1
|
Büttiker P, Boukherissa A, Weissenberger S, Ptacek R, Anders M, Raboch J, Stefano GB. Cognitive Impact of Neurotropic Pathogens: Investigating Molecular Mimicry through Computational Methods. Cell Mol Neurobiol 2024; 44:72. [PMID: 39467848 PMCID: PMC11519248 DOI: 10.1007/s10571-024-01509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Neurotropic pathogens, notably, herpesviruses, have been associated with significant neuropsychiatric effects. As a group, these pathogens can exploit molecular mimicry mechanisms to manipulate the host central nervous system to their advantage. Here, we present a systematic computational approach that may ultimately be used to unravel protein-protein interactions and molecular mimicry processes that have not yet been solved experimentally. Toward this end, we validate this approach by replicating a set of pre-existing experimental findings that document the structural and functional similarities shared by the human cytomegalovirus-encoded UL144 glycoprotein and human tumor necrosis factor receptor superfamily member 14 (TNFRSF14). We began with a thorough exploration of the Homo sapiens protein database using the Basic Local Alignment Search Tool (BLASTx) to identify proteins sharing sequence homology with UL144. Subsequently, we used AlphaFold2 to predict the independent three-dimensional structures of UL144 and TNFRSF14. This was followed by a comprehensive structural comparison facilitated by Distance-Matrix Alignment and Foldseek. Finally, we used AlphaFold-multimer and PPIscreenML to elucidate potential protein complexes and confirm the predicted binding activities of both UL144 and TNFRSF14. We then used our in silico approach to replicate the experimental finding that revealed TNFRSF14 binding to both B- and T-lymphocyte attenuator (BTLA) and glycoprotein domain and UL144 binding to BTLA alone. This computational framework offers promise in identifying structural similarities and interactions between pathogen-encoded proteins and their host counterparts. This information will provide valuable insights into the cognitive mechanisms underlying the neuropsychiatric effects of viral infections.
Collapse
Affiliation(s)
- Pascal Büttiker
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Amira Boukherissa
- Institute for Integrative Biology of the Cell (I2BC), UMR91918, CNRS, CEA, Paris-Saclay University, Gif-Sur-Yvette, France
- Ecology Systematics Evolution (ESE), CNRS, AgroParisTech, Paris-Saclay University, Orsay, France
| | - Simon Weissenberger
- Department of Psychology, University of New York in Prague, Prague, Czech Republic
| | - Radek Ptacek
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martin Anders
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiri Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - George B Stefano
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| |
Collapse
|
2
|
Wojciechowicz K, Spodzieja M, Wardowska A. The BTLA-HVEM complex - The future of cancer immunotherapy. Eur J Med Chem 2024; 268:116231. [PMID: 38387336 DOI: 10.1016/j.ejmech.2024.116231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
The BTLA-HVEM complex plays a pivotal role in cancer and cancer immunotherapy by regulating immune responses. Dysregulation of BTLA and HVEM expression contributes to immunosuppression and tumor progression across various cancer types. Targeting the interaction between BTLA and HVEM holds promise for enhancing anti-tumor immune responses. Disruption of this complex presents a valuable avenue for advancing cancer immunotherapy strategies. Aberrant expression of BTLA and HVEM adversely affects immune cell function, particularly T cells, exacerbating tumor evasion mechanisms. Understanding and modulating the BTLA-HVEM axis represents a crucial aspect of designing effective immunotherapeutic interventions against cancer. Here, we summarize the current knowledge regarding the structure and function of BTLA and HVEM, along with their interaction with each other and various immune partners. Moreover, the expression of soluble and transmembrane forms of BTLA and HVEM in different types of cancer and their impact on the prognosis of patients is also discussed. Additionally, inhibitors of the proteins binding that might be used to block BTLA-HVEM interaction are reviewed. All the presented data highlight the plausible clinical application of BTLA-HVEM targeted therapies in cancer and autoimmune disease management. However, further studies are required to confirm the practical use of this concept. Despite the increasing number of reports on the BTLA-HVEM complex, many aspects of its biology and function still need to be elucidated. This review can be regarded as an encouragement and a guide to follow the path of BTLA-HVEM research.
