 may serve a role in promoting cervical cancer through activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Qin Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yingchao Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yeshan Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yu Chang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ai Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Tie Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Guiling Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|