1
|
Sherratt SCR, Libby P, Dawoud H, Bhatt DL, Mason RP. Eicosapentaenoic Acid Improves Endothelial Nitric Oxide Bioavailability Via Changes in Protein Expression During Inflammation. J Am Heart Assoc 2024; 13:e034076. [PMID: 38958135 PMCID: PMC11292741 DOI: 10.1161/jaha.123.034076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/14/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Endothelial cell (EC) dysfunction involves reduced nitric oxide (NO) bioavailability due to NO synthase uncoupling linked to increased oxidation and reduced cofactor availability. Loss of endothelial function and NO bioavailability are associated with inflammation, including leukocyte activation. Eicosapentaenoic acid (EPA) administered as icosapent ethyl reduced cardiovascular events in REDUCE-IT (Reduction of Cardiovascular Events With Icosapent Ethyl-Intervention Trial) in relation to on-treatment EPA blood levels. The mechanisms of cardiovascular protection for EPA remain incompletely elucidated but likely involve direct effects on the endothelium. METHODS AND RESULTS In this study, human ECs were treated with EPA and challenged with the cytokine IL-6 (interleukin-6). Proinflammatory responses in the ECs were confirmed by ELISA capture of sICAM-1 (soluble intercellular adhesion molecule-1) and TNF-α (tumor necrosis factor-α). Global protein expression was determined using liquid chromatography-mass spectrometry tandem mass tag. Release kinetics of NO and peroxynitrite were monitored using porphyrinic nanosensors. IL-6 challenge induced proinflammatory responses from the ECs as evidenced by increased release of sICAM-1 and TNF-α, which correlated with a loss of NO bioavailability. ECs pretreated with EPA modulated expression of 327 proteins by >1-fold (P<0.05), compared with IL-6 alone. EPA augmented expression of proteins involved in NO production, including heme oxygenase-1 and dimethylarginine dimethylaminohydrolase-1, and 34 proteins annotated as associated with neutrophil degranulation. EPA reversed the endothelial NO synthase uncoupling induced by IL-6 as evidenced by an increased [NO]/[peroxynitrite] release ratio (P<0.05). CONCLUSIONS These direct actions of EPA on EC functions during inflammation may contribute to its distinct cardiovascular benefits.
Collapse
Affiliation(s)
- Samuel C. R. Sherratt
- Department of Molecular, Cellular, and Biomedical SciencesUniversity of New HampshireDurhamNHUSA
- Elucida ResearchBeverlyMAUSA
- Mount Sinai Fuster Heart HospitalIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | - Hazem Dawoud
- Nanomedical Research LaboratoryOhio UniversityAthensOHUSA
| | - Deepak L. Bhatt
- Mount Sinai Fuster Heart HospitalIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - R. Preston Mason
- Elucida ResearchBeverlyMAUSA
- Department of Medicine, Cardiovascular Division, Brigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
2
|
Abuzaid O, Idris AB, Yılmaz S, Idris EB, Idris LB, Hassan MA. Prediction of the most deleterious non-synonymous SNPs in the human IL1B gene: evidence from bioinformatics analyses. BMC Genom Data 2024; 25:56. [PMID: 38858637 PMCID: PMC11163699 DOI: 10.1186/s12863-024-01233-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/22/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Polymorphisms in IL1B play a significant role in depression, multiple inflammatory-associated disorders, and susceptibility to infection. Functional non-synonymous SNPs (nsSNPs) result in changes in the encoded amino acids, potentially leading to structural and functional alterations in the mutant proteins. So far, most genetic studies have concentrated on SNPs located in the IL1B promoter region, without addressing nsSNPs and their association with multifactorial diseases. Therefore, this study aimed to explore the impact of deleterious nsSNPs retrieved from the dbSNP database on the structure and functions of the IL1B protein. RESULTS Six web servers (SIFT, PolyPhen-2, PROVEAN, SNPs&GO, PHD-SNP, PANTHER) were used to analyze the impact of 222 missense SNPs on the function and structure of IL1B protein. Five novel nsSNPs (E100K, T240I, S53Y, D128Y, and F228S) were found to be deleterious and had a mutational impact on the structure and function of the IL1B protein. The I-mutant v2.0 and MUPro servers predicted that these mutations decreased the stability of the IL1B protein. Additionally, these five mutations were found to be conserved, underscoring their significance in protein structure and function. Three of them (T240I, D128Y, and F228S) were predicted to be cancer-causing nsSNPs. To analyze the behavior of the mutant structures under physiological conditions, we conducted a 50 ns molecular dynamics simulation using the WebGro online tool. Our findings indicate that the mutant values differ from those of the IL1B wild type in terms of RMSD, RMSF, Rg, SASA, and the number of hydrogen bonds. CONCLUSIONS This study provides valuable insights into nsSNPs located in the coding regions of IL1B, which lead to direct deleterious effects on the functional and structural aspects of the IL1B protein. Thus, these nsSNPs could be considered significant candidates in the pathogenesis of disorders caused by IL1B dysfunction, contributing to effective drug discovery and the development of precision medications. Thorough research and wet lab experiments are required to verify our findings. Moreover, bioinformatic tools were found valuable in the prediction of deleterious nsSNPs.