Collapse
Affiliation(s)
- Karolina Wojciechowicz
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, Poland.
| | - Marta Spodzieja
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Poland
| | - Anna Wardowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, Poland.
| |
Collapse
|
3
|
Andrzejczak A, Karabon L. BTLA biology in cancer: from bench discoveries to clinical potentials. Biomark Res 2024; 12:8. [PMID: 38233898 PMCID: PMC10795259 DOI: 10.1186/s40364-024-00556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/31/2023] [Indexed: 01/19/2024] Open
Abstract
Immune checkpoints play a critical role in maintaining the delicate balance of immune activation in order to prevent potential harm caused by excessive activation, autoimmunity, or tissue damage. B and T lymphocyte attenuator (BTLA) is one of crucial checkpoint, regulating stimulatory and inhibitory signals in immune responses. Its interaction with the herpes virus entry mediator (HVEM) plays an essential role in negatively regulating immune responses, thereby preserving immune homeostasis. In cancer, abnormal cells evade immune surveillance by exploiting checkpoints like BTLA. Upregulated BTLA expression is linked to impaired anti-tumor immunity and unfavorable disease outcomes. In preclinical studies, BTLA-targeted therapies have shown improved treatment outcomes and enhanced antitumor immunity. This review aims to provide an in-depth understanding of BTLA's biology, its role in various cancers, and its potential as a prognostic factor. Additionally, it explores the latest research on BTLA blockade in cancer immunotherapy, offering hope for more effective cancer treatments.
Collapse
Affiliation(s)
- Anna Andrzejczak
- Laboratory of Genetics and Epigenetics of Human Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Lidia Karabon
- Laboratory of Genetics and Epigenetics of Human Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
4
|
Kuncewicz K, Bojko M, Battin C, Karczyńska A, Sieradzan A, Sikorska E, Węgrzyn K, Wojciechowicz K, Wardowska A, Steinberger P, Rodziewicz-Motowidło S, Spodzieja M. BTLA-derived peptides as inhibitors of BTLA/HVEM complex formation - design, synthesis and biological evaluation. Biomed Pharmacother 2023; 165:115161. [PMID: 37473684 DOI: 10.1016/j.biopha.2023.115161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
Immune checkpoints can be divided into co-stimulatory and co-inhibitory molecules that regulate the activation and effector functions of T cells. The co-inhibitory pathways mediated by ICPs are used by cancer cells to escape from immune surveillance, and therefore the blockade of these receptor/ligand interactions is one of the strategies used in the treatment of cancer. The two main pathways currently under investigation are CTLA-4/CD80/CD86 and PD-1/PD-L1, and the monoclonal Abs targeting them have shown potent immunomodulatory effects and activity in clinical environments. Another interesting target in cancer treatment is the BTLA/HVEM complex. Binding of BTLA protein on T cells to HVEM on cancer cells leads to inhibition of T cell proliferation and cytokine production. In the presented work, we focused on blocking the HVEM protein using BTLA-derived peptides. Based on the crystal structure of the BTLA/HVEM complex and MM/GBSA analysis performed here, we designed and synthesized peptides, specifically fragments of BTLA protein. We subsequently checked the inhibitory capacities of these compounds using ELISA and a cellular reporter platform. Two of these peptides, namely BTLA(35-43) and BTLA(33-64)C58Abu displayed the most promising properties, and we therefore performed further studies to evaluate their affinity to HVEM protein, their stability in plasma and their effect on viability of human PBMCs. In addition, the 3D structure for the peptide BTLA(33-64)C58Abu was determined using NMR. Obtained data confirmed that the BTLA-derived peptides could be the basis for future drugs and their immunomodulatory potential merits further examination.
