1
|
Kempher ML, Shadid TM, Larabee JL, Ballard JD. A sequence invariable region in TcdB2 is required for toxin escape from Clostridioides difficile. J Bacteriol 2024; 206:e0009624. [PMID: 38888328 PMCID: PMC11323933 DOI: 10.1128/jb.00096-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Sequence differences among the subtypes of Clostridioides difficile toxin TcdB (2,366 amino acids) are broadly distributed across the entire protein, with the notable exception of 76 residues at the protein's carboxy terminus. This sequence invariable region (SIR) is identical at the DNA and protein level among the TcdB variants, suggesting this string of amino acids has undergone selective pressure to prevent alterations. The functional role of the SIR domain in TcdB has not been determined. Analysis of a recombinantly constructed TcdB mutant lacking the SIR domain did not identify changes in TcdB's enzymatic or cytopathic activities. To further assess the SIR region, we constructed a C. difficile strain with the final 228 bp deleted from the tcdB gene, resulting in the production of a truncated form of TcdB lacking the SIR (TcdB2∆2291-2366). Using a combination of approaches, we found in the absence of the SIR sequence TcdB2∆2291-2366 retained cytotoxic activity but was not secreted from C. difficile. TcdB2∆2291-2366 was not released from the cell under autolytic conditions, indicating the SIR is involved in a more discrete step in toxin escape from the bacterium. Fractionation experiments combined with antibody detection found that TcdB2∆2291-2366 accumulates at the cell membrane but is unable to complete steps in secretion beyond this point. These data suggest conservation of the SIR domain across variants of TcdB could be influenced by the sequence's role in efficient escape of the toxin from C. difficile. IMPORTANCE Clostridioides difficile is a leading cause of antibiotic associated disease in the United States. The primary virulence factors produced by C. difficile are two large glucosylating toxins TcdA and TcdB. To date, several sequence variants of TcdB have been identified that differ in various functional properties. Here, we identified a highly conserved region among TcdB subtypes that is required for release of the toxin from C. difficile. This study reveals a putative role for the longest stretch of invariable sequence among TcdB subtypes and provides new details regarding toxin release into the extracellular environment. Improving our understanding of the functional roles of the conserved regions of TcdB variants aids in the development of new, broadly applicable strategies to treat CDI.
Collapse
Affiliation(s)
- Megan L. Kempher
- Department of
Microbiology and Immunology, University of Oklahoma Health Sciences
Center, Oklahoma City,
Oklahoma, USA
- Department of
Chemistry and Biochemistry, University of
Oklahoma, Norman,
Oklahoma, USA
| | - Tyler M. Shadid
- Department of
Microbiology and Immunology, University of Oklahoma Health Sciences
Center, Oklahoma City,
Oklahoma, USA
| | - Jason L. Larabee
- Department of
Microbiology and Immunology, University of Oklahoma Health Sciences
Center, Oklahoma City,
Oklahoma, USA
| | - Jimmy D. Ballard
- Department of
Microbiology and Immunology, University of Oklahoma Health Sciences
Center, Oklahoma City,
Oklahoma, USA
| |
Collapse
|
2
|
Doyle DA, DeAngelis PL, Ballard JD. CSPG4-dependent cytotoxicity for C. difficile TcdB is influenced by extracellular calcium and chondroitin sulfate. mSphere 2024; 9:e0009424. [PMID: 38470254 PMCID: PMC11036797 DOI: 10.1128/msphere.00094-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
TcdB is an intracellular bacterial toxin indispensable to Clostridioides difficile infections. The ability to use chondroitin sulfate proteoglycan 4 (CSPG4) as a primary cell surface receptor is evolutionarily conserved by the two major variants of TcdB. As CSPG4 does not typically undergo receptor-mediated endocytosis, we sought to identify environmental factors that stabilize interactions between TcdB and CSPG4 to promote cell binding and entry into the cytosol. Using a series of TcdB receptor-binding mutants and cell lines with various receptor expression profiles, we discovered that extracellular Ca2+ promotes receptor-specific interactions with TcdB. Specifically, TcdB exhibits preferential binding to CSPG4 in the presence of Ca2+, with the absence of Ca2+ resulting in CSPG4-independent cell surface interactions. Furthermore, Ca2+ did not enhance TcdB binding to chondroitin sulfate (CS), the sole glycosaminoglycan of CSPG4. Instead, CS was found to impact the rate of cell entry by TcdB. Collectively, results from this study indicate that Ca2+ enhances cell binding by TcdB and CS interactions contribute to subsequent steps in cell entry. IMPORTANCE Clostridioides difficile is a leading cause of antibiotic-associated gastrointestinal illness, and many disease pathologies are caused by the toxin TcdB. TcdB engages multiple cell surface receptors, with receptor tropisms differing among the variants of the toxin. Chondroitin sulfate proteoglycan 4 (CSPG4) is a critical receptor for multiple forms of TcdB, and insights into TcdB-CSPG4 interactions are applicable to many disease-causing strains of C. difficile. CSPG4 is modified by chondroitin sulfate (CS) and contains laminin-G repeats stabilized by Ca2+, yet the relative contributions of CS and Ca2+ to TcdB cytotoxicity have not been determined. This study demonstrates distinct roles in TcdB cell binding and cell entry for Ca2+ and CS, respectively. These effects are specific to CSPG4 and contribute to the activities of a prominent isoform of TcdB that utilizes this receptor. These findings advance an understanding of factors contributing to TcdB's mechanism of action and contribution to C. difficile disease.