Collapse
Affiliation(s)
- Ola Abuzaid
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Abeer Babiker Idris
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan.
| | - Semih Yılmaz
- Department of Agricultural Biotechnology, Faculty of Agriculture, Erciyes University, Kayseri, Turkey
- Erciyes Teknopark, Promoseed Biotechnology A.Ş, Kayseri, Turkey
| | - Einass Babikir Idris
- Department of Medical Microbiology, Rashid Medical Complex, Riyadh, Saudi Arabia
| | | | - Mohamed A Hassan
- Department of Bioinformatics, Africa City of Technology, Khartoum, Sudan
- Sanimed International Lab and Management L.L.C, Abu Dhabi, UAE
| |
Collapse
|
3
|
Pan J, Wang M, Zhu J, Huang Y, Zhang F, Li E, Qin J, Chen L, Wang X. Quantitative proteomic and metabolomic profiling reveals different osmoregulation mechanisms of tilapia cells coping with different hyperosmotic stress. J Proteomics 2024; 296:105113. [PMID: 38346667 DOI: 10.1016/j.jprot.2024.105113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/13/2024] [Accepted: 02/03/2024] [Indexed: 02/18/2024]
Abstract
This study aimed to investigate the different regulatory mechanisms of euryhaline fish under regular hyperosmotic and extreme hyperosmotic stress. The OmB (Oreochromis mossambicus brain) cells were exposed to three treatments: control, regular hyperosmotic stress and extreme hyperosmotic stress. After 12 h exposure, proteomics, metabolomics analyses and integrative analyses were explored. Both kinds of stress lead to lowering cell growth and morphology changes, while under regular hyperosmotic stress, the up-regulated processes related with compatible organic osmolytes synthesis are crucial strategy for the euryhaline fish cell line to survive; On the other hand, under extreme hyperosmotic stress, the processes related with cell apoptosis and cell cycle arrest are dominant. Furthermore, down-regulated pyrimidine metabolism and several ribosomal proteins partially participated in the lowered cell metabolism and increased cell death under both kinds of hyperosmotic stress. The PI3K-Akt and p53 signaling pathways were involved in the stagnant stage of cell cycles and induction of cell apoptosis under both kinds of hyperosmotic stress. However, HIF-1, FoxO, JAK-STAT and Hippo signaling pathways mainly contribute to disrupting the cell cycle, metabolism and induction of cell apoptosis under extreme hyperosmotic stress. SIGNIFICANCE: In the past, the research on fish osmoregulation mainly focused on the transcription factors and ion transporters of osmoregulation, the processes between osmotic sensing and signal transduction, and the associations between signaling pathways and regulation processes have been poorly understood. Investigating fish cell osmoregulation and potential signal transduction pathways is necessary. With the advancements in omics research, it is now feasible to investigate the relationship between environmental stress and molecular responses. In this study, we aimed to explore the signaling pathways and substance metabolism mode during hyper-osmoregulation in OmB cell line, to reveal the key factors that are critical to cell osmoregulation.