Collapse
Affiliation(s)
- Katarzyna Kuncewicz
- University of Gdańsk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magdalena Bojko
- University of Gdańsk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Claire Battin
- Medical University of Vienna, Institute of Immunology, Division of Immune Receptors and T cell Activation, Lazarettgasse 19, 1090 Vienna, Austria
| | - Agnieszka Karczyńska
- University of Gdańsk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Adam Sieradzan
- University of Gdańsk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Emilia Sikorska
- University of Gdańsk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Katarzyna Węgrzyn
- University of Gdańsk, Intercollegiate Faculty of Biotechnology of the University of Gdańsk and the Medical University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Karolina Wojciechowicz
- Medical University of Gdańsk, Department of Physiopathology, Dębinki 7, 80-210 Gdańsk, Poland
| | - Anna Wardowska
- Medical University of Gdańsk, Department of Physiopathology, Dębinki 7, 80-210 Gdańsk, Poland
| | - Peter Steinberger
- Medical University of Vienna, Institute of Immunology, Division of Immune Receptors and T cell Activation, Lazarettgasse 19, 1090 Vienna, Austria
| | | | - Marta Spodzieja
- University of Gdańsk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
5
|
Cheung TC, Atwell S, Bafetti L, Cuenca PD, Froning K, Hendle J, Hickey M, Ho C, Huang J, Lieu R, Lim S, Lippner D, Obungu V, Ward-Kavanagh L, Weichert K, Ware CF, Vendel AC. Epitope topography of agonist antibodies to the checkpoint inhibitory receptor BTLA. Structure 2023; 31:958-967.e3. [PMID: 37279757 DOI: 10.1016/j.str.2023.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/16/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023]
Abstract
B and T lymphocyte attenuator (BTLA) is an attractive target for a new class of therapeutics that attempt to rebalance the immune system by agonizing checkpoint inhibitory receptors (CIRs). Herpesvirus entry mediator (HVEM) binds BTLA in both trans- and cis-orientations. We report here the development and structural characterization of three humanized BTLA agonist antibodies, 22B3, 25F7, and 23C8. We determined the crystal structures of the antibody-BTLA complexes, showing that these antibodies bind distinct and non-overlapping epitopes of BTLA. While all three antibodies activate BTLA, 22B3 mimics HVEM binding to BTLA and shows the strongest agonistic activity in functional cell assays and in an imiquimod-induced mouse model of psoriasis. 22B3 is also capable of modulating HVEM signaling through the BTLA-HVEM cis-interaction. The data obtained from crystal structures, biochemical assays, and functional studies provide a mechanistic model of HVEM and BTLA organization on the cell surface and informed the discovery of a highly active BTLA agonist.
Collapse
Affiliation(s)
- Timothy C Cheung
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Shane Atwell
- Biotechnology Discovery Research, Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - Lisa Bafetti
- Immunology Discovery Research, Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - Paulina Delgado Cuenca
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Karen Froning
- Biotechnology Discovery Research, Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - Jorg Hendle
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - Michael Hickey
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - Carolyn Ho
- Biotechnology Discovery Research, Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - Jiawen Huang
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Ricky Lieu
- Biotechnology Discovery Research, Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - Stacie Lim
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - David Lippner
- Biotechnology Discovery Research, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Victor Obungu
- Biotechnology Discovery Research, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Lindsay Ward-Kavanagh
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Kenneth Weichert
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - Carl F Ware
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Andrew C Vendel
- Immunology Discovery Research, Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121, USA.
