1
|
Bircan A, Kuru N, Dereli O, Selçuk B, Adebali O. Evolutionary history of calcium-sensing receptors unveils hyper/hypocalcemia-causing mutations. PLoS Comput Biol 2024; 20:e1012591. [PMID: 39531485 PMCID: PMC11584096 DOI: 10.1371/journal.pcbi.1012591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 11/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Despite advancements in understanding the structure and functions of the Calcium Sensing Receptor (CaSR), gaps persist in our knowledge of the specific functions of its residues. In this study, we used phylogeny-based techniques to identify functionally equivalent orthologs of CaSR, predict residue significance, and compute specificity-determining position (SDP) scores to understand its evolutionary basis. The analysis revealed exceptional conservation of the CaSR subfamily, emphasizing the critical role of residues with high SDP scores in receptor activation and pathogenicity. To further enhance the findings, gradient-boosting trees were applied to differentiate between gain- and loss-of-function mutations responsible for hypocalcemia and hypercalcemia. Lastly, we investigated the importance of these mutations in the context of receptor activation dynamics. In summary, through comprehensive exploration of the evolutionary history of the CaSR subfamily, coupled with innovative phylogenetic methodologies, we identified activating and inactivating residues, providing valuable insights into the regulation of calcium homeostasis and its connections to associated disorders.
Collapse
Affiliation(s)
- Aylin Bircan
- Faculty of Engineering and Natural Sciences, Sabanci University, İstanbul, Türkiye
| | - Nurdan Kuru
- Faculty of Engineering and Natural Sciences, Sabanci University, İstanbul, Türkiye
| | - Onur Dereli
- Faculty of Engineering and Natural Sciences, Sabanci University, İstanbul, Türkiye
| | - Berkay Selçuk
- Faculty of Engineering and Natural Sciences, Sabanci University, İstanbul, Türkiye
| | - Ogün Adebali
- Faculty of Engineering and Natural Sciences, Sabanci University, İstanbul, Türkiye
- TÜBİTAK Research Institute for Fundamental Sciences, Gebze, Türkiye
| |
Collapse
|
2
|
Tian L, Andrews C, Yan Q, Yang JJ. Molecular regulation of calcium-sensing receptor (CaSR)-mediated signaling. Chronic Dis Transl Med 2024; 10:167-194. [PMID: 39027195 PMCID: PMC11252437 DOI: 10.1002/cdt3.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 07/20/2024] Open
Abstract
Calcium-sensing receptor (CaSR), a family C G-protein-coupled receptor, plays a crucial role in regulating calcium homeostasis by sensing small concentration changes of extracellular Ca2+, Mg2+, amino acids (e.g., L-Trp and L-Phe), small peptides, anions (e.g., HCO3 - and PO4 3-), and pH. CaSR-mediated intracellular Ca2+ signaling regulates a diverse set of cellular processes including gene transcription, cell proliferation, differentiation, apoptosis, muscle contraction, and neuronal transmission. Dysfunction of CaSR with mutations results in diseases such as autosomal dominant hypocalcemia, familial hypocalciuric hypercalcemia, and neonatal severe hyperparathyroidism. CaSR also influences calciotropic disorders, such as osteoporosis, and noncalciotropic disorders, such as cancer, Alzheimer's disease, and pulmonary arterial hypertension. This study first reviews recent advances in biochemical and structural determination of the framework of CaSR and its interaction sites with natural ligands, as well as exogenous positive allosteric modulators and negative allosteric modulators. The establishment of the first CaSR protein-protein interactome network revealed 94 novel players involved in protein processing in endoplasmic reticulum, trafficking, cell surface expression, endocytosis, degradation, and signaling pathways. The roles of these proteins in Ca2+-dependent cellular physiological processes and in CaSR-dependent cellular signaling provide new insights into the molecular basis of diseases caused by CaSR mutations and dysregulated CaSR activity caused by its protein interactors and facilitate the design of therapeutic agents that target CaSR and other family C G-protein-coupled receptors.
Collapse
Affiliation(s)
- Li Tian
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Corey Andrews
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Qiuyun Yan
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jenny J. Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
3
|
Sato H, Murakami S, Horii Y, Nishimura G, Iwai R, Goto M, Takahashi N. Upacicalcet Is a Novel Secondary Hyperparathyroidism Drug that Targets the Amino Acid Binding Site of Calcium-Sensing Receptor . Mol Pharmacol 2022; 102:183-195. [PMID: 36122913 DOI: 10.1124/molpharm.122.000522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/14/2022] [Indexed: 02/14/2025] Open
Abstract
The human calcium-sensing receptor (CaSR) is a G protein-coupled receptor that maintains extracellular Ca2+ homeostasis by regulating the secretion of parathyroid hormone. Upacicalcet is a novel positive allosteric modulator of CaSR that is used for the treatment of secondary hyperparathyroidism. In the present study, to clarify the binding site of upacicalcet to CaSR, we conducted binding studies and agonistic activity studies in HEK-293T cells expressing human CaSR (intact and mutant) and an in silico docking-simulation analysis. As a result, upacicalcet competed with L-tryptophan and was thought to affect the amino acid binding site. In addition, the effects of substitutions at the amino acid binding site on the binding abilities to upacicalcet as well as the effects on receptor function as measured using inositol-1 monophosphate accumulation were examined. Upacicalcet interacted with several CaSR residues that constitute the amino acid binding site. Based on these results, we performed an in silico analysis and obtained a binding mode, consistent with the in vitro study results. Our study revealed that upacicalcet is a novel secondary hyperparathyroidism drug that targets the amino acid binding site of CaSR. Upacicalcet is expected to become a new treatment option for secondary hyperparathyroidism because the binding site differs from that of conventional drugs; consequently, it may be effective for patients who are not sensitive to conventional drugs, and it may have a superior safety profile. SIGNIFICANCE STATEMENT: Upacicalcet interacts with several residues that constitute the amino acid binding site of the calcium-sensing receptor (CaSR) and shows a potent positive allosteric activity. This mechanism differs from those of conventional drugs. Therefore, upacicalcet can be regarded as a novel secondary hyperparathyroidism drug that acts on the amino acid binding site of CaSR.
Collapse
Affiliation(s)
- Hirofumi Sato
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., Mie, Japan
| | - Sei Murakami
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., Mie, Japan
| | - Yusuke Horii
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., Mie, Japan
| | - Go Nishimura
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., Mie, Japan
| | - Ryosuke Iwai
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., Mie, Japan
| | - Moritaka Goto
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., Mie, Japan
| | - Naoki Takahashi
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., Mie, Japan
| |
Collapse
|
4
|
Prenatal features and neonatal management of severe hyperparathyroidism caused by the heterozygous inactivating calcium-sensing receptor variant, Arg185Gln: A case report and review of the literature. Bone Rep 2021; 15:101097. [PMID: 34169121 PMCID: PMC8209172 DOI: 10.1016/j.bonr.2021.101097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 12/27/2022] Open
Abstract
Background Loss-of-function variants in the calcium-sensing receptor (CASR) gene are known to be involved in a clinical spectrum ranging from asymptomatic familial hypocalciuric hypercalcemia (FHH) to neonatal severe hyperparathyroidism (NSHPT). Homozygous or compound heterozygous variants are usually responsible for severe neonatal forms, whereas heterozygous variants cause benign forms. One recurrent pathogenic variant, p.Arg185Gln, has been reported in both forms, in a heterozygous state. This variant can be a de novo occurrence or can be inherited from a father with FHH. NSHPT leads to global hypotonia, failure to thrive, typical X-ray anomalies (diffuse demineralization, fractures, metaphyseal irregularities), and acute respiratory distress which can be fatal. Phosphocalcic markers show severe hypercalcemia, abnormal urinary calcium resorption, and hyperparathyroidism as major signs. Classical treatment involves calcium restriction, hyperhydration, and bisphosphonates. Unfortunately, the disease often leads to parathyroidectomy. Recently, calcimimetics have been used with variable efficacy. Efficacy in NSHPT seems to be particularly dependent on CASR genotype. Case presentation We describe the antenatal presentation of a male with short ribs, initially suspected having skeletal ciliopathy. At birth, he presented with NSHPT linked to the pathogenic heterozygous CASR variant, Arg185Gln, inherited from his father who had FHH. Postnatal therapy with cinacalcet was successful. Discussion An exhaustive literature review permits a comparison with all reported cases of Arg185Gln and to hypothesize that cinacalcet efficacy depends on CASR genotype. This confirms the importance of pedigree and parental history in antenatal short rib presentation and questions the feasibility of phosphocalcic exploration during pregnancy or prenatal CASR gene sequencing in the presence of specific clinical signs. It could in fact enable early calcimimetic treatment which might be effective in the CASR variant Arg185Gln.
Collapse
|
5
|
Tan RSG, Lee CHL, Dimke H, Todd Alexander R. The role of calcium-sensing receptor signaling in regulating transepithelial calcium transport. Exp Biol Med (Maywood) 2021; 246:2407-2419. [PMID: 33926258 DOI: 10.1177/15353702211010415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The calcium-sensing receptor (CaSR) plays a critical role in sensing extracellular calcium (Ca2+) and signaling to maintain Ca2+ homeostasis. In the parathyroid, the CaSR regulates secretion of parathyroid hormone, which functions to increase extracellular Ca2+ levels. The CaSR is also located in other organs imperative to Ca2+ homeostasis including the kidney and intestine, where it modulates Ca2+ reabsorption and absorption, respectively. In this review, we describe CaSR expression and its function in transepithelial Ca2+ transport in the kidney and intestine. Activation of the CaSR leads to G protein dependent and independent signaling cascades. The known CaSR signal transduction pathways involved in modulating paracellular and transcellular epithelial Ca2+ transport are discussed. Mutations in the CaSR cause a range of diseases that manifest in altered serum Ca2+ levels. Gain-of-function mutations in the CaSR result in autosomal dominant hypocalcemia type 1, while loss-of-function mutations cause familial hypocalciuric hypercalcemia. Additionally, the putative serine protease, FAM111A, is discussed as a potential regulator of the CaSR because mutations in FAM111A cause Kenny Caffey syndrome type 2, gracile bone dysplasia, and osteocraniostenosis, diseases that are characterized by hypocalcemia, hypoparathyroidism, and bony abnormalities, i.e. share phenotypic features of autosomal dominant hypocalcemia. Recent work has helped to elucidate the effect of CaSR signaling cascades on downstream proteins involved in Ca2+ transport across renal and intestinal epithelia; however, much remains to be discovered.