Collapse
Affiliation(s)
- Jingyu Pan
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Minxu Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiahua Zhu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuxing Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Fan Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
4
|
Angiopoietin-2-induced lymphatic endothelial cell migration drives lymphangiogenesis via the β1 integrin-RhoA-formin axis. Angiogenesis 2022; 25:373-396. [PMID: 35103877 DOI: 10.1007/s10456-022-09831-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/08/2021] [Indexed: 11/01/2022]
Abstract
Lymphangiogenesis is an essential physiological process but also a determining factor in vascular-related pathological conditions. Angiopoietin-2 (Ang2) plays an important role in lymphatic vascular development and function and its upregulation has been reported in several vascular-related diseases, including cancer. Given the established role of the small GTPase RhoA on cytoskeleton-dependent endothelial functions, we investigated the relationship between RhoA and Ang2-induced cellular activities. This study shows that Ang2-driven human dermal lymphatic endothelial cell migration depends on RhoA. We demonstrate that Ang2-induced migration is independent of the Tie receptors, but dependent on β1 integrin-mediated RhoA activation with knockdown, pharmacological approaches, and protein sequencing experiments. Although the key proteins downstream of RhoA, Rho kinase (ROCK) and myosin light chain, were activated, blockade of ROCK did not abrogate the Ang2-driven migratory effect. However, formins, an alternative target of RhoA, were identified as key players, and especially FHOD1. The Ang2-RhoA relationship was explored in vivo, where lymphatic endothelial RhoA deficiency blocked Ang2-induced lymphangiogenesis, highlighting RhoA as an important target for anti-lymphangiogenic treatments.
Collapse
|
5
|
Targeting RGD-binding integrins as an integrative therapy for diabetic retinopathy and neovascular age-related macular degeneration. Prog Retin Eye Res 2021; 85:100966. [PMID: 33775825 DOI: 10.1016/j.preteyeres.2021.100966] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Integrins are a class of transmembrane receptors that are involved in a wide range of biological functions. Dysregulation of integrins has been implicated in many pathological processes and consequently, they are attractive therapeutic targets. In the ophthalmology arena, there is extensive evidence suggesting that integrins play an important role in diabetic retinopathy (DR), age-related macular degeneration (AMD), glaucoma, dry eye disease and retinal vein occlusion. For example, there is extensive evidence that arginyl-glycyl-aspartic acid (Arg-Gly-Asp; RGD)-binding integrins are involved in key disease hallmarks of DR and neovascular AMD (nvAMD), specifically inflammation, vascular leakage, angiogenesis and fibrosis. Based on such evidence, drugs that engage integrin-linked pathways have received attention for their potential to block all these vision-threatening pathways. This review focuses on the pathophysiological role that RGD-binding integrins can have in complex multifactorial retinal disorders like DR, diabetic macular edema (DME) and nvAMD, which are leading causes of blindness in developed countries. Special emphasis will be given on how RGD-binding integrins can modulate the intricate molecular pathways and regulate the underlying pathological mechanisms. For instance, the interplay between integrins and key molecular players such as growth factors, cytokines and enzymes will be summarized. In addition, recent clinical advances linked to targeting RGD-binding integrins in the context of DME and nvAMD will be discussed alongside future potential for limiting progression of these diseases.
Collapse
|
6
|
Maynard SA, Pchelintseva E, Zwi-Dantsis L, Nagelkerke A, Gopal S, Korchev YE, Shevchuk A, Stevens MM. IL-1β mediated nanoscale surface clustering of integrin α5β1 regulates the adhesion of mesenchymal stem cells. Sci Rep 2021; 11:6890. [PMID: 33767269 PMCID: PMC7994456 DOI: 10.1038/s41598-021-86315-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/10/2021] [Indexed: 12/18/2022] Open
Abstract
Clinical use of human mesenchymal stem cells (hMSCs) is limited due to their rapid clearance, reducing their therapeutic efficacy. The inflammatory cytokine IL-1β activates hMSCs and is known to enhance their engraftment. Consequently, understanding the molecular mechanism of this inflammation-triggered adhesion is of great clinical interest to improving hMSC retention at sites of tissue damage. Integrins are cell-matrix adhesion receptors, and clustering of integrins at the nanoscale underlies cell adhesion. Here, we found that IL-1β enhances adhesion of hMSCs via increased focal adhesion contacts in an α5β1 integrin-specific manner. Further, through quantitative super-resolution imaging we elucidated that IL-1β specifically increases nanoscale integrin α5β1 availability and clustering at the plasma membrane, whilst conserving cluster area. Taken together, these results demonstrate that hMSC adhesion via IL-1β stimulation is partly regulated through integrin α5β1 spatial organization at the cell surface. These results provide new insight into integrin clustering in inflammation and provide a rational basis for design of therapies directed at improving hMSC engraftment.