| |
Collapse
|
6
|
Kuzevanova A, Apanovich N, Mansorunov D, Korotaeva A, Karpukhin A. The Features of Checkpoint Receptor—Ligand Interaction in Cancer and the Therapeutic Effectiveness of Their Inhibition. Biomedicines 2022; 10:biomedicines10092081. [PMID: 36140182 PMCID: PMC9495440 DOI: 10.3390/biomedicines10092081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
To date, certain problems have been identified in cancer immunotherapy using the inhibition of immune checkpoints (ICs). Despite the excellent effect of cancer therapy in some cases when blocking the PD-L1 (programmed death-ligand 1) ligand and the immune cell receptors PD-1 (programmed cell death protein 1) and CTLA4 (cytotoxic T-lymphocyte-associated protein 4) with antibodies, the proportion of patients responding to such therapy is still far from desirable. This situation has stimulated the exploration of additional receptors and ligands as targets for immunotherapy. In our article, based on the analysis of the available data, the TIM-3 (T-cell immunoglobulin and mucin domain-3), LAG-3 (lymphocyte-activation gene 3), TIGIT (T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif (ITIM) domains), VISTA (V-domain Ig suppressor of T-cell activation), and BTLA (B- and T-lymphocyte attenuator) receptors and their ligands are comprehensively considered. Data on the relationship between receptor expression and the clinical characteristics of tumors are presented and are analyzed together with the results of preclinical and clinical studies on the therapeutic efficacy of their blocking. Such a comprehensive analysis makes it possible to assess the prospects of receptors of this series as targets for anticancer therapy. The expression of the LAG-3 receptor shows the most unambiguous relationship with the clinical characteristics of cancer. Its inhibition is the most effective of the analyzed series in terms of the antitumor response. The expression of TIGIT and BTLA correlates well with clinical characteristics and demonstrates antitumor efficacy in preclinical and clinical studies, which indicates their high promise as targets for anticancer therapy. At the same time, the relationship of VISTA and TIM-3 expression with the clinical characteristics of the tumor is contradictory, and the results on the antitumor effectiveness of their inhibition are inconsistent.
Collapse
|
7
|
Ware CF, Croft M, Neil GA. Realigning the LIGHT signaling network to control dysregulated inflammation. J Exp Med 2022; 219:213236. [PMID: 35604387 PMCID: PMC9130030 DOI: 10.1084/jem.20220236] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
Advances in understanding the physiologic functions of the tumor necrosis factor superfamily (TNFSF) of ligands, receptors, and signaling networks are providing deeper insight into pathogenesis of infectious and autoimmune diseases and cancer. LIGHT (TNFSF14) has emerged as an important modulator of critical innate and adaptive immune responses. LIGHT and its signaling receptors, herpesvirus entry mediator (TNFRSF14), and lymphotoxin β receptor, form an immune regulatory network with two co-receptors of herpesvirus entry mediator, checkpoint inhibitor B and T lymphocyte attenuator, and CD160. Deciphering the fundamental features of this network reveals new understanding to guide therapeutic development. Accumulating evidence from infectious diseases points to the dysregulation of the LIGHT network as a disease-driving mechanism in autoimmune and inflammatory reactions in barrier organs, including coronavirus disease 2019 pneumonia and inflammatory bowel diseases. Recent clinical results warrant further investigation of the LIGHT regulatory network and application of target-modifying therapeutics for disease intervention.
Collapse
Affiliation(s)
- Carl F Ware
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, CA
| | | |
Collapse
|
8
|
Stienne C, Virgen-Slane R, Elmén L, Veny M, Huang S, Nguyen J, Chappell E, Balmert MO, Shui JW, Hurchla MA, Kronenberg M, Peterson SN, Murphy KM, Ware CF, Šedý JR. Btla signaling in conventional and regulatory lymphocytes coordinately tempers humoral immunity in the intestinal mucosa. Cell Rep 2022; 38:110553. [PMID: 35320716 PMCID: PMC9032671 DOI: 10.1016/j.celrep.2022.110553] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 11/09/2021] [Accepted: 03/01/2022] [Indexed: 12/18/2022] Open
Abstract
The Btla inhibitory receptor limits innate and adaptive immune responses, both preventing the development of autoimmune disease and restraining anti-viral and anti-tumor responses. It remains unclear how the functions of Btla in diverse lymphocytes contribute to immunoregulation. Here, we show that Btla inhibits activation of genes regulating metabolism and cytokine signaling, including Il6 and Hif1a, indicating a regulatory role in humoral immunity. Within mucosal Peyer's patches, we find T-cell-expressed Btla-regulated Tfh cells, while Btla in T or B cells regulates GC B cell numbers. Treg-expressed Btla is required for cell-intrinsic Treg homeostasis that subsequently controls GC B cells. Loss of Btla in lymphocytes results in increased IgA bound to intestinal bacteria, correlating with altered microbial homeostasis and elevations in commensal and pathogenic bacteria. Together our studies provide important insights into how Btla functions as a checkpoint in diverse conventional and regulatory lymphocyte subsets to influence systemic immune responses.