Collapse
Affiliation(s)
- Rebecca Siu Ga Tan
- Department of Physiology, University of Alberta, Edmonton T6G 1C9, Canada.,Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 1C9, Canada
| | | | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense 5000, Denmark.,Department of Nephrology, Odense University Hospital, Odense 5000, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton T6G 1C9, Canada.,Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 1C9, Canada.,Department of Pediatrics, University of Alberta, Edmonton T6G 1C9, Canada
| |
Collapse
|
6
|
Structural mechanism of cooperative activation of the human calcium-sensing receptor by Ca 2+ ions and L-tryptophan. Cell Res 2021; 31:383-394. [PMID: 33603117 PMCID: PMC8115157 DOI: 10.1038/s41422-021-00474-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
The human calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor (GPCR) responsible for maintaining Ca2+ homeostasis in the blood. The general consensus is that extracellular Ca2+ is the principal agonist of CaSR. Aliphatic and aromatic L-amino acids, such as L-Phe and L-Trp, increase the sensitivity of CaSR towards Ca2+ and are considered allosteric activators. Crystal structures of the extracellular domain (ECD) of CaSR dimer have demonstrated Ca2+ and L-Trp binding sites and conformational changes of the ECD upon Ca2+/L-Trp binding. However, it remains to be understood at the structural level how Ca2+/L-Trp binding to the ECD leads to conformational changes in transmembrane domains (TMDs) and consequent CaSR activation. Here, we determined the structures of full-length human CaSR in the inactive state, Ca2+- or L-Trp-bound states, and Ca2+/L-Trp-bound active state using single-particle cryo-electron microscopy. Structural studies demonstrate that L-Trp binding induces the closure of the Venus flytrap (VFT) domain of CaSR, bringing the receptor into an intermediate active state. Ca2+ binding relays the conformational changes from the VFT domains to the TMDs, consequently inducing close contact between the two TMDs of dimeric CaSR, activating the receptor. Importantly, our structural and functional studies reveal that Ca2+ ions and L-Trp activate CaSR cooperatively. Amino acids are not able to activate CaSR alone, but can promote the receptor activation in the presence of Ca2+. Our data provide complementary insights into the activation of class C GPCRs and may aid in the development of novel drugs targeting CaSR.
Collapse
|
7
|
Ahmad R, Dalziel JE. G Protein-Coupled Receptors in Taste Physiology and Pharmacology. Front Pharmacol 2020; 11:587664. [PMID: 33390961 PMCID: PMC7774309 DOI: 10.3389/fphar.2020.587664] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Heterotrimeric G protein-coupled receptors (GPCRs) comprise the largest receptor family in mammals and are responsible for the regulation of most physiological functions. Besides mediating the sensory modalities of olfaction and vision, GPCRs also transduce signals for three basic taste qualities of sweet, umami (savory taste), and bitter, as well as the flavor sensation kokumi. Taste GPCRs reside in specialised taste receptor cells (TRCs) within taste buds. Type I taste GPCRs (TAS1R) form heterodimeric complexes that function as sweet (TAS1R2/TAS1R3) or umami (TAS1R1/TAS1R3) taste receptors, whereas Type II are monomeric bitter taste receptors or kokumi/calcium-sensing receptors. Sweet, umami and kokumi receptors share structural similarities in containing multiple agonist binding sites with pronounced selectivity while most bitter receptors contain a single binding site that is broadly tuned to a diverse array of bitter ligands in a non-selective manner. Tastant binding to the receptor activates downstream secondary messenger pathways leading to depolarization and increased intracellular calcium in TRCs, that in turn innervate the gustatory cortex in the brain. Despite recent advances in our understanding of the relationship between agonist binding and the conformational changes required for receptor activation, several major challenges and questions remain in taste GPCR biology that are discussed in the present review. In recent years, intensive integrative approaches combining heterologous expression, mutagenesis and homology modeling have together provided insight regarding agonist binding site locations and molecular mechanisms of orthosteric and allosteric modulation. In addition, studies based on transgenic mice, utilizing either global or conditional knock out strategies have provided insights to taste receptor signal transduction mechanisms and their roles in physiology. However, the need for more functional studies in a physiological context is apparent and would be enhanced by a crystallized structure of taste receptors for a more complete picture of their pharmacological mechanisms.
Collapse
Affiliation(s)
- Raise Ahmad
- Food Nutrition and Health Team, Food and Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| | - Julie E Dalziel
- Food Nutrition and Health Team, Food and Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| |
Collapse
|
8
|
Illuminating the allosteric modulation of the calcium-sensing receptor. Proc Natl Acad Sci U S A 2020; 117:21711-21722. [PMID: 32817431 DOI: 10.1073/pnas.1922231117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many membrane receptors are regulated by nutrients. However, how these nutrients control a single receptor remains unknown, even in the case of the well-studied calcium-sensing receptor CaSR, which is regulated by multiple factors, including ions and amino acids. Here, we developed an innovative cell-free Förster resonance energy transfer (FRET)-based conformational CaSR biosensor to clarify the main conformational changes associated with activation. By allowing a perfect control of ambient nutrients, this assay revealed that Ca2+ alone fully stabilizes the active conformation, while amino acids behave as pure positive allosteric modulators. Based on the identification of Ca2+ activation sites, we propose a molecular basis for how these different ligands cooperate to control CaSR activation. Our results provide important information on CaSR function and improve our understanding of the effects of genetic mutations responsible for human diseases. They also provide insights into how a receptor can integrate signals from various nutrients to better adapt to the cell response.
Collapse
|
9
|
Leach K, Hannan FM, Josephs TM, Keller AN, Møller TC, Ward DT, Kallay E, Mason RS, Thakker RV, Riccardi D, Conigrave AD, Bräuner-Osborne H. International Union of Basic and Clinical Pharmacology. CVIII. Calcium-Sensing Receptor Nomenclature, Pharmacology, and Function. Pharmacol Rev 2020; 72:558-604. [PMID: 32467152 PMCID: PMC7116503 DOI: 10.1124/pr.119.018531] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor that responds to multiple endogenous agonists and allosteric modulators, including divalent and trivalent cations, L-amino acids, γ-glutamyl peptides, polyamines, polycationic peptides, and protons. The CaSR plays a critical role in extracellular calcium (Ca2+ o) homeostasis, as demonstrated by the many naturally occurring mutations in the CaSR or its signaling partners that cause Ca2+ o homeostasis disorders. However, CaSR tissue expression in mammals is broad and includes tissues unrelated to Ca2+ o homeostasis, in which it, for example, regulates the secretion of digestive hormones, airway constriction, cardiovascular effects, cellular differentiation, and proliferation. Thus, although the CaSR is targeted clinically by the positive allosteric modulators (PAMs) cinacalcet, evocalcet, and etelcalcetide in hyperparathyroidism, it is also a putative therapeutic target in diabetes, asthma, cardiovascular disease, and cancer. The CaSR is somewhat unique in possessing multiple ligand binding sites, including at least five putative sites for the "orthosteric" agonist Ca2+ o, an allosteric site for endogenous L-amino acids, two further allosteric sites for small molecules and the peptide PAM, etelcalcetide, and additional sites for other cations and anions. The CaSR is promiscuous in its G protein-coupling preferences, and signals via Gq/11, Gi/o, potentially G12/13, and even Gs in some cell types. Not surprisingly, the CaSR is subject to biased agonism, in which distinct ligands preferentially stimulate a subset of the CaSR's possible signaling responses, to the exclusion of others. The CaSR thus serves as a model receptor to study natural bias and allostery. SIGNIFICANCE STATEMENT: The calcium-sensing receptor (CaSR) is a complex G protein-coupled receptor that possesses multiple orthosteric and allosteric binding sites, is subject to biased signaling via several different G proteins, and has numerous (patho)physiological roles. Understanding the complexities of CaSR structure, function, and biology will aid future drug discovery efforts seeking to target this receptor for a diversity of diseases. This review summarizes what is known to date regarding key structural, pharmacological, and physiological features of the CaSR.
Collapse
Affiliation(s)
- Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Fadil M Hannan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Andrew N Keller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Thor C Møller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Donald T Ward
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Enikö Kallay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rebecca S Mason
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rajesh V Thakker
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Daniela Riccardi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Arthur D Conigrave
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Hans Bräuner-Osborne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| |
Collapse
|
10
|
Ueda Y, Iwakura H, Bando M, Doi A, Ariyasu H, Inaba H, Morita S, Akamizu T. Differential role of GPR142 in tryptophan-mediated enhancement of insulin secretion in obese and lean mice. PLoS One 2018; 13:e0198762. [PMID: 29889885 PMCID: PMC5995358 DOI: 10.1371/journal.pone.0198762] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/24/2018] [Indexed: 01/04/2023] Open
Abstract
Tryptophan is reportedly the most potent agonist for GPR142. Glucose-stimulated insulin secretion (GSIS) from pancreatic beta cells are enhanced by GPR142-mediated signal. It is not clear, however, if GPR142-mediated signals is solely attributable to GSIS enhancement after tryptophan load in various pathophysiological settings. This study aims to reveal the significance of GPR142 signaling in tryptophan-mediated GSIS enhancement in normal and obese mice. Tryptophan significantly improved glucose tolerance in both lean and DIO mice, but the extent of improvement was bigger in DIO mice with augmented glucose-stimulated insulin secretion (GSIS) enhancement. The same results were obtained in ob/ob mice. GPR142 deletion almost completely blocked tryptophan actions in lean mice, suggesting that GPR142 signaling was solely responsible for the GSIS enhancement. In obese GPR142KO mice, however, a significant amount of tryptophan effects were still observed. Calcium-sensing receptors (CaSR) are also known to recognize tryptophan as ligand. Expression levels of CaSR were significantly elevated in the pancreas of DIO mice, and CaSR antagonist further blocked tryptophan’s actions in DIO mice with GPR142 deletion. Although GPR142 signaling had a major role in tryptophan recognition for the enhancement of GSIS in lean mice, other pathways including CaSR signaling also had a significant role in obese mice, which seemed to contribute to the augmented enhancement of GSIS by tryptophan in these animals.
Collapse
Affiliation(s)
- Yoko Ueda
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroshi Iwakura
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
- * E-mail:
| | - Mika Bando
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Asako Doi
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroyuki Ariyasu
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hidefumi Inaba
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shuhei Morita
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takashi Akamizu
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
11
|
Jain RA, Wolman MA, Marsden KC, Nelson JC, Shoenhard H, Echeverry FA, Szi C, Bell H, Skinner J, Cobbs EN, Sawada K, Zamora AD, Pereda AE, Granato M. A Forward Genetic Screen in Zebrafish Identifies the G-Protein-Coupled Receptor CaSR as a Modulator of Sensorimotor Decision Making. Curr Biol 2018; 28:1357-1369.e5. [PMID: 29681477 DOI: 10.1016/j.cub.2018.03.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/24/2018] [Accepted: 03/13/2018] [Indexed: 12/26/2022]
Abstract
Animals continuously integrate sensory information and select contextually appropriate responses. Here, we show that zebrafish larvae select a behavioral response to acoustic stimuli from a pre-existing choice repertoire in a context-dependent manner. We demonstrate that this sensorimotor choice is modulated by stimulus quality and history, as well as by neuromodulatory systems-all hallmarks of more complex decision making. Moreover, from a genetic screen coupled with whole-genome sequencing, we identified eight mutants with deficits in this sensorimotor choice, including mutants of the vertebrate-specific G-protein-coupled extracellular calcium-sensing receptor (CaSR), whose function in the nervous system is not well understood. We demonstrate that CaSR promotes sensorimotor decision making acutely through Gαi/o and Gαq/11 signaling, modulated by clathrin-mediated endocytosis. Combined, our results identify the first set of genes critical for behavioral choice modulation in a vertebrate and reveal an unexpected critical role for CaSR in sensorimotor decision making.