Collapse
Affiliation(s)
- D. Annie Doyle
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Paul L. DeAngelis
- Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jimmy D. Ballard
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
3
|
Gori A, Lodigiani G, Colombarolli SG, Bergamaschi G, Vitali A. Cell Penetrating Peptides: Classification, Mechanisms, Methods of Study, and Applications. ChemMedChem 2023; 18:e202300236. [PMID: 37389978 DOI: 10.1002/cmdc.202300236] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
Cell-penetrating peptides (CPPs) encompass a class of peptides that possess the remarkable ability to cross cell membranes and deliver various types of cargoes, including drugs, nucleic acids, and proteins, into cells. For this reason, CPPs are largely investigated in drug delivery applications in the context of many diseases, such as cancer, diabetes, and genetic disorders. While sharing this functionality and some common structural features, such as a high content of positively charged amino acids, CPPs represent an extremely diverse group of elements, which can differentiate under many aspects. In this review, we summarize the most common characteristics of CPPs, introduce their main distinctive features, mechanistic aspects that drive their function, and outline the most widely used techniques for their structural and functional studies. We highlight current gaps and future perspectives in this field, which have the potential to significantly impact the future field of drug delivery and therapeutics.
Collapse
Affiliation(s)
- Alessandro Gori
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Giulia Lodigiani
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Stella G Colombarolli
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, L.go F. Vito 1, 00168, Roma, Italy
| | - Greta Bergamaschi
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Alberto Vitali
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, L.go F. Vito 1, 00168, Roma, Italy
| |
Collapse
|
4
|
Song EC, Park C, Shin Y, Kim WK, Kim SB, Cho S. Neurog1-Derived Peptides RMNE1 and DualPep-Shine Penetrate the Skin and Inhibit Melanin Synthesis by Regulating MITF Transcription. Int J Mol Sci 2023; 24:ijms24076158. [PMID: 37047130 PMCID: PMC10094136 DOI: 10.3390/ijms24076158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Anti-pigmentation peptides have been developed as alternative skin-lightening agents to replace conventional chemicals that have adverse effects on the skin. However, the maximum size of these peptides is often limited by their low skin and cell penetration. To address this issue, we used our intra-dermal delivery technology (IDDT) platform to identify peptides with hypo-pigmenting and high cell-penetrating activity. Using our cell-penetrating peptides (CPPs) from the IDDT platform, we identified RMNE1 and its derivative RMNE3, "DualPep-Shine", which showed levels of α-Melanocyte stimulating hormone (α-MSH)-induced melanin inhibition comparable to the conventional tyrosinase inhibitor, Kojic acid. In addition, DualPep-Shine was delivered into the nucleus and regulated the gene expression levels of melanogenic enzymes by inhibiting the promoter activity of microphthalmia-associated transcription factor-M (MITF-M). Using a 3D human skin model, we found that DualPep-Shine penetrated the lower region of the epidermis and reduced the melanin content in a dose-dependent manner. Furthermore, DualPep-Shine showed high safety with little immunogenicity, indicating its potential as a novel cosmeceutical ingredient and anti-pigmentation therapeutic agent.