Collapse
Affiliation(s)
- Caroline Stienne
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Richard Virgen-Slane
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Lisa Elmén
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Marisol Veny
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Sarah Huang
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jennifer Nguyen
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Elizabeth Chappell
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Mary Olivia Balmert
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jr-Wen Shui
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Michelle A Hurchla
- Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110, USA
| | | | - Scott N Peterson
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Carl F Ware
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - John R Šedý
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
9
|
Zhai Y, Moosavi R, Chen M. Immune Checkpoints, a Novel Class of Therapeutic Targets for Autoimmune Diseases. Front Immunol 2021; 12:645699. [PMID: 33968036 PMCID: PMC8097144 DOI: 10.3389/fimmu.2021.645699] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases, such as multiple sclerosis and type-1 diabetes, are the outcomes of a failure of immune tolerance. Immune tolerance is sustained through interplays between two inter-dependent clusters of immune activities: immune stimulation and immune regulation. The mechanisms of immune regulation are exploited as therapeutic targets for the treatment of autoimmune diseases. One of these mechanisms is immune checkpoints (ICPs). The roles of ICPs in maintaining immune tolerance and hence suppressing autoimmunity were revealed in animal models and validated by the clinical successes of ICP-targeted therapeutics for autoimmune diseases. Recently, these roles were highlighted by the clinical discovery that the blockade of ICPs causes autoimmune disorders. Given the crucial roles of ICPs in immune tolerance, it is plausible to leverage ICPs as a group of therapeutic targets to restore immune tolerance and treat autoimmune diseases. In this review, we first summarize working mechanisms of ICPs, particularly those that have been utilized for therapeutic development. Then, we recount the agents and approaches that were developed to target ICPs and treat autoimmune disorders. These agents take forms of fusion proteins, antibodies, nucleic acids, and cells. We also review and discuss safety information for these therapeutics. We wrap up this review by providing prospects for the development of ICP-targeting therapeutics. In summary, the ever-increasing studies and results of ICP-targeting of therapeutics underscore their tremendous potential to become a powerful class of medicine for autoimmune diseases.
Collapse
Affiliation(s)
- Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Reza Moosavi
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Mingnan Chen
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
10
|
Shrestha R, Garrett-Thomson SC, Liu W, Almo SC, Fiser A. Redesigning HVEM Interface for Selective Binding to LIGHT, BTLA, and CD160. Structure 2020; 28:1197-1205.e2. [PMID: 32795404 DOI: 10.1016/j.str.2020.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/01/2020] [Accepted: 07/23/2020] [Indexed: 10/23/2022]
Abstract
Herpes virus entry mediator (HVEM) regulates positive and negative signals for T cell activation through co-signaling pathways. Dysfunction of the HVEM co-signaling network is associated with multiple pathologies related to autoimmunity, infectious disease, and cancer, making the associated molecules biologically and therapeutically attractive targets. HVEM interacts with three ligands from two different superfamilies using two different binding interfaces. The engagement with ligands CD160 and B- and T-lymphocyte attenuator (BTLA), members of immunoglobulin superfamily, is associated with inhibitory signals, whereas inflammatory responses are regulated through the interaction with LIGHT from the TNF superfamily. We computationally redesigned the HVEM recognition interfaces using a residue-specific pharmacophore approach, ProtLID, to achieve switchable-binding specificity. In subsequent cell-based binding assays the new interfaces, designed with only single or double mutations, exhibited selective binding to only one or two out of the three cognate ligands.