Collapse
Affiliation(s)
- Stephanie A. Maynard
- grid.7445.20000 0001 2113 8111Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Ekaterina Pchelintseva
- grid.7445.20000 0001 2113 8111Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Limor Zwi-Dantsis
- grid.7445.20000 0001 2113 8111Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Anika Nagelkerke
- grid.7445.20000 0001 2113 8111Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Sahana Gopal
- grid.7445.20000 0001 2113 8111Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK ,grid.7445.20000 0001 2113 8111Department of Medicine, Imperial College London, London, W12 0NN UK
| | - Yuri E. Korchev
- grid.7445.20000 0001 2113 8111Department of Medicine, Imperial College London, London, W12 0NN UK
| | - Andrew Shevchuk
- grid.7445.20000 0001 2113 8111Department of Medicine, Imperial College London, London, W12 0NN UK
| | - Molly M. Stevens
- grid.7445.20000 0001 2113 8111Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
7
|
Soluble CD40L activates soluble and cell-surface integrin αvβ3, α5β1, and α4β1 by binding to the allosteric ligand-binding site (site 2). J Biol Chem 2021; 296:100399. [PMID: 33571526 PMCID: PMC7960543 DOI: 10.1016/j.jbc.2021.100399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 11/20/2022] Open
Abstract
CD40L is a member of the TNF superfamily that participates in immune cell activation. It binds to and signals through several integrins, including αvβ3 and α5β1, which bind to the trimeric interface of CD40L. We previously showed that several integrin ligands can bind to the allosteric site (site 2), which is distinct from the classical ligand-binding site (site 1), raising the question of if CD40L activates integrins. In our explorations of this question, we determined that integrin α4β1, which is prevalently expressed on the same CD4+ T cells as CD40L, is another receptor for CD40L. Soluble (s)CD40L activated soluble integrins αvβ3, α5β1, and α4β1 in cell-free conditions, indicating that this activation does not require inside-out signaling. Moreover, sCD40L activated cell-surface integrins in CHO cells that do not express CD40. To learn more about the mechanism of binding, we determined that sCD40L bound to a cyclic peptide from site 2. Docking simulations predicted that the residues of CD40L that bind to site 2 are located outside of the CD40L trimer interface, at a site where four HIGM1 (hyper-IgM syndrome type 1) mutations are clustered. We tested the effect of these mutations, finding that the K143T and G144E mutants were the most defective in integrin activation, providing support that this region interacts with site 2. We propose that allosteric integrin activation by CD40L also plays a role in CD40L signaling, and defective site 2 binding may be related to the impaired CD40L signaling functions of these HIGM1 mutants.