Collapse
Affiliation(s)
- Roshan A Jain
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, Haverford College, Haverford, PA 19041, USA.
| | - Marc A Wolman
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kurt C Marsden
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica C Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hannah Shoenhard
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fabio A Echeverry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| | - Christina Szi
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Hannah Bell
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julianne Skinner
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emilia N Cobbs
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Keisuke Sawada
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Amy D Zamora
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Yue B, Han F, Wu J, Wang Y, Zhang C, Fang X, Qi X, Bai Y, Chen H. Combined Haplotypes of CaSR Gene Sequence Variants and Their Associations with Growth Traits in Cattle. Anim Biotechnol 2017; 28:260-267. [PMID: 28267410 DOI: 10.1080/10495398.2016.1271805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The calcium-sensing receptor (CaSR) is a Class C G-protein coupled receptor that regulates food intake and assimilation. However, studies on the relationship between CaSR gene and growth traits in cattle are deficient. The aim of this study was to examine the association of the CaSR polymorphism with growth traits in cattle breeds. Four novel single nucleotide polymorphisms (SNPs) and one previously reported SNP (NC_007299.5: g.67630865T>C, 67638409G>C, 67660395G>C, 67661546C>G, and 67661892A>C) were identified in the bovine CaSR gene using DNA sequencing and PCR-SSCP methods in 520 individuals from three representative breeds. The three SNP P4_2, P7_1, and P7_4 in LX, QC, and JX cattle populations belonged to intermediate genetic diversity (0.25 < PIC < 0.5). In addition, we evaluated the haplotype frequency and linkage disequilibrium coefficient of five sequence variants in the three cattle breeds. LD and haplotype structure of CaSR were different between breeds. LD analysis showed that the P4_2 and P7_4 loci were in complete LD in JX cattle population (r2 = 0.99 and D' = 1). Only 11 haplotypes were listed except for those with a frequency of <0.03. Hap1 (-TGGGC-) had the highest haplotype frequencies in LX (27.30%), Hap6(-TGGCC-) had the highest haplotype frequencies in QC (21.70%) and JX (32.30%). Association analysis indicated that P2, P4_2, and P7_4 loci were all significantly associated with growth traits and combined genotype TTGCGC was highly significantly associated with Chest circumference and body weight than the other genotype in JX cattle population. The results of this study suggest that the CaSR gene possibly is a strong candidate gene that affects growth traits in the Chinese cattle breeding program.
Collapse
Affiliation(s)
- Binglin Yue
- a Institute of Cellular and Molecular Biology, School of Life Science , Jiangsu Normal University , Xuzhou , Jiangsu , China
| | - Fuhai Han
- a Institute of Cellular and Molecular Biology, School of Life Science , Jiangsu Normal University , Xuzhou , Jiangsu , China
| | - Jiyao Wu
- a Institute of Cellular and Molecular Biology, School of Life Science , Jiangsu Normal University , Xuzhou , Jiangsu , China
| | - Yanhuan Wang
- a Institute of Cellular and Molecular Biology, School of Life Science , Jiangsu Normal University , Xuzhou , Jiangsu , China
| | - Chunlei Zhang
- a Institute of Cellular and Molecular Biology, School of Life Science , Jiangsu Normal University , Xuzhou , Jiangsu , China
| | - Xingtang Fang
- a Institute of Cellular and Molecular Biology, School of Life Science , Jiangsu Normal University , Xuzhou , Jiangsu , China
| | - Xinglei Qi
- b Bureau of Animal Husbandry of Biyang County , Biyang , Henan , China
| | - Yueyu Bai
- c Animal Health Supervision in Henan Province , Zhengzhou , Henan , China
| | - Hong Chen
- a Institute of Cellular and Molecular Biology, School of Life Science , Jiangsu Normal University , Xuzhou , Jiangsu , China
| |
Collapse
|
13
|
Jacobsen SE, Ammendrup-Johnsen I, Jansen AM, Gether U, Madsen KL, Bräuner-Osborne H. The GPRC6A receptor displays constitutive internalization and sorting to the slow recycling pathway. J Biol Chem 2017; 292:6910-6926. [PMID: 28280242 DOI: 10.1074/jbc.m116.762385] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/27/2017] [Indexed: 11/06/2022] Open
Abstract
The class C G protein-coupled receptor GPRC6A is a putative nutrient-sensing receptor and represents a possible new drug target in metabolic disorders. However, the specific physiological role of this receptor has yet to be identified, and the mechanisms regulating its activity and cell surface availability also remain enigmatic. In the present study, we investigated the trafficking properties of GPRC6A by use of both a classical antibody feeding internalization assay in which cells were visualized using confocal microscopy and a novel internalization assay that is based on real-time measurements of fluorescence resonance energy transfer. Both assays revealed that GPRC6A predominantly undergoes constitutive internalization, whereas the agonist-induced effects were imperceptible. Moreover, postendocytic sorting was investigated by assessing the co-localization of internalized GPRC6A with selected Rab protein markers. Internalized GPRC6A was mainly co-localized with the early endosome marker Rab5 and the long loop recycling endosome marker Rab11 and to a much lesser extent with the late endosome marker Rab7. This suggests that upon agonist-independent internalization, GPRC6A is recycled via the Rab11-positive slow recycling pathway, which may be responsible for ensuring a persistent pool of GPRC6A receptors at the cell surface despite chronic agonist exposure. Distinct trafficking pathways have been reported for several of the class C receptors, and our results thus substantiate that non-canonical trafficking mechanisms are a common feature for the nutrient-sensing class C family that ensure functional receptors in the cell membrane despite prolonged agonist exposure.
Collapse
Affiliation(s)
- Stine Engesgaard Jacobsen
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark and
| | - Ina Ammendrup-Johnsen
- Molecular Neuropharmacology Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anna Mai Jansen
- Molecular Neuropharmacology Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ulrik Gether
- Molecular Neuropharmacology Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kenneth Lindegaard Madsen
- Molecular Neuropharmacology Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark and
| |
Collapse
|
14
|
Zhang C, Miller CL, Gorkhali R, Zou J, Huang K, Brown EM, Yang JJ. Molecular Basis of the Extracellular Ligands Mediated Signaling by the Calcium Sensing Receptor. Front Physiol 2016; 7:441. [PMID: 27746744 PMCID: PMC5043022 DOI: 10.3389/fphys.2016.00441] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/16/2016] [Indexed: 12/20/2022] Open
Abstract
Ca2+-sensing receptors (CaSRs) play a central role in regulating extracellular calcium concentration ([Ca2+]o) homeostasis and many (patho)physiological processes in multiple organs. This regulation is orchestrated by a cooperative response to extracellular stimuli such as small changes in Ca2+, Mg2+, amino acids, and other ligands. In addition, CaSR is a pleiotropic receptor regulating several intracellular signaling pathways, including calcium mobilization and intracellular calcium oscillation. Nearly 200 mutations and polymorphisms have been found in CaSR in relation to a variety of human disorders associated with abnormal Ca2+ homeostasis. In this review, we summarize efforts directed at identifying binding sites for calcium and amino acids. Both homotropic cooperativity among multiple calcium binding sites and heterotropic cooperativity between calcium and amino acid were revealed using computational modeling, predictions, and site-directed mutagenesis coupled with functional assays. The hinge region of the bilobed Venus flytrap (VFT) domain of CaSR plays a pivotal role in coordinating multiple extracellular stimuli, leading to cooperative responses from the receptor. We further highlight the extensive number of disease-associated mutations that have also been shown to affect CaSR's cooperative action via several types of mechanisms. These results provide insights into the molecular bases of the structure and functional cooperativity of this receptor and other members of family C of the G protein-coupled receptors (cGPCRs) in health and disease states, and may assist in the prospective development of novel receptor-based therapeutics.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Chemistry, Georgia State University Atlanta, GA, USA
| | | | - Rakshya Gorkhali
- Department of Chemistry, Georgia State University Atlanta, GA, USA
| | - Juan Zou
- Department of Chemistry, Georgia State University Atlanta, GA, USA
| | - Kenneth Huang
- Department of Chemistry, Georgia State University Atlanta, GA, USA
| | - Edward M Brown
- Center for Diagnostics and Therapeutics, Georgia State UniversityAtlanta, GA, USA; Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's HospitalBoston, MA, USA
| | - Jenny J Yang
- Department of Chemistry, Georgia State University Atlanta, GA, USA
| |
Collapse
|
15
|
Savas-Erdeve S, Sagsak E, Keskin M, Magdelaine C, Lienhardt-Roussie A, Kurnaz E, Cetinkaya S, Aycan Z. Treatment experience and long-term follow-up data in two severe neonatal hyperparathyroidism cases. J Pediatr Endocrinol Metab 2016; 29:1103-10. [PMID: 27390877 DOI: 10.1515/jpem-2015-0261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 05/26/2016] [Indexed: 12/20/2022]
Abstract
The calcium sensing receptor (CASR) is expressed most abundantly in the parathyroid glands and the kidney. CASR regulates calcium homeostasis through its ability to modulate parathormone secretion and renal calcium reabsorption. Inactivating mutations in the CASR gene may result in disorders of calcium homeostasis manifesting as familial benign hypocalciuric hypercalcemia (FBHH) and neonatal severe hyperparathyroidsm (NSHPT). Two cases were referred with severe hypercalcemia in the neonatal period. Laboratory evaluation revealed severe hypercalcemia and elevated PTH. The parents also had mild hypercalcemia. The serum calcium level did not normalize with conventional hypercalcemia treatment and there was also no response to cinacalcet in case 1. Total parathyroidectomy was performed when the patient was 70 days old. Genetic analysis revealed a novel homozygous p.Arg544* mutation in the CASR gene. Case 2 underwent total parathyroidectomy and autoimplantation when she was 97 days old, but the parathyroid gland implanted into the forearm was removed 27 days later because the hypercalcemia continued. Genetic evaluation revealed a novel homozygous p.Pro682Leu mutation with normal anthropometric measurements. The neurological development is consistent with age in both cases while case 2 has mild mental retardation. No bone deformity or fracture is present in either case and normocalcemia is ensured with calcitriol in both cases.