Collapse
Affiliation(s)
- Rojan Shrestha
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Sarah C Garrett-Thomson
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Weifeng Liu
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
11
|
Past and ongoing adaptation of human cytomegalovirus to its host. PLoS Pathog 2020; 16:e1008476. [PMID: 32384127 PMCID: PMC7239485 DOI: 10.1371/journal.ppat.1008476] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/20/2020] [Accepted: 03/13/2020] [Indexed: 12/18/2022] Open
Abstract
Cytomegaloviruses (order Herpesvirales) display remarkable species-specificity as a result of long-term co-evolution with their mammalian hosts. Human cytomegalovirus (HCMV) is exquisitely adapted to our species and displays high genetic diversity. We leveraged information on inter-species divergence of primate-infecting cytomegaloviruses and intra-species diversity of clinical isolates to provide a genome-wide picture of HCMV adaptation across different time-frames. During adaptation to the human host, core viral genes were commonly targeted by positive selection. Functional characterization of adaptive mutations in the primase gene (UL70) indicated that selection favored amino acid replacements that decrease viral replication in human fibroblasts, suggesting evolution towards viral temperance. HCMV intra-species diversity was largely governed by immune system-driven selective pressure, with several adaptive variants located in antigenic domains. A significant excess of positively selected sites was also detected in the signal peptides (SPs) of viral proteins, indicating that, although they are removed from mature proteins, SPs can contribute to viral adaptation. Functional characterization of one of these SPs indicated that adaptive variants modulate the timing of cleavage by the signal peptidase and the dynamics of glycoprotein intracellular trafficking. We thus used evolutionary information to generate experimentally-testable hypotheses on the functional effect of HCMV genetic diversity and we define modulators of viral phenotypes. Human cytomegalovirus (HCMV), which represents the most common infectious cause of birth defects, is perfectly adapted to infect humans. We performed a two-tier analysis of HCMV evolution, by describing selective events that occurred during HCMV adaptation to our species and by identifying more recently emerged adaptive variants in clinical isolates. We show that distinct viral genes were targeted by natural selection over different time frames and we generate a catalog of adaptive variants that represent candidate determinants of viral phenotypic variation. As a proof of concept, we show that adaptive changes in the viral primase modulate viral growth in vitro and that selected variants in the UL144 signal peptide affect glycoprotein intracellular trafficking.
Collapse
|
12
|
Expression pattern of co-inhibitory molecules on CMV-specific T-cells in lung transplant patients. Clin Immunol 2019; 208:108258. [PMID: 31499181 DOI: 10.1016/j.clim.2019.108258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Cytomegalovirus infection (CMVi) occurs frequently in transplant patients. Co-inhibitory molecules on CMV-specific T-cells (TCMV) in patients after lung transplantation were investigated. METHODS 59 lung transplant patients were stratified according to anti-CMV serostatus at time of transplantation. The co-inhibitors Programmed-Death-Receptor-1 (PD1) and B-and-T-Lymphocyte-Attenuator (BTLA) were detected on TCMV by flow cytometry (FACS). RESULTS TCMV were detectable in CMV sero-positive patients (R+) and in CMV sero-negative patients with a lung graft of a CMV sero-positive donor (D+/R-); in both cases, the frequency of TCMV was higher than in healthy controls (HC). PD-1 on TCMV was increased in D+/R+ and D+/R- patients as compared to HC. BTLA was significantly enhanced on TCMV of D+/R- patients vs. HC. R+ patients with CMV reactivation in the past had an increased fraction of BTLA+ TCMV. CONCLUSION In conclusion, the expression pattern of co-inhibitory molecules on TCMV is altered in patients after lung transplantation.