Collapse
Affiliation(s)
- Ee Chan Song
- Remedi Co., Ltd., Research Center, Incheon 21990, Republic of Korea
| | - Chanho Park
- Remedi Co., Ltd., Research Center, Incheon 21990, Republic of Korea
| | - Yungyeong Shin
- Remedi Co., Ltd., Research Center, Incheon 21990, Republic of Korea
| | - Wan Ki Kim
- Remedi Co., Ltd., Research Center, Incheon 21990, Republic of Korea
| | - Sang Bum Kim
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Seongmin Cho
- Remedi Co., Ltd., Research Center, Incheon 21990, Republic of Korea
| |
Collapse
|
5
|
Chen X, Yang X, de Anda J, Huang J, Li D, Xu H, Shields KS, Džunková M, Hansen J, Patel IJ, Yee EU, Golenbock DT, Grant MA, Wong GCL, Kelly CP. Clostridioides difficile Toxin A Remodels Membranes and Mediates DNA Entry Into Cells to Activate Toll-Like Receptor 9 Signaling. Gastroenterology 2020; 159:2181-2192.e1. [PMID: 32841647 PMCID: PMC8720510 DOI: 10.1053/j.gastro.2020.08.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/31/2020] [Accepted: 08/18/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS Clostridioides difficile toxin A (TcdA) activates the innate immune response. TcdA co-purifies with DNA. Toll-like receptor 9 (TLR9) recognizes bacterial DNA to initiate inflammation. We investigated whether DNA bound to TcdA activates an inflammatory response in murine models of C difficile infection via activation of TLR9. METHODS We performed studies with human colonocytes and monocytes and macrophages from wild-type and TLR9 knockout mice incubated with TcdA or its antagonist (ODN TTAGGG) or transduced with vectors encoding TLR9 or small-interfering RNAs. Cytokine production was measured with enzyme-linked immunosorbent assay. We studied a transduction domain of TcdA (TcdA57-80), which was predicted by machine learning to have cell-penetrating activity and confirmed by synchrotron small-angle X-ray scattering. Intestines of CD1 mice, C57BL6J mice, and mice that express a form of TLR9 that is not activated by CpG DNA were injected with TcdA, TLR9 antagonist, or both. Enterotoxicity was estimated based on loop weight to length ratios. A TLR9 antagonist was tested in mice infected with C difficile. We incubated human colon explants with an antagonist of TLR9 and measured TcdA-induced production of cytokines. RESULTS The TcdA57-80 protein transduction domain had membrane remodeling activity that allowed TcdA to enter endosomes. TcdA-bound DNA entered human colonocytes. TLR9 was required for production of cytokines by cultured cells and in human colon explants incubated with TcdA. TLR9 was required in TcdA-induced mice intestinal secretions and in the survival of mice infected by C difficile. Even in a protease-rich environment, in which only fragments of TcdA exist, the TcdA57-80 domain organized DNA into a geometrically ordered structure that activated TLR9. CONCLUSIONS TcdA from C difficile can bind and organize bacterial DNA to activate TLR9. TcdA and TcdA fragments remodel membranes, which allows them to access endosomes and present bacterial DNA to and activate TLR9. Rather than inactivating the ability of DNA to bind TLR9, TcdA appears to chaperone and organize DNA into an inflammatory, spatially periodic structure.
Collapse
Affiliation(s)
- Xinhua Chen
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| | - Xiaotong Yang
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA,Institute of Microbiology and Immunology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jaime de Anda
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jun Huang
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA,Department of Colorectal Surgery, the 6th Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Li
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hua Xu
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kelsey S. Shields
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mária Džunková
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Joshua Hansen
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Eric U. Yee
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Douglas T. Golenbock
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marianne A. Grant
- Division of Molecular and Vascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gerard C. L. Wong
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA,Corresponding Authors: Xinhua Chen, PhD, , or Gerard C. L. Wong, PhD,
| | - Ciarán P. Kelly
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Chung SY, Schöttelndreier D, Tatge H, Fühner V, Hust M, Beer LA, Gerhard R. The Conserved Cys-2232 in Clostridioides difficile Toxin B Modulates Receptor Binding. Front Microbiol 2018; 9:2314. [PMID: 30416488 PMCID: PMC6212469 DOI: 10.3389/fmicb.2018.02314] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022] Open
Abstract
Clostridioides difficile toxins TcdA and TcdB are large clostridial glucosyltransferases which are the main pathogenicity factors in C. difficile-associated diseases. Four highly conserved cysteines are present in all large clostridial glucosyltransferases. In this study we focused on the conserved cysteine 2232 within the combined repetitive oligopeptide domain of TcdB from reference strain VPI10463 (clade I). Cysteine 2232 is not present in TcdB from hypervirulent strain R20291 (clade II), where a tyrosine is found instead. Replacement of cysteine 2232 by tyrosine in TcdBV PI10463 reduced binding to the soluble fragments of the two known TcdB receptors, frizzled-2 (FZD2) and poliovirus receptor-like protein-3/nectin-3 (PVRL3). In line with this, TcdBR20291 showed weak binding to PVRL3 in pull-down assays which was increased when tyrosine 2232 was exchanged for cysteine. Surprisingly, we did not observe binding of TcdBR20291 to FZD2, indicating that this receptor is less important for this toxinotype. Competition assay with the receptor binding fragments (aa 1101–1836) of TcdBV PI10463 and TcdBR20291, as well as antibodies newly developed by antibody phage display, revealed different characteristics of the yet poorly described delivery domain of TcdB harboring the second receptor binding region. In summary, we found that conserved Cys-2232 in TcdB indirectly contributes to toxin–receptor interaction.
Collapse
Affiliation(s)
- Soo-Young Chung
- Institute of Toxicology, Hannover Medical School, Hanover, Germany
| | | | - Helma Tatge
- Institute of Toxicology, Hannover Medical School, Hanover, Germany
| | - Viola Fühner
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, Hanover, Germany
| |
Collapse
|