Collapse
|
16
|
Geng Y, Mosyak L, Kurinov I, Zuo H, Sturchler E, Cheng TC, Subramanyam P, Brown AP, Brennan SC, Mun HC, Bush M, Chen Y, Nguyen TX, Cao B, Chang DD, Quick M, Conigrave AD, Colecraft HM, McDonald P, Fan QR. Structural mechanism of ligand activation in human calcium-sensing receptor. eLife 2016; 5. [PMID: 27434672 PMCID: PMC4977154 DOI: 10.7554/elife.13662] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 07/18/2016] [Indexed: 12/21/2022] Open
Abstract
Human calcium-sensing receptor (CaSR) is a G-protein-coupled receptor (GPCR) that maintains extracellular Ca2+ homeostasis through the regulation of parathyroid hormone secretion. It functions as a disulfide-tethered homodimer composed of three main domains, the Venus Flytrap module, cysteine-rich domain, and seven-helix transmembrane region. Here, we present the crystal structures of the entire extracellular domain of CaSR in the resting and active conformations. We provide direct evidence that L-amino acids are agonists of the receptor. In the active structure, L-Trp occupies the orthosteric agonist-binding site at the interdomain cleft and is primarily responsible for inducing extracellular domain closure to initiate receptor activation. Our structures reveal multiple binding sites for Ca2+ and PO43- ions. Both ions are crucial for structural integrity of the receptor. While Ca2+ ions stabilize the active state, PO43- ions reinforce the inactive conformation. The activation mechanism of CaSR involves the formation of a novel dimer interface between subunits. DOI:http://dx.doi.org/10.7554/eLife.13662.001 Calcium ions regulate many processes in the human body. The calcium-sensing receptor, called CaSR, is responsible for maintaining a stable level of calcium ions in the blood. This receptor can detect small changes in the concentration of calcium ions, and activates signalling events within the cell to restore the level of calcium ions back to normal. Abnormal activity of this receptor is associated with severe diseases in humans CaSR is found in the surface membrane of cells and belongs to a family of proteins called G-protein coupled receptors. Much of the protein extends out of the cell and interacts with calcium ions, phosphate ions and certain other molecules such as amino acids. However, it was not well understood how these small molecules bind to CaSR and how this activates the receptor. Geng et al. have now used a technique called X-ray crystallography to view the three-dimensional structure of the exterior domain of CaSR in its resting state and active state. These structures revealed that, contrary to expectations, calcium ions are not the main activator of the receptor. Instead, Geng et al. found that CaSR adopts an inactive state in the absence or presence of calcium ions, while the active state only forms when an amino acid is bound. Furthermore investigation showed that calcium ions are needed to stabilise the active form, while phosphate ions keep the inactive form stable. Geng et al. also identified the shape changes that must occur as CaSR transitions from its inactive to its active state. In particular, an amino acid binding to the exterior domain causes it to close like a venus flytrap, which is a crucial step in activating the receptor. Taken together, the findings show that the amino acids and calcium ions act jointly to fully activate CaSR. The next steps are to determine the structure of the entire receptor with and without its small molecule partners and to use these structures to design drugs that can alter CaSR’s activity in order to treat human diseases. DOI:http://dx.doi.org/10.7554/eLife.13662.002
Collapse
Affiliation(s)
- Yong Geng
- Department of Pharmacology, Columbia University, New York, United States.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lidia Mosyak
- Department of Pharmacology, Columbia University, New York, United States
| | - Igor Kurinov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Hao Zuo
- Department of Pharmacology, Columbia University, New York, United States
| | - Emmanuel Sturchler
- Department of Molecular Therapeutics, The Scripps Translational Science Institute, Jupiter, United States
| | - Tat Cheung Cheng
- Department of Pharmacology, Columbia University, New York, United States
| | - Prakash Subramanyam
- Department of Physiology and Cellular Biophysics, Columbia University, New York, United States
| | - Alice P Brown
- School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
| | - Sarah C Brennan
- School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
| | - Hee-Chang Mun
- School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
| | - Martin Bush
- Department of Pharmacology, Columbia University, New York, United States
| | - Yan Chen
- Department of Pharmacology, Columbia University, New York, United States
| | - Trang X Nguyen
- Department of Psychiatry, Columbia University, New York, United States
| | - Baohua Cao
- Department of Pharmacology, Columbia University, New York, United States
| | - Donald D Chang
- Department of Physiology and Cellular Biophysics, Columbia University, New York, United States
| | - Matthias Quick
- Department of Psychiatry, Columbia University, New York, United States
| | - Arthur D Conigrave
- School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, New York, United States
| | - Patricia McDonald
- Department of Molecular Therapeutics, The Scripps Translational Science Institute, Jupiter, United States
| | - Qing R Fan
- Department of Pharmacology, Columbia University, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States
| |
Collapse
|
17
|
Alexander ST, Hunter T, Walter S, Dong J, Maclean D, Baruch A, Subramanian R, Tomlinson JE. Critical Cysteine Residues in Both the Calcium-Sensing Receptor and the Allosteric Activator AMG 416 Underlie the Mechanism of Action. Mol Pharmacol 2015; 88:853-65. [PMID: 26290606 DOI: 10.1124/mol.115.098392] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/18/2015] [Indexed: 02/14/2025] Open
Abstract
AMG 416 is a novel D-amino acid-containing peptide agonist of the calcium-sensing receptor (CaSR) that is being evaluated for the treatment of secondary hyperparathyroidism in chronic kidney disease patients receiving hemodialysis. The principal amino acid residues and their location in the CaSR that accommodate AMG 416 binding and mode of action have not previously been reported. Herein we establish the importance of a pair of cysteine residues, one from AMG 416 and the other from the CaSR at position 482 (Cys482), and correlate the degree of disulfide bond formation between these residues with the pharmacological activity of AMG 416. KP-2067, a form of the CaSR agonist peptide, was included to establish the role of cysteine in vivo and in disulfide exchange. Studies conducted with AMG 416 in pigs showed a complete lack of pharmacodynamic effect and provided a foundation for determining the peptide agonist interaction site within the human CaSR. Inactivity of AMG 416 on the pig CaSR resulted from a naturally occurring mutation encoding tyrosine for cysteine (Cys) at position 482 in the pig CaSR. Replacing Cys482 in the human CaSR with serine or tyrosine ablated AMG 416 activity. Decidedly, a single substitution of cysteine for tyrosine at position 482 in the native pig CaSR provided a complete gain of activity by the peptide agonist. Direct evidence for this disulfide bond formation between the peptide and receptor was demonstrated using a mass spectrometry assay. The extent of disulfide bond formation was found to correlate with the extent of receptor activation. Notwithstanding the covalent basis of this disulfide bond, the observed in vivo pharmacology of AMG 416 showed readily reversible pharmacodynamics.
Collapse
Affiliation(s)
| | | | | | - Jin Dong
- Amgen, Thousand Oaks, California
| | | | | | | | | |
Collapse
|
18
|
Massy ZA, Hénaut L, Larsson TE, Vervloet MG. Calcium-sensing receptor activation in chronic kidney disease: effects beyond parathyroid hormone control. Semin Nephrol 2015; 34:648-59. [PMID: 25498383 DOI: 10.1016/j.semnephrol.2014.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Secondary hyperparathyroidism (SHPT) is an important complication of advanced chronic kidney disease (CKD). Cinacalcet, an allosteric modulator of the calcium-sensing receptor (CaSR) expressed in parathyroid glands, is the only calcimimetic approved to treat SHPT in patients on dialysis. By enhancing CaSR sensitivity for plasma extracellular calcium (Ca(2+)0), cinacalcet reduces serum parathyroid hormone, Ca(2+)0, and serum inorganic phosphorous concentrations, allowing better control of SHPT and CKD-mineral and bone disorders. Of interest, the CaSR also is expressed in a variety of tissues where its activation regulates diverse cellular processes, including secretion, apoptosis, and proliferation. Thus, the existence of potential off-target effects of cinacalcet cannot be neglected. This review summarizes our current knowledge concerning the potential role(s) of the CaSR expressed in various tissues in CKD-related disorders, independently of parathyroid hormone control.
Collapse
Affiliation(s)
- Ziad A Massy
- Inserm U-1088, University of Picardie Jules Verne, Amiens, France; Division of Nephrology, Ambroise Paré Hospital, Paris-Ile-de-France-Ouest University (University of Versailles Saint-Quentin-En-Yvelines), Paris-Boulogne Billancourt, France.
| | - Lucie Hénaut
- Inserm U-1088, University of Picardie Jules Verne, Amiens, France
| | - Tobias E Larsson
- Department of Clinical Science, Intervention and Technology, Renal Unit, Karolinska Institutet, Stockholm, Sweden; Department of Nephrology, Karolinska University Hospital, Stockholm, Sweden
| | - Marc G Vervloet
- Department of Nephrology and Institute of Cardiovascular Research VU (Institute for Cardiovascular Research of the Vrije Universiteit of Amsterdam), VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Gentry PR, Sexton PM, Christopoulos A. Novel Allosteric Modulators of G Protein-coupled Receptors. J Biol Chem 2015; 290:19478-88. [PMID: 26100627 DOI: 10.1074/jbc.r115.662759] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are allosteric proteins, because their signal transduction relies on interactions between topographically distinct, yet conformationally linked, domains. Much of the focus on GPCR allostery in the new millennium, however, has been on modes of targeting GPCR allosteric sites with chemical probes due to the potential for novel therapeutics. It is now apparent that some GPCRs possess more than one targetable allosteric site, in addition to a growing list of putative endogenous modulators. Advances in structural biology are also shedding new insights into mechanisms of allostery, although the complexities of candidate allosteric drugs necessitate rigorous biological characterization.
Collapse
Affiliation(s)
- Patrick R Gentry
- From Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Patrick M Sexton
- From Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Arthur Christopoulos
- From Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
20
|
Fisher MM, Cabrera SM, Imel EA. Successful treatment of neonatal severe hyperparathyroidism with cinacalcet in two patients. Endocrinol Diabetes Metab Case Rep 2015; 2015:150040. [PMID: 26161261 PMCID: PMC4496565 DOI: 10.1530/edm-15-0040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/18/2015] [Indexed: 11/27/2022] Open
Abstract
Neonatal severe hyperparathyroidism (NSHPT) is a rare disorder caused by inactivating calcium-sensing receptor (CASR) mutations that result in life-threatening hypercalcemia and metabolic bone disease. Until recently, therapy has been surgical parathyroidectomy. Three previous case reports have shown successful medical management of NSHPT with cinacalcet. Here we present the detailed description of two unrelated patients with NSHPT due to heterozygous R185Q CASR mutations. Patient 1 was diagnosed at 11 months of age and had developmental delays, dysphagia, bell-shaped chest, and periosteal bone reactions. Patient 2 was diagnosed at 1 month of age and had failure to thrive, osteopenia, and multiple rib fractures. Cinacalcet was initiated at 13 months of age in patient 1, and at 4 months of age in patient 2. We have successfully normalized their parathyroid hormone and alkaline phosphatase levels. Despite the continuance of mild hypercalcemia (11–12 mg/dl), both patients showed no hypercalcemic symptoms. Importantly, patient 1 had improved neurodevelopment and patient 2 never experienced any developmental delays after starting cinacalcet. Neither experienced fractures after starting cinacalcet. Both have been successfully managed long-term without any significant adverse events. These cases expand the current literature of cinacalcet use in NSHPT to five successful reported cases. We propose that cinacalcet may be considered as an option for treating the severe hypercalcemia and metabolic bone disease found in infants and children with inactivating CASR disorders.