Collapse
|
13
|
Liu W, Garrett SC, Fedorov EV, Ramagopal UA, Garforth SJ, Bonanno JB, Almo SC. Structural Basis of CD160:HVEM Recognition. Structure 2019; 27:1286-1295.e4. [PMID: 31230945 PMCID: PMC7477951 DOI: 10.1016/j.str.2019.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/18/2019] [Accepted: 05/22/2019] [Indexed: 01/07/2023]
Abstract
CD160 is a signaling molecule that interacts with herpes virus entry mediator (HVEM) and contributes to a wide range of immune responses, including T cell inhibition, natural killer cell activation, and mucosal immunity. GPI-anchored and transmembrane isoforms of CD160 share the same ectodomain responsible for HVEM engagement, which leads to bidirectional signaling. Despite the importance of the CD160:HVEM signaling axis and its therapeutic relevance, the structural and mechanistic basis underlying CD160-HVEM engagement has not been described. We report the crystal structures of the human CD160 extracellular domain and its complex with human HVEM. CD160 adopts a unique variation of the immunoglobulin fold and exists as a monomer in solution. The CD160:HVEM assembly exhibits a 1:1 stoichiometry and a binding interface similar to that observed in the BTLA:HVEM complex. Our work reveals the chemical and physical determinants underlying CD160:HVEM recognition and initiation of associated signaling processes.
Collapse
Affiliation(s)
- Weifeng Liu
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA,Present address: Pfizer Inc., 230 East Grand Avenue. South San Francisco, CA 94080, USA
| | - Sarah C. Garrett
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Elena V. Fedorov
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Udupi A. Ramagopal
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA,Present address: Poomaprajna Institute of Scientific Research, #4, 16th Cross, Sadashivanagar, Bangalore 560064, India
| | - Scott J. Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Jeffrey B. Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA,Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA,Lead Contact,Correspondence:
| |
Collapse
|
14
|
Bitra A, Nemčovičová I, Picarda G, Doukov T, Wang J, Benedict CA, Zajonc DM. Structure of human cytomegalovirus UL144, an HVEM orthologue, bound to the B and T cell lymphocyte attenuator. J Biol Chem 2019; 294:10519-10529. [PMID: 31126984 DOI: 10.1074/jbc.ra119.009199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/23/2019] [Indexed: 11/06/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a β-herpesvirus that has co-evolved with the host immune system to establish lifelong persistence. HCMV encodes many immunomodulatory molecules, including the glycoprotein UL144. UL144 is a structural mimic of the tumor necrosis factor receptor superfamily member HVEM (herpesvirus entry mediator), which binds to the various ligands LIGHT, LTα, BTLA, CD160, and gD. However, in contrast to HVEM, UL144 only binds BTLA, inhibiting T-cell activation. Here, we report the crystal structure of the UL144-BTLA complex, revealing that UL144 utilizes residues from its N-terminal cysteine-rich domain 1 (CRD1) to interact uniquely with BTLA. The shorter CRD2 loop of UL144 also alters the relative orientation of BTLA binding with both N-terminal CRDs. By employing structure-guided mutagenesis, we have identified a mutant of BTLA (L123A) that interferes with HVEM binding but preserves UL144 interactions. Furthermore, our results illuminate structural differences between UL144 and HVEM that explain its binding selectivity and highlight it as a suitable scaffold for designing superior, immune inhibitory BTLA agonists.