Collapse
|
8
|
Wu Q, Hu Y. Integrated network pharmacology and molecular docking strategy to explore the mechanism of medicinal and edible Astragali Radix-Atractylodis Macrocephalae Rhizoma acting on pneumonia via immunomodulation. J Food Biochem 2020; 44:e13510. [PMID: 33025599 DOI: 10.1111/jfbc.13510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/10/2020] [Accepted: 09/19/2020] [Indexed: 12/17/2022]
Abstract
Pneumonia refers to a death-causing infection. Astragali Radix (AR) and Atractylodis Macrocephalae Rhizoma (AMR) are widely used as traditional tonic and promising edible immunomodulatory herbal medicine, but the systemic mechanism is not well understood. Therefore, a strategy based on network pharmacology and molecular docking was designed to explore the systemic mechanism of AR-AMR acting on pneumonia. After a series of bioinformatics assays, seven kernel targets were obtained, including TNF, IL6, IFNG, IL1B, IL10, IL4, and TLR9. And seven key compounds were identified as the synergy components of AR-AMR acting on pneumonia, the four key compounds belonging to AR were (3R)-3-(2-hydroxy-3,4-dimethoxyphenyl)-7-chromanol, formononetin, quercetin, and kaempferol, the three key compounds belonging to AMR were atractylone, 14-acetyl-12-senecioyl-2E, 8E, 10E-atractylentriol, and α-Amyrin. The crucial pathways were mainly related to three modules, including immune diseases, infectious disease, and organismal systems. Collectively, these observations strongly suggest that the molecular mechanisms of AR-AMR regulating pneumonia were closely related to the correlation between inflammation and immune response. PRACTICAL APPLICATIONS: Astragali radix and Atractylodis macrocephalae rhizoma can be used as "medicine-food homology" for dietary supplement. AR and AMR are widely used as a traditional tonic and promising edible immunomodulatory herbal medicine. The AR-AMR herb pairs are used for compatibility many times in the recommended prescriptions in COVID-19 develop pneumonia in China. However, the ingredients and mechanisms of AR-AMR acting on Pneumonia via immunomodulation are unclear. In this paper, bioinformatics and network biology were used to systematically explore the mechanisms of the AR-AMR herb pairs in treatment of pneumonia, and further analyze the correlation mechanism between it and COVID-19 develop pneumonia. To sum up, our study reveals the interrelationships between components, targets, and corresponding biological processes of AR-AMR acting on pneumonia. Understanding these relationships may provide guidance and theoretical basis for the further application of AR-AMR herb pairs.
Collapse
Affiliation(s)
- Qiguo Wu
- Department of Pharmacy, Anqing Medical College, Anqing, China.,Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yeqing Hu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Lu M, Chen W, Zhuang W, Zhan X. Label-free quantitative identification of abnormally ubiquitinated proteins as useful biomarkers for human lung squamous cell carcinomas. EPMA J 2020; 11:73-94. [PMID: 32140187 PMCID: PMC7028901 DOI: 10.1007/s13167-019-00197-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ubiquitination is an important molecular event in lung squamous cell carcinoma (LSCC), which currently is mainly studied in nonsmall cell lung carcinoma cell models but lacking of ubiquitination studies on LSCC tissues. Here, we presented the ubiquitinated protein profiles of LSCC tissues to explore ubiquitination-involved molecular network alterations and identify abnormally ubiquitinated proteins as useful biomarkers for predictive, preventive, and personalized medicine (PPPM) in LSCC. METHODS Anti-ubiquitin antibody-based enrichment coupled with LC-MS/MS was used to identify differentially ubiquitinated proteins (DUPs) between LSCC and control tissues, followed by integrative omics analyses to identify abnormally ubiquitinated protein biomarkers for LSCC. RESULTS Totally, 400 DUPs with 654 ubiquitination sites were identified,, and motifs A-X (1/2/3)-K* were prone to be ubiquitinated in LSCC tissues. Those DUPs were involved in multiple molecular network systems, including the ubiquitin-proteasome system (UPS), cell metabolism, cell adhesion, and signal transduction. Totally, 44 hub molecules were revealed by protein-protein interaction network analysis, followed by survival analysis in TCGA database (494 LSCC patients and 20,530 genes) to obtain 18 prognosis-related mRNAs, of which the highly expressed mRNAs VIM and IGF1R were correlated with poorer prognosis, while the highly expressed mRNA ABCC1 was correlated with better prognosis. VIM-encoded protein vimentin and ABCC1-encoded protein MRP1 were increased in LSCC, which were all associated with poor prognosis. Proteasome-inhibited experiments demonstrated that vimentin and MRP1 were degraded through UPS. Quantitative ubiquitinomics found ubiquitination level was decreased in vimentin and increased in MRP1 in LSCC. These findings showed that the increased vimentin in LSCC might be derived from its decreased ubiquitination level and that the increased MRP1 in LSCC might be derived from its protein synthesis > degradation. GSEA and co-expression gene analyses revealed that VIM and MRP1 were involved in multiple crucial biological processes and pathways. Further, TRIM2 and NEDD4L were predicted as E3 ligases to regulate ubiquitination of vimentin and MRP1, respectively. CONCLUSION These findings revealed ubiquitinomic variations and molecular network alterations in LSCC, which is in combination with multiomics analysis to identify ubiquitination-related biomarkers for in-depth insight into the molecular mechanism and therapeutic targets and for prediction, diagnosis, and prognostic assessment of LSCC.