Collapse
Affiliation(s)
- Marisa M Fisher
- Division of Pediatric Endocrinology, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine , 705 Riley Hospital Drive, Room 5960, Indianapolis, Indiana, 46220 , USA
| | - Susanne M Cabrera
- Division of Pediatric Endocrinology, Department of Pediatrics, Medical College of Wisconsin, Children's Hospital of Wisconsin , 9000 W. Wisconsin Avenue, PO Box 1997, Milwaukee, Wisconsin, 53201 , USA
| | - Erik A Imel
- Division of Pediatric Endocrinology, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine , 705 Riley Hospital Drive, Room 5960, Indianapolis, Indiana, 46220 , USA ; Division of Endocrinology, Department of Medicine, Indiana University School of Medicine , 541 North Clinical Drive, Indianapolis, Indiana, 46202 , USA
| |
Collapse
|
21
|
van der Westhuizen ET, Valant C, Sexton PM, Christopoulos A. Endogenous allosteric modulators of G protein-coupled receptors. J Pharmacol Exp Ther 2015; 353:246-60. [PMID: 25650376 DOI: 10.1124/jpet.114.221606] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest superfamily of receptors encoded by the human genome, and represent the largest class of current drug targets. Over the last decade and a half, it has become widely accepted that most, if not all, GPCRs possess spatially distinct allosteric sites that can be targeted by exogenous substances to modulate the receptors' biologic state. Although many of these allosteric sites are likely to serve other (e.g., structural) roles, they nonetheless possess appropriate properties to be serendipitously targeted by synthetic molecules. However, there are also examples of endogenous substances that can act as allosteric modulators of GPCRs. These include not only the obvious example, i.e., the G protein, but also a variety of ions, lipids, amino acids, peptides, and accessory proteins that display different degrees of receptor-specific modulatory effects. This also suggests that some GPCRs may possess true "orphan" allosteric sites for hitherto unappreciated endogenous modulators. Of note, the increasing identification of allosteric modulator lipids, inflammatory peptides, and GPCR-targeted autoantibodies indicates that disease context plays an important role in the generation of putative endogenous GPCR modulators. If an endogenous allosteric substance can be shown to play a role in disease, this could also serve as an impetus to pursue synthetic neutral allosteric ligands as novel therapeutic agents.
Collapse
Affiliation(s)
- Emma T van der Westhuizen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
22
|
Zhang C, Miller CL, Brown EM, Yang JJ. The calcium sensing receptor: from calcium sensing to signaling. SCIENCE CHINA-LIFE SCIENCES 2015; 58:14-27. [DOI: 10.1007/s11427-014-4779-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/21/2014] [Indexed: 12/14/2022]
|
23
|
Role of Ca2+ and L-Phe in regulating functional cooperativity of disease-associated "toggle" calcium-sensing receptor mutations. PLoS One 2014; 9:e113622. [PMID: 25420019 PMCID: PMC4242666 DOI: 10.1371/journal.pone.0113622] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/27/2014] [Indexed: 01/15/2023] Open
Abstract
The Ca2+-sensing receptor (CaSR) regulates Ca2+ homeostasis in the body by monitoring extracellular levels of Ca2+ ([Ca2+]o) and amino acids. Mutations at the hinge region of the N-terminal Venus flytrap domain (VFTD) produce either receptor inactivation (L173P, P221Q) or activation (L173F, P221L) related to hypercalcemic or hypocalcemic disorders. In this paper, we report that both L173P and P221Q markedly impair the functional positive cooperativity of the CaSR as reflected by [Ca2+]o–induced [Ca2+]i oscillations, inositol-1-phosphate (IP1) accumulation and extracellular signal-regulated kinases (ERK1/2) activity. In contrast, L173F and P221L show enhanced responsiveness of these three functional readouts to [Ca2+]o. Further analysis of the dynamics of the VFTD mutants using computational simulation studies supports disruption in the correlated motions in the loss-of-function CaSR mutants, while these motions are enhanced in the gain-of-function mutants. Wild type (WT) CaSR was modulated by L-Phe in a heterotropic positive cooperative way, achieving an EC50 similar to those of the two activating mutations. The response of the inactivating P221Q mutant to [Ca2+]o was partially rescued by L-Phe, illustrating the capacity of the L-Phe binding site to enhance the positive homotropic cooperativity of CaSR. L-Phe had no effect on the other inactivating mutant. Moreover, our results carried out both in silico and in intact cells indicate that residue Leu173, which is close to residues that are part of the L-Phe-binding pocket, exhibited impaired heterotropic cooperativity in the presence of L-Phe. Thus, Pro221 and Leu173 are important for the positive homo- and heterotropic cooperative regulation elicited by agonist binding.
Collapse
|
24
|
Zhang C, Zhuo Y, Moniz HA, Wang S, Moremen KW, Prestegard JH, Brown EM, Yang JJ. Direct determination of multiple ligand interactions with the extracellular domain of the calcium-sensing receptor. J Biol Chem 2014; 289:33529-42. [PMID: 25305020 DOI: 10.1074/jbc.m114.604652] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Numerous in vivo functional studies have indicated that the dimeric extracellular domain (ECD) of the CaSR plays a crucial role in regulating Ca(2+) homeostasis by sensing Ca(2+) and l-Phe. However, direct interaction of Ca(2+) and Phe with the ECD of the receptor and the resultant impact on its structure and associated conformational changes have been hampered by the large size of the ECD, its high degree of glycosylation, and the lack of biophysical methods to monitor weak interactions in solution. In the present study, we purified the glycosylated extracellular domain of calcium-sensing receptor (CaSR) (ECD) (residues 20-612), containing either complex or high mannose N-glycan structures depending on the host cell line employed for recombinant expression. Both glycosylated forms of the CaSR ECD were purified as dimers and exhibit similar secondary structures with ∼ 50% α-helix, ∼ 20% β-sheet content, and a well buried Trp environment. Using various spectroscopic methods, we have shown that both protein variants bind Ca(2+) with a Kd of 3.0-5.0 mm. The local conformational changes of the proteins induced by their interactions with Ca(2+) were visualized by NMR with specific (15)N Phe-labeled forms of the ECD. Saturation transfer difference NMR approaches demonstrated for the first time a direct interaction between the CaSR ECD and l-Phe. We further demonstrated that l-Phe increases the binding affinity of the CaSR ECD for Ca(2+). Our findings provide new insights into the mechanisms by which Ca(2+) and amino acids regulate the CaSR and may pave the way for exploration of the structural properties of CaSR and other members of family C of the GPCR superfamily.
Collapse
Affiliation(s)
- Chen Zhang
- From the Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303
| | - You Zhuo
- From the Department of Chemistry
| | - Heather A Moniz
- the Department of Biochemistry and Molecular Biology and the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, and
| | - Shuo Wang
- the Department of Biochemistry and Molecular Biology and the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, and
| | - Kelley W Moremen
- the Department of Biochemistry and Molecular Biology and the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, and
| | - James H Prestegard
- the Department of Biochemistry and Molecular Biology and the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, and
| | - Edward M Brown
- the Department of Medicine, Division of Endocrinology, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Jenny J Yang
- From the Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303,
| |
Collapse
|
25
|
Kang HJ, Menlove K, Ma J, Wilkins A, Lichtarge O, Wensel TG. Selectivity and evolutionary divergence of metabotropic glutamate receptors for endogenous ligands and G proteins coupled to phospholipase C or TRP channels. J Biol Chem 2014; 289:29961-74. [PMID: 25193666 DOI: 10.1074/jbc.m114.574483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
To define the upstream and downstream signaling specificities of metabotropic glutamate receptors (mGluR), we have examined the ability of representative mGluR of group I, II, and III to be activated by endogenous amino acids and catalyze activation of G proteins coupled to phospholipase C (PLC), or activation of G(i/o) proteins coupled to the ion channel TRPC4β. Fluorescence-based assays have allowed us to observe interactions not previously reported or clearly identified. We have found that the specificity for endogenous amino acids is remarkably stringent. Even at millimolar levels, structurally similar compounds do not elicit significant activation. As reported previously, the clear exception is L-serine-O-phosphate (L-SOP), which strongly activates group III mGluR, especially mGluR4,-6,-8 but not group I or II mGluR. Whereas L-SOP cannot activate mGluR1 or mGluR2, it acts as a weak antagonist for mGluR1 and a potent antagonist for mGluR2, suggesting that co-recognition of L-glutamate and L-SOP arose early in evolution, and was followed later by divergence of group I and group II mGluR versus group III in l-SOP responses. mGluR7 has low affinity and efficacy for activation by both L-glutamate and L-SOP. Molecular docking studies suggested that residue 74 corresponding to lysine in mGluR4 and asparagine in mGluR7 might play a key role, and, indeed, mutagenesis experiments demonstrated that mutating this residue to lysine in mGluR7 enhances the potency of L-SOP. Experiments with pertussis toxin and dominant-negative Gα(i/o) proteins revealed that mGluR1 couples strongly to TRPC4β through Gα(i/o), in addition to coupling to PLC through Gα(q/11).
Collapse
Affiliation(s)
- Hye Jin Kang
- From the Graduate Program in Structural and Computational Biology and Molecular Biophysics
| | - Kit Menlove
- From the Graduate Program in Structural and Computational Biology and Molecular Biophysics
| | - Jianpeng Ma
- From the Graduate Program in Structural and Computational Biology and Molecular Biophysics, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, and Department of Bioengineering, Rice University, Houston, Texas 77005
| | - Angela Wilkins
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, and
| | - Olivier Lichtarge
- From the Graduate Program in Structural and Computational Biology and Molecular Biophysics, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, and
| | - Theodore G Wensel
- From the Graduate Program in Structural and Computational Biology and Molecular Biophysics, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, and
| |
Collapse
|
26
|
Zhang C, Huang Y, Jiang Y, Mulpuri N, Wei L, Hamelberg D, Brown EM, Yang JJ. Identification of an L-phenylalanine binding site enhancing the cooperative responses of the calcium-sensing receptor to calcium. J Biol Chem 2014; 289:5296-309. [PMID: 24394414 DOI: 10.1074/jbc.m113.537357] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Functional positive cooperative activation of the extracellular calcium ([Ca(2+)]o)-sensing receptor (CaSR), a member of the family C G protein-coupled receptors, by [Ca(2+)]o or amino acids elicits intracellular Ca(2+) ([Ca(2+)]i) oscillations. Here, we report the central role of predicted Ca(2+)-binding site 1 within the hinge region of the extracellular domain (ECD) of CaSR and its interaction with other Ca(2+)-binding sites within the ECD in tuning functional positive homotropic cooperativity caused by changes in [Ca(2+)]o. Next, we identify an adjacent L-Phe-binding pocket that is responsible for positive heterotropic cooperativity between [Ca(2+)]o and L-Phe in eliciting CaSR-mediated [Ca(2+)]i oscillations. The heterocommunication between Ca(2+) and an amino acid globally enhances functional positive homotropic cooperative activation of CaSR in response to [Ca(2+)]o signaling by positively impacting multiple [Ca(2+)]o-binding sites within the ECD. Elucidation of the underlying mechanism provides important insights into the longstanding question of how the receptor transduces signals initiated by [Ca(2+)]o and amino acids into intracellular signaling events.