Collapse
Affiliation(s)
- Aruna Bitra
- From the Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California 92037
| | - Ivana Nemčovičová
- the Biomedical Research Center, Slovak Academy of Sciences, SK 84505 Bratislava, Slovakia
| | - Gaelle Picarda
- From the Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California 92037
| | - Tzanko Doukov
- the Stanford Synchrotron Radiation Lightsource, SLAC, Menlo Park, California 94025, and
| | - Jing Wang
- From the Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California 92037
| | - Chris A Benedict
- From the Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California 92037
| | - Dirk M Zajonc
- From the Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California 92037, .,the Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
15
|
Picarda G, Benedict CA. Cytomegalovirus: Shape-Shifting the Immune System. THE JOURNAL OF IMMUNOLOGY 2019; 200:3881-3889. [PMID: 29866770 DOI: 10.4049/jimmunol.1800171] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/26/2018] [Indexed: 11/19/2022]
Abstract
Systems-based based approaches have begun to shed light on extrinsic factors that contribute to immune system variation. Among these, CMV (HHV-5, a β-herpesvirus) imposes a surprisingly profound impact. Most of the world's population is CMV+, and the virus goes through three distinct infection phases en route to establishing lifelong détente with its host. Immune control of CMV in each phase recruits unique arms of host defense, and in turn the virus employs multiple immune-modulatory strategies that help facilitate the establishment of lifelong persistence. In this review, we explain how CMV shapes immunity and discuss the impact it may have on overall health.
Collapse
Affiliation(s)
- Gaëlle Picarda
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Chris A Benedict
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and .,Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| |
Collapse
|
16
|
Abstract
Somatic mutations in cancer cells may influence tumor growth, survival, or immune interactions in their microenvironment. The tumor necrosis factor receptor family member HVEM (TNFRSF14) is frequently mutated in cancers and has been attributed a tumor suppressive role in some cancer contexts. HVEM functions both as a ligand for the lymphocyte checkpoint proteins BTLA and CD160, and as a receptor that activates NF-κB signaling pathways in response to BTLA and CD160 and the TNF ligands LIGHT and LTα. BTLA functions to inhibit lymphocyte activation, but has also been ascribed a role in stimulating cell survival. CD160 functions to co-stimulate lymphocyte function, but has also been shown to activate inhibitory signaling in CD4+ T cells. Thus, the role of HVEM within diverse cancers and in regulating the immune responses to these tumors is likely context specific. Additionally, development of therapeutics that target proteins within this network of interacting proteins will require a deeper understanding of how these proteins function in a cancer-specific manner. However, the prominent role of the HVEM network in anti-cancer immune responses indicates a promising area for drug development.
Collapse
|
17
|
Paluch C, Santos AM, Anzilotti C, Cornall RJ, Davis SJ. Immune Checkpoints as Therapeutic Targets in Autoimmunity. Front Immunol 2018; 9:2306. [PMID: 30349540 PMCID: PMC6186808 DOI: 10.3389/fimmu.2018.02306] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/17/2018] [Indexed: 12/19/2022] Open
Abstract
Antibodies that block the immune checkpoint receptors PD1 and CTLA4 have revolutionized the treatment of melanoma and several other cancers, but in the process, a new class of drug side effect has emerged—immune related adverse events. The observation that therapeutic blockade of these inhibitory receptors is sufficient to break self-tolerance, highlights their crucial role in the physiological modulation of immune responses. Here, we discuss the rationale for targeting immune checkpoint receptors with agonistic agents in autoimmunity, to restore tolerance when it is lost. We review progress that has been made to date, using Fc-fusion proteins, monoclonal antibodies or other novel constructs to induce immunosuppressive signaling through these pathways. Finally, we explore potential mechanisms by which these receptors trigger and modulate immune cell function, and how understanding these processes might shape the design of more effective therapeutic agents in future.
Collapse
Affiliation(s)
- Christopher Paluch
- MRC Human Immunology Unit, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Ana Mafalda Santos
- MRC Human Immunology Unit, University of Oxford, Oxford, United Kingdom.,Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Consuelo Anzilotti
- MRC Human Immunology Unit, University of Oxford, Oxford, United Kingdom.,Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Richard J Cornall
- MRC Human Immunology Unit, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon J Davis
- MRC Human Immunology Unit, University of Oxford, Oxford, United Kingdom.,Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|