Collapse
Affiliation(s)
- Miaolong Lu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
| | - Wei Chen
- Shanghai Applied Protein Technology, Shanghai, 200233 People’s Republic of China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- Department of Oncology, Xiangya Hospital, Central South University, 88 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 88 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
| |
Collapse
|
10
|
Fuglestad B, Kerstetter NE, Bédard S, Wand AJ. Extending the Detection Limit in Fragment Screening of Proteins Using Reverse Micelle Encapsulation. ACS Chem Biol 2019; 14:2224-2232. [PMID: 31550881 DOI: 10.1021/acschembio.9b00537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Detection of very weak (Kd > 10 mM) interactions of proteins with small molecules has been elusive. This is particularly important for fragment-based drug discovery, where it is suspected that the majority of potentially useful fragments will be invisible to current screening methodologies. We describe an NMR approach that permits detection of protein-fragment interactions in the very low affinity range and extends the current detection limit of ∼10 mM up to ∼200 mM and beyond. Reverse micelle encapsulation is leveraged to effectively reach very high fragment and protein concentrations, a principle that is validated by binding model fragments to E. coli dihydrofolate reductase. The method is illustrated by target-detected screening of a small polar fragment library against interleukin-1β, which lacks a known ligand-binding pocket. Evaluation of binding by titration and structural context allows for validation of observed hits using rigorous structural and statistical criteria. The 21 curated hit molecules represent a remarkable hit rate of nearly 10% of the library. Analysis shows that fragment binding involves residues comprising two-thirds of the protein's surface. Current fragment screening methods rely on detection of relatively tight binding to ligand binding pockets. The method presented here illustrates a potential to faithfully discover starting points for development of small molecules that bind to a desired region of the protein, even if the targeted region is defined by a relatively flat surface.
Collapse
Affiliation(s)
- Brian Fuglestad
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Nicole E. Kerstetter
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sabrina Bédard
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - A. Joshua Wand
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
11
|
Takada YK, Yu J, Shimoda M, Takada Y. Integrin Binding to the Trimeric Interface of CD40L Plays a Critical Role in CD40/CD40L Signaling. THE JOURNAL OF IMMUNOLOGY 2019; 203:1383-1391. [PMID: 31331973 DOI: 10.4049/jimmunol.1801630] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/24/2019] [Indexed: 01/07/2023]
Abstract
CD40L plays a major role in immune response and is a major therapeutic target for inflammation. Integrin α5β1 and CD40 simultaneously bind to CD40L. It is unclear if α5β1 and CD40 work together in CD40/CD40L signaling or how α5β1 binds to CD40L. In this article, we describe that the integrin-binding site of human CD40L is predicted to be located in the trimeric interface by docking simulation. Mutations in the predicted integrin-binding site markedly reduced the binding of α5β1 to CD40L. Several CD40L mutants defective in integrin binding were defective in NF-κB activation and B cell activation and suppressed CD40L signaling induced by wild-type CD40L; however, they still bound to CD40. These findings suggest that integrin α5β1 binds to monomeric CD40L through the binding site in the trimeric interface of CD40L, and this plays a critical role in CD40/CD40L signaling. Integrin αvβ3, a widely distributed vascular integrin, bound to CD40L in a KGD-independent manner, suggesting that αvβ3 is a new CD40L receptor. Several missense mutations in CD40L that induce immunodeficiency with hyper-IgM syndrome type 1 (HIGM1) are clustered in the integrin-binding site of the trimeric interface. These HIGM1 CD40L mutants were defective in binding to α5β1 and αvβ3 (but not to CD40), suggesting that the defect in integrin binding may be a causal factor of HIGM1. These findings suggest that α5β1 and αvβ3 bind to the overlapping binding site in the trimeric interface of monomeric CD40L and generate integrin-CD40L-CD40 ternary complex. CD40L mutants defective in integrins have potential as antagonists of CD40/CD40L signaling.