Collapse
Affiliation(s)
- Chen Zhang
- From the Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303 and
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Jiang JY, Nagaraju M, Meyer RC, Zhang L, Hamelberg D, Hall RA, Brown EM, Conn PJ, Yang JJ. Extracellular calcium modulates actions of orthosteric and allosteric ligands on metabotropic glutamate receptor 1α. J Biol Chem 2013; 289:1649-61. [PMID: 24280223 DOI: 10.1074/jbc.m113.507665] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Metabotropic glutamate receptor 1α (mGluR1α), a member of the family C G protein-coupled receptors, is emerging as a potential drug target for various disorders, including chronic neuronal degenerative diseases. In addition to being activated by glutamate, mGluR1α is also modulated by extracellular Ca(2+). However, the underlying mechanism is unknown. Moreover, it has long been challenging to develop receptor-specific agonists due to homologies within the mGluR family, and the Ca(2+)-binding site(s) on mGluR1α may provide an opportunity for receptor-selective targeting by therapeutics. In the present study, we show that our previously predicted Ca(2+)-binding site in the hinge region of mGluR1α is adjacent to the site where orthosteric agonists and antagonists bind on the extracellular domain of the receptor. Moreover, we found that extracellular Ca(2+) enhanced mGluR1α-mediated intracellular Ca(2+) responses evoked by the orthosteric agonist l-quisqualate. Conversely, extracellular Ca(2+) diminished the inhibitory effect of the mGluR1α orthosteric antagonist (S)-α-methyl-4-carboxyphenylglycine. In addition, selective positive (Ro 67-4853) and negative (7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester) allosteric modulators of mGluR1α potentiated and inhibited responses to extracellular Ca(2+), respectively, in a manner similar to their effects on the response of mGluR1α to glutamate. Mutations at residues predicted to be involved in Ca(2+) binding, including E325I, had significant effects on the modulation of responses to the orthosteric agonist l-quisqualate and the allosteric modulator Ro 67-4853 by extracellular Ca(2+). These studies reveal that binding of extracellular Ca(2+) to the predicted Ca(2+)-binding site in the extracellular domain of mGluR1α modulates not only glutamate-evoked signaling but also the actions of both orthosteric ligands and allosteric modulators on mGluR1α.
Collapse
Affiliation(s)
- Jason Y Jiang
- From the Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Conigrave AD, Ward DT. Calcium-sensing receptor (CaSR): pharmacological properties and signaling pathways. Best Pract Res Clin Endocrinol Metab 2013; 27:315-31. [PMID: 23856262 DOI: 10.1016/j.beem.2013.05.010] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this article we consider the mechanisms by which the calcium-sensing receptor (CaSR) induces its cellular responses via the control (activation or inhibition) of signaling pathways. We consider key features of CaSR-mediated signaling including its control of the heterotrimeric G-proteins Gq/11, Gi/o and G12/13 and the downstream consequences recognizing that very few CaSR-mediated cell phenomena have been fully described. We also consider the manner in which the CaSR contributes to the formation of specific signaling scaffolds via peptide recognition sequences in its intracellular C-terminal along with the origins of its high level of cooperativity, particularly for Ca(2+)o, and its remarkable resistance to desensitization. We also consider the nature of the mechanisms by which the CaSR controls oscillatory and sustained Ca(2+)i mobilizing responses and inhibits or elevates cyclic adenosine monophosphate (cAMP) levels dependent on the cellular and signaling context. Finally, we consider the diversity of the receptor's ligands, ligand binding sites and broader compartment-dependent physiological roles leading to the identification of pronounced ligand-biased signaling for agonists including Sr(2+) and modulators including l-amino acids and the clinically effective calcimimetic cinacalcet. We note the implications of these findings for the development of new designer drugs that might target the CaSR in pathophysiological contexts beyond those established for the treatment of disorders of calcium metabolism.
Collapse
Affiliation(s)
- Arthur D Conigrave
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia.
| | | |
Collapse
|
29
|
Epithelial calcium-sensing receptor activation by eosinophil granule protein analog stimulates collagen matrix contraction. Pediatr Res 2013; 73:414-9. [PMID: 23269116 PMCID: PMC4321999 DOI: 10.1038/pr.2012.198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Eosinophils reside in normal gastrointestinal tracts and increase during disease states. Receptors for eosinophil-derived granule proteins (EDGPs) have not been identified, but highly cationic molecules, similar to eosinophil proteins, bind extracellular calcium-sensing receptors (CaSRs). We hypothesized that stimulation of CaSRs by eosinophil proteins activates epithelial cells. METHODS Caco2 intestinal epithelial cells, AML14.3D10 eosinophils, wild-type (WT) human embryonic kidney 293 (HEK293) cells not expressing CaSRs (HEK-WT), and CaSR-transfected HEK293 cells (HEK-CaSR) were stimulated with an eosinophil protein analog poly-L-arginine (PA) and phosphorylated extracellular signal-regulated kinase (pERK)1 and pERK2 were measured. Functional activation was measured with collagen lattice contraction assays. RESULTS Coculture of Caco2 cells with AML14.3D10 eosinophils augmented lattice contraction as compared with lattices containing Caco2 cells alone. PA stimulation of Caco2 lattices augmented contraction. HEK-CaSR stimulation with PA or Ca(2+) resulted in greater pERK activation than that of stimulated HEK-WT cells. PA stimulated greater HEK-CaSR lattice contraction than unstimulated lattices. Contraction of PA-stimulated and PA-unstimulated HEK-WT lattices did not differ. CONCLUSION Exposure of intestinal epithelia to the EDGP analog PA stimulates CaSR-dependent ERK phosphorylation and epithelial-mediated collagen lattice contraction. We speculate that EDGP release within the epithelial layers activates the CaSR receptor, leading to matrix contraction and tissue fibrosis.
Collapse
|
30
|
Armato U, Bonafini C, Chakravarthy B, Pacchiana R, Chiarini A, Whitfield JF, Dal Prà I. The calcium-sensing receptor: a novel Alzheimer's disease crucial target? J Neurol Sci 2012; 322:137-40. [PMID: 22841885 DOI: 10.1016/j.jns.2012.07.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/28/2012] [Accepted: 07/11/2012] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is the most common human neurodegenerative ailment, the most prevalent (>95%) late-onset type of which has a still uncertain etiology. The progressive decline of cognitive functions, dementia, and physical disabilities of AD is caused by synaptic losses that progressively disconnect key neuronal networks in crucial brain areas, like the hippocampus and temporoparietal cortex, and critically impair language, sensory processing, memory, and conscious thought. AD's two main hallmarks are fibrillar amyloid-β (fAβ) plaques in extracellular spaces and intracellular accumulation of fAβ peptides and neurofibrillary tangles (NFTs). It is still undecided whether either or both these AD hallmarks cause or result from the disease. Recently, the dysregulation of calcium homeostasis has been advanced as a novel cause of AD. In this case, a suitable candidate of AD driver would be the Aβ peptides-binding/activated calcium-sensing receptor (CaSR), whose intracellular signalling is triggered by Aβ peptides. In this review, we briefly discuss CaSR's roles in normal adult human astrocytes (NAHAs) and their possible impacts on AD.
Collapse
Affiliation(s)
- Ubaldo Armato
- Histology and Embryology Unit, Department of Life and Reproduction Sciences, University of Verona Medical School, Verona, Venetia, Italy.
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The G-protein-coupled receptors (GPCRs) are one of the largest super families of cell-surface receptors and play crucial roles in virtually every organ system. One particular family of GPCRs, the class C GPCRs, is distinguished by a characteristically large extracellular domain and constitutive dimerization. The structure and activation mechanism of this family result in potentially unique ligand recognition sites, thereby offering a variety of possibilities by which receptor activity might be modulated using novel compounds. In the present article, we aim to provide an overview of the exact sites and structural features involved in ligand recognition of the class C GPCRs. Furthermore, we demonstrate the precise steps that occur during the receptor activation process, which underlie the possibilities by which receptor function may be altered by different approaches. Finally, we use four typical family members to illustrate orthosteric and allosteric sites with representative ligands and their corresponding therapeutic potential.
Collapse
|
32
|
Melancon BJ, Hopkins CR, Wood MR, Emmitte KA, Niswender CM, Christopoulos A, Conn PJ, Lindsley CW. Allosteric modulation of seven transmembrane spanning receptors: theory, practice, and opportunities for central nervous system drug discovery. J Med Chem 2012; 55:1445-64. [PMID: 22148748 DOI: 10.1021/jm201139r] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bruce J Melancon
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Weston AH, Geraghty A, Egner I, Edwards G. The vascular extracellular calcium-sensing receptor: an update. Acta Physiol (Oxf) 2011; 203:127-37. [PMID: 21199402 DOI: 10.1111/j.1748-1716.2010.02249.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The extracellular calcium-sensing receptor (CaR) was first described in the parathyroid gland. Recent studies have shown that the CaR is also expressed in blood vessels, especially in the endothelial and adventitial layers but its physiological function is still not clear. However, an understanding of its possible role(s) in the vasculature (perivascular-neurones, heart and blood vessels) is important because of the use of synthetic positive allosteric CaR modulators in hyperparathyroidism and the potential importance of negative modulators in the treatment of osteoporosis. In this review, the effects of CaR activation and inhibition are detailed and the possible role of the CaR as both an amplifier and attenuator of myo-endothelial coupling in the vasculature is described.
Collapse
Affiliation(s)
- A H Weston
- Faculty of Life Sciences, University of Manchester, UK
| | | | | | | |
Collapse
|
34
|
Liou AP, Sei Y, Zhao X, Feng J, Lu X, Thomas C, Pechhold S, Raybould HE, Wank SA. The extracellular calcium-sensing receptor is required for cholecystokinin secretion in response to L-phenylalanine in acutely isolated intestinal I cells. Am J Physiol Gastrointest Liver Physiol 2011; 300:G538-46. [PMID: 21252045 PMCID: PMC3074990 DOI: 10.1152/ajpgi.00342.2010] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The extracellular calcium-sensing receptor (CaSR) has recently been recognized as an L-amino acid sensor and has been implicated in mediating cholecystokinin (CCK) secretion in response to aromatic amino acids. We investigated whether direct detection of L-phenylalanine (L-Phe) by CaSR results in CCK secretion in the native I cell. Fluorescence-activated cell sorting of duodenal I cells from CCK-enhanced green fluorescent protein (eGFP) transgenic mice demonstrated CaSR gene expression. Immunostaining of fixed and fresh duodenal tissue sections confirmed CaSR protein expression. Intracellular calcium fluxes were CaSR dependent, stereoselective for L-Phe over D-Phe, and responsive to type II calcimimetic cinacalcet in CCK-eGFP cells. Additionally, CCK secretion by an isolated I cell population was increased by 30 and 62% in response to L-Phe in the presence of physiological (1.26 mM) and superphysiological (2.5 mM) extracellular calcium concentrations, respectively. While the deletion of CaSR from CCK-eGFP cells did not affect basal CCK secretion, the effect of L-Phe or cinacalcet on intracellular calcium flux was lost. In fact, both secretagogues, as well as superphysiological Ca(2+), evoked an unexpected 20-30% decrease in CCK secretion compared with basal secretion in CaSR(-/-) CCK-eGFP cells. CCK secretion in response to KCl or tryptone was unaffected by the absence of CaSR. The present data suggest that CaSR is required for hormone secretion in the specific response to L-Phe by the native I cell, and that a receptor-mediated mechanism may inhibit hormone secretion in the absence of a fully functional CaSR.
Collapse
Affiliation(s)
- Alice P. Liou
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; ,2School of Veterinary Medicine, Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, California; and
| | - Yoshitatsu Sei
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland;
| | - Xilin Zhao
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland;
| | - Jianying Feng
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland;
| | - Xinping Lu
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland;
| | - Craig Thomas
- 3Chemical Genomics Center, National Human Genome Research Institute, and
| | - Susanne Pechhold
- 4Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Helen E. Raybould
- 2School of Veterinary Medicine, Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, California; and
| | - Stephen A. Wank
- 1Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland;
| |
Collapse
|
35
|
Urwyler S. Allosteric modulation of family C G-protein-coupled receptors: from molecular insights to therapeutic perspectives. Pharmacol Rev 2011; 63:59-126. [PMID: 21228259 DOI: 10.1124/pr.109.002501] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Allosteric receptor modulation is an attractive concept in drug targeting because it offers important potential advantages over conventional orthosteric agonism or antagonism. Allosteric ligands modulate receptor function by binding to a site distinct from the recognition site for the endogenous agonist. They often have no effect on their own and therefore act only in conjunction with physiological receptor activation. This article reviews the current status of allosteric modulation at family C G-protein coupled receptors in the light of their specific structural features on the one hand and current concepts in receptor theory on the other hand. Family C G-protein-coupled receptors are characterized by a large extracellular domain containing the orthosteric agonist binding site known as the "venus flytrap module" because of its bilobal structure and the dynamics of its activation mechanism. Mutational analysis and chimeric constructs have revealed that allosteric modulators of the calcium-sensing, metabotropic glutamate and GABA(B) receptors bind to the seven transmembrane domain, through which they modify signal transduction after receptor activation. This is in contrast to taste-enhancing molecules, which bind to different parts of sweet and umami receptors. The complexity of interactions between orthosteric and allosteric ligands is revealed by a number of adequate biochemical and electrophysiological assay systems. Many allosteric family C GPCR modulators show in vivo efficacy in behavioral models for a variety of clinical indications. The positive allosteric calcium sensing receptor modulator cinacalcet is the first drug of this type to enter the market and therefore provides proof of principle in humans.
Collapse
Affiliation(s)
- Stephan Urwyler
- Department of Chemistry and Biochemistry, University of Berne, P/A Weissensteinweg 3, CH-3303 Jegenstorf, Berne, Switzerland.
| |
Collapse
|
36
|
Rondard P, Goudet C, Kniazeff J, Pin JP, Prézeau L. The complexity of their activation mechanism opens new possibilities for the modulation of mGlu and GABAB class C G protein-coupled receptors. Neuropharmacology 2010; 60:82-92. [PMID: 20713070 DOI: 10.1016/j.neuropharm.2010.08.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/30/2010] [Accepted: 08/06/2010] [Indexed: 12/24/2022]
Abstract
In the human genome, 22 genes are coding for the class C G protein-coupled receptors that are receptors for the two main neurotransmitters glutamate and γ-aminobutyric acid, for Ca(2+) and for sweet and amino acid taste compounds. In addition to the GPCR heptahelical transmembrane domain responsible for G-protein activation, class C receptors possess a large extracellular domain that is responsible for ligand recognition. Recent studies had revealed that class C receptors are homo- or heterodimers with unique mechanism of activation. In the present review, we present an up-to-date view of the structures and activation mechanism of these receptors in particular the metabotropic glutamate and GABA(B) receptors. We show how the complexity of functioning of these transmembrane proteins can be used for the development of therapeutics to modulate their activity. We emphasize on the new approaches and drugs that could potentially become important in the future pharmacology of these receptors.
Collapse
|
37
|
Jiang Y, Huang Y, Wong HC, Zhou Y, Wang X, Yang J, Hall RA, Brown EM, Yang JJ. Elucidation of a novel extracellular calcium-binding site on metabotropic glutamate receptor 1{alpha} (mGluR1{alpha}) that controls receptor activation. J Biol Chem 2010; 285:33463-33474. [PMID: 20705606 DOI: 10.1074/jbc.m110.147033] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Metabotropic glutamate receptor 1α (mGluR1α) exerts important effects on numerous neurological processes. Although mGluR1α is known to respond to extracellular Ca(2+) ([Ca(2+)](o)) and the crystal structures of the extracellular domains (ECDs) of several mGluRs have been determined, the calcium-binding site(s) and structural determinants of Ca(2+)-modulated signaling in the Glu receptor family remain elusive. Here, we identify a novel Ca(2+)-binding site in the mGluR1α ECD using a recently developed computational algorithm. This predicted site (comprising Asp-318, Glu-325, and Asp-322 and the carboxylate side chain of the receptor agonist, Glu) is situated in the hinge region in the ECD of mGluR1α adjacent to the reported Glu-binding site, with Asp-318 involved in both Glu and calcium binding. Mutagenesis studies indicated that binding of Glu and Ca(2+) to their distinct but partially overlapping binding sites synergistically modulated mGluR1α activation of intracellular Ca(2+) ([Ca(2+)](i)) signaling. Mutating the Glu-binding site completely abolished Glu signaling while leaving its Ca(2+)-sensing capability largely intact. Mutating the predicted Ca(2+)-binding residues abolished or significantly reduced the sensitivity of mGluR1α not only to [Ca(2+)](o) and [Gd(3+)](o) but also, in some cases, to Glu. The dual activation of mGluR1α by [Ca(2+)](o) and Glu has important implications for the activation of other mGluR subtypes and related receptors. It also opens up new avenues for developing allosteric modulators of mGluR function that target specific human diseases.
Collapse
Affiliation(s)
- Yusheng Jiang
- From the Department of Chemistry, Atlanta, Georgia 30303
| | - Yun Huang
- From the Department of Chemistry, Atlanta, Georgia 30303
| | | | - Yubin Zhou
- From the Department of Chemistry, Atlanta, Georgia 30303
| | - Xue Wang
- Department of Computer Science, Center for Drug Design and Advanced Biotechnology, Georgia State University, Atlanta, Georgia 30303
| | - Jun Yang
- Department of Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, Zhejiang 310036, China
| | - Randy A Hall
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Edward M Brown
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Jenny J Yang
- From the Department of Chemistry, Atlanta, Georgia 30303.
| |
Collapse
|
38
|
Jensen AA, Bräuner-Osborne H. Allosteric modulation of the calcium-sensing receptor. Curr Neuropharmacol 2010; 5:180-6. [PMID: 19305800 PMCID: PMC2656812 DOI: 10.2174/157015907781695982] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 04/05/2007] [Indexed: 12/20/2022] Open
Abstract
The calcium (Ca2+)-sensing receptor (CaR) belongs to family C of the G-protein coupled receptors (GPCRs). The receptor is activated by physiological levels of Ca2+ (and Mg2+) and positively modulated by a range of proteinogenic L-α-amino acids. Recently, several synthetic allosteric modulators of the receptor have been developed, which either act as positive modulators (termed calcimimetics) or negative modulators (termed calcilytics). These ligands do not activate the wild-type receptor directly, but rather shift the concentration-response curves of Ca2+ to the left or right, respectively. Like other family C GPCRs, the CaR contains a large amino-terminal domain and a 7-transmembrane domain. Whereas the endogenous ligands for the receptor, Ca2+, Mg2+ and the L-α-amino acids, bind to the amino-terminal domain, most if not all of the synthetic modulators published so far bind to the 7-transmembrane domain. The most prominent physiological function of the CaR is to maintain the extracellular Ca2+ level in a very tight range via control of secretion of parathyroid hormone (PTH). Influence on e.g. secretion of calcitonin from thyroid C-cells and direct action on the tubule of the kidney also contribute to the control of the extracellular Ca2+ level. This control over PTH and Ca2+ levels is partially lost in patients suffering from primary and secondary hyperparathyroidism. The perspectives in CaR as a therapeutic target have been underlined by the recent approval of the calcimimetic cinacalcet for the treatment of certain forms of primary and secondary hyperparathyroidism. Cinacalcet is the first clinically administered allosteric modulator acting on a GPCR, and thus the compound constitutes an important proof-of-concept for future development of allosteric modulators on other GPCR drug targets.
Collapse
Affiliation(s)
- Anders A Jensen
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | |
Collapse
|
39
|
Khan MA, Conigrave AD. Mechanisms of multimodal sensing by extracellular Ca(2+)-sensing receptors: a domain-based survey of requirements for binding and signalling. Br J Pharmacol 2010; 159:1039-50. [PMID: 20136834 DOI: 10.1111/j.1476-5381.2009.00603.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this article we consider the molecular basis of sensing and signalling by the extracellular calcium-sensing receptor. We consider the nature of its ligands and sensing modalities, the identities of its major protein domains and their roles in sensing, signalling and trafficking as well as the significance of receptor homo- and hetero-dimerization. Finally, we consider the current, incomplete, state of knowledge regarding the requirements for ligand-specific signalling.
Collapse
|
40
|
Nanjo K, Nagai S, Shimizu C, Tajima T, Kondo T, Miyoshi H, Yoshioka N, Koike T. Identification and functional analysis of novel calcium-sensing receptor gene mutation in familial hypocalciuric hypercalcemia. Endocr J 2010; 57:787-92. [PMID: 20697181 DOI: 10.1507/endocrj.k10e-178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Familial hypocalciuric hypercalcemia (FHH) is a benign disorder with heterozygous inactivating mutations in the calcium-sensing receptor (CASR) gene. The present study describes the identification and functional analysis of a novel CASR gene mutation leading to FHH. The proband is a 33-yr-old woman (Ca 11.0 mg/dL, intact-PTH 68 pg/mL, FECa 0.17 %). Leukocyte DNA was isolated in four family members and a novel heterozygous mutation (D190G, GAT>GGT) in exon 4 of CASR gene was identified by direct sequence analysis. The mutant CASR expression vector was constructed by mutagenesis procedure and its response to Ca(2+) was characterized by transient transfection into human embryonic kidney (HEK) 293 cells and treatment with increasing extracellular Ca(2+) concentrations. HEK cells didn't activate intracellular signaling (MAPK activation) in response to increases of extracellular Ca(2+) concentrations when the mutant receptor was expressed normally at the cell surface. The novel heterozygous mutation (D190G) identified in the present study showed that the reduction of activity of CASR to extracellular Ca(2+) caused FHH in patients and our study demonstrated the importance of Asp-190 participated in response to Ca(2+) in CASR.