Collapse
Affiliation(s)
- Yoko K Takada
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817; and.,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817
| | - Jessica Yu
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817; and
| | - Michiko Shimoda
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817; and
| | - Yoshikazu Takada
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817; and .,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817
| |
Collapse
|
12
|
3D type I collagen environment leads up to a reassessment of the classification of human macrophage polarizations. Biomaterials 2019; 208:98-109. [PMID: 31005702 DOI: 10.1016/j.biomaterials.2019.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/21/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022]
Abstract
Macrophages have multiple roles in development, tissue homeostasis and repair and present a high degree of phenotypic plasticity embodied in the concept of polarization. One goal of macrophage biology field is to characterize these polarizations at the molecular level. To achieve this task, it is necessary to integrate how physical environment signals are interpreted by macrophages under immune stimulation. In this work, we study how a 3D scaffold obtained from polymerized fibrillar rat type I collagen modulates the polarizations of human macrophages and reveal that some traditionally used markers should be reassessed. We demonstrate that integrin β2 is a regulator of STAT1 phosphorylation in response to IFNγ/LPS as well as responsible for the inhibition of ALOX15 expression in response to IL-4/IL-13 in 3D. Meanwhile, we also find that the CCL19/CCL20 ratio is reverted in 3D under IFNγ/LPS stimulation. 3D also induces the priming of the NLRP3 inflammasome resulting in an increased IL-1β and IL-6 secretion. These results give the molecular basis for assessing collagen induced immunomodulation of human macrophages in various physiological and pathological contexts such as cancer.
Collapse
|
13
|
Differential Expression of mRNAs in the Brain Tissues of Patients with Alzheimer's Disease Based on GEO Expression Profile and Its Clinical Significance. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8179145. [PMID: 30918899 PMCID: PMC6413412 DOI: 10.1155/2019/8179145] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/28/2018] [Accepted: 02/04/2019] [Indexed: 12/18/2022]
Abstract
Background Early diagnosis of Alzheimer's disease (AD) is an urgent point for AD prevention and treatment. The biomarkers of AD still remain indefinite. Based on the bioinformatics analysis of mRNA differential expressions in the brain tissues and the peripheral blood samples of Alzheimer's disease (AD) patients, we investigated the target mRNAs that could be used as an AD biomarker and developed a new effective, practical clinical examination program. Methods We compared the AD peripheral blood mononuclear cells (PBMCs) expression dataset (GEO accession GSE4226 and GSE18309) with AD brain tissue expression datasets (GEO accessions GSE1297 and GSE5281) from GEO in the present study. The GEO gene database was used to download the appropriate gene expression profiles to analyze the differential mRNA expressions between brain tissue and blood of AD patients and normal elderly. The Venn diagram was used to screen out the differential expression of mRNAs between the brain tissue and blood. The protein-protein interaction network map (PPI) was used to view the correlation between the possible genes. GO (gene ontology) and KEGG (Kyoto Gene and Genomic Encyclopedia) were used for gene enrichment analysis to determine the major affected genes and the function or pathway. Results Bioinformatics analysis revealed that there were differentially expressed genes in peripheral blood and hippocampus of AD patients. There were 4958 differential mRNAs in GSE18309, 577 differential mRNAs in GSE4226 in AD PBMCs sample, 7464 differential mRNAs in GSE5281, and 317 differential mRNAs in GSE129 in AD brain tissues, when comparing between AD patients and healthy elderly. Two mRNAs of RAB7A and ITGB1 coexpressed in hippocampus and peripheral blood were screened. Furthermore, functions of differential genes were enriched by the PPI network map, GO, and KEGG analysis, and finally the chemotaxis, adhesion, and inflammatory reactions were found out, respectively. Conclusions ITGB1 and RAB7A mRNA expressions were both changed in hippocampus and PBMCs, highly suggested being used as an AD biomarker with AD. Also, according to the results of this analysis, it is indicated that we can test the blood routine of the elderly for 2-3 years at a frequency of 6 months or one year. When a patient continuously detects the inflammatory manifestations, it is indicated as a potentially high-risk AD patient for AD prevention.
Collapse
|