Collapse
Affiliation(s)
- Kazuhiro Nanjo
- Department of Medicine II, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wellendorph P, Johansen LD, Bräuner-Osborne H. The Emerging Role of Promiscuous 7TM Receptors as Chemosensors for Food Intake. INCRETINS AND INSULIN SECRETION 2010; 84:151-84. [DOI: 10.1016/b978-0-12-381517-0.00005-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
42
|
Abstract
Previously, we have demonstrated the presence of anti-calcium-sensing receptor (CaSR) antibodies in patients with autoimmune polyglandular syndrome type 1 (APS1), a disease that is characterized in part by hypoparathyroidism involving hypocalcemia, hyperphosphatemia, and low serum levels of parathyroid hormone. The aim of this study was to define the binding domains on the CaSR of anti-CaSR antibodies found in APS1 patients and in one patient suspected of having autoimmune hypocalciuric hypercalcemia (AHH). A phage-display library of CaSR peptides was constructed and used in biopanning experiments with patient sera. Selectively enriched IgG-binding peptides were identified by DNA sequencing, and subsequently, immunoreactivity to these peptides was confirmed in ELISA. Anti-CaSR antibody binding sites were mapped to amino acid residues 41-69, 114-126, and 171-195 at the N-terminal of the extracellular domain of the receptor. The major autoepitope was localized in the 41-69 amino acid sequence of the CaSR with antibody reactivity demonstrated in 12 of 12 (100%) APS1 patients with anti-CaSR antibodies and in 1 AHH patient with anti-CaSR antibodies. Minor epitopes were located in the 114-126 and 171-195 amino acid domains, with antibody reactivity shown in 5 of 12 (42%) and 4 of 12 (33%) APS1 patients, respectively. The results indicate that epitopes for anti-CaSR antibodies in the AHH patient and in the APS1 patients who were studied are localized in the N-terminal of the extracellular domain of the receptor. The present work has demonstrated the successful use of phage-display technology in the discovery of CaSR-specific epitopes targeted by human anti-CaSR antibodies.
Collapse
|
43
|
Wellendorph P, Johansen LD, Bräuner-Osborne H. Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients. Mol Pharmacol 2009; 76:453-65. [PMID: 19487246 DOI: 10.1124/mol.109.055244] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A number of highly promiscuous seven transmembrane (7TM) receptors have been cloned and characterized within the last few years. It is noteworthy that many of these receptors are activated broadly by amino acids, proteolytic degradation products, carbohydrates, or free fatty acids and are expressed in taste tissue, the gastrointestinal tract, endocrine glands, adipose tissue, and/or kidney. These receptors thus hold the potential to act as sensors of food intake, regulating, for example, release of incretin hormones from the gut, insulin/glucagon from the pancreas, and leptin from adipose tissue. The promiscuous tendency in ligand recognition of these receptors is in contrast to the typical specific interaction with one physiological agonist seen for most receptors, which challenges the classic "lock-and-key" concept. We here review the molecular mechanisms of nutrient sensing of the calcium-sensing receptor, the G protein-coupled receptor family C, group 6, subtype A (GPRC6A), and the taste1 receptor T1R1/T1R3, which are sensing L-alpha-amino acids, the carbohydrate-sensing T1R2/T1R3 receptor, the proteolytic degradation product sensor GPR93 (also termed GPR92), and the free fatty acid (FFA) sensing receptors FFA1, FFA2, FFA3, GPR84, and GPR120. The involvement of the individual receptors in sensing of food intake has been validated to different degrees because of limited availability of specific pharmacological tools and/or receptor knockout mice. However, as a group, the receptors represent potential drug targets, to treat, for example, type II diabetes by mimicking food intake by potent agonists or positive allosteric modulators. The ligand-receptor interactions of the promiscuous receptors of organic nutrients thus remain an interesting subject of emerging functional importance.
Collapse
Affiliation(s)
- Petrine Wellendorph
- UNIK centre for life-style diseases, Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | | | |
Collapse
|
44
|
Wellendorph P, Bräuner-Osborne H. Molecular basis for amino acid sensing by family C G-protein-coupled receptors. Br J Pharmacol 2009; 156:869-84. [PMID: 19298394 DOI: 10.1111/j.1476-5381.2008.00078.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Family C of human G-protein-coupled receptors (GPCRs) is constituted by eight metabotropic glutamate receptors, two gamma-aminobutyric acid type B (GABA(B1-2)) subunits forming the heterodimeric GABA(B) receptor, the calcium-sensing receptor, three taste1 receptors (T1R1-3), a promiscuous L-alpha;-amino acid receptor G-protein-coupled receptor family C, group 6, subtype A (GPRC6A) and seven orphan receptors. Aside from the orphan receptors, the family C GPCRs are dimeric receptors characterized by a large extracellular Venus flytrap domain which bind the endogenous agonists. Except from the GABA(B1-2) and T1R2-3 receptor, all receptors are either activated or positively modulated by amino acids. In this review, we outline mutational, biophysical and structural studies which have elucidated the interaction of the amino acids with the Venus flytrap domains, molecular mechanisms of receptor selectivity and the initial steps in receptor activation.
Collapse
Affiliation(s)
- P Wellendorph
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | |
Collapse
|
45
|
Hendy GN, Guarnieri V, Canaff L. Chapter 3 Calcium-Sensing Receptor and Associated Diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 89:31-95. [DOI: 10.1016/s1877-1173(09)89003-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Tfelt-Hansen J, Brown EM. THE CALCIUM-SENSING RECEPTOR IN NORMAL PHYSIOLOGY AND PATHOPHYSIOLOGY: A Review. Crit Rev Clin Lab Sci 2008; 42:35-70. [PMID: 15697170 DOI: 10.1080/10408360590886606] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The discovery of a G protein-coupled, calcium-sensing receptor (CaR) a decade ago and of diseases caused by CaR mutations provided unquestionable evidence of the CaR's critical role in the maintenance of systemic calcium homeostasis. On the cell membrane of the chief cells of the parathyroid glands, the CaR "senses" the extracellular calcium concentration and, subsequently, alters the release of parathyroid hormone (PTH). The CaR is likewise functionally expressed in bone, kidney, and gut--the three major calcium-translocating organs involved in calcium homeostasis. Intracellular signal pathways to which the CaR couples via its associated G proteins include phospholipase C (PLC), protein kinase B (AKT); and mitogen-activated protein kinases (MAPKs). The receptor is widely expressed in various tissues and regulates important cellular functions in addition to its role in maintaining systemic calcium homeostasis, i.e., protection against apoptosis, cellular proliferation, and membrane voltage. Functionally significant mutations in the receptor have been shown to induce diseases of calcium homeostasis owing to changes in the set point for calcium-regulated PTH release as well as alterations in the renal handling of calcium. Gain-of-function mutations cause hypocalcemia, whereas loss-of-function mutations produce hypercalcemia. Recent studies have shown that the latter clinical presentation can also be caused by inactivating autoantibodies directed against the CaR Newly discovered type II allosteric activators of the CaR have been found to be effective as a medical treatment for renal secondary hyperparathyroidism.
Collapse
Affiliation(s)
- Jacob Tfelt-Hansen
- Laboratory of Molecular Cardiology, Medical Department B, H:S Rigshospitalet, University of Copenhagen, Copenhagen O, Denmark.
| | | |
Collapse
|
47
|
Lagerström MC, Schiöth HB. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 2008; 7:339-57. [PMID: 18382464 DOI: 10.1038/nrd2518] [Citation(s) in RCA: 1063] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane-bound receptors and also the targets of many drugs. Understanding of the functional significance of the wide structural diversity of GPCRs has been aided considerably in recent years by the sequencing of the human genome and by structural studies, and has important implications for the future therapeutic potential of targeting this receptor family. This article aims to provide a comprehensive overview of the five main human GPCR families--Rhodopsin, Secretin, Adhesion, Glutamate and Frizzled/Taste2--with a focus on gene repertoire, general ligand preference, common and unique structural features, and the potential for future drug discovery.
Collapse
Affiliation(s)
- Malin C Lagerström
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, BOX 593, 751 24, Uppsala, Sweden
| | | |
Collapse
|
48
|
Extracellular calcium-sensing receptors in fishes. Comp Biochem Physiol A Mol Integr Physiol 2008; 149:225-45. [DOI: 10.1016/j.cbpa.2008.01.037] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/23/2008] [Accepted: 01/23/2008] [Indexed: 11/19/2022]
|
49
|
Lee H, Mun HC, Lewis N, Crouch M, Culverston E, Mason R, Conigrave A. Allosteric activation of the extracellular Ca2+-sensing receptor by L-amino acids enhances ERK1/2 phosphorylation. Biochem J 2007; 404:141-9. [PMID: 17212589 PMCID: PMC1868832 DOI: 10.1042/bj20061826] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The calcium-sensing receptor (CaR) mediates feedback control of Ca2+o (extracellular Ca2+) concentration. Although the mechanisms are not fully understood, the CaR couples to several important intracellular signalling enzymes, including PI-PLC (phosphoinositide-specific phospholipase C), leading to Ca2+i (intracellular Ca2+) mobilization, and ERK1/2 (extracellular-signal-regulated kinase 1/2). In addition to Ca2+o, the CaR is activated allosterically by several subclasses of L-amino acids, including the aromatics L-phenylalanine and L-tryptophan. These amino acids enhance the Ca2+o-sensitivity of Ca2+i mobilization in CaR-expressing HEK-293 (human embryonic kidney) cells and normal human parathyroid cells. Furthermore, on a background of a physiological fasting serum L-amino acid mixture, they induce a small, but physiologically significant, enhancement of Ca2+o-dependent suppression of PTH (parathyroid hormone) secretion. The impact of amino acids on CaR-stimulated ERK1/2, however, has not been determined. In the present study, we examined the effects of L-amino acids on Ca2+o-stimulated ERK1/2 phosphorylation as determined by Western blotting and a newly developed quantitative assay (SureFire). L-Amino acids induced a small, but significant, enhancement of Ca2+o-stimulated ERK1/2. In CaR-expressing HEK-293 cells, 10 mM L-phenylalanine lowered the EC50 for Ca2+o from approx. 2.3 to 2.0 mM in the Western blot assay and from 3.4 to 2.9 mM in the SureFire assay. The effect was stereoselective (L>D), and another aromatic amino acid, L-tryptophan, was also effective. The effects of amino acids were investigated further in HEK-293 cells that expressed the CaR mutant S169T. L-Phenylalanine normalized the EC50 for Ca2+o-stimulated Ca2+i mobilization from approx. 12 mM to 5.0 mM and ERK1/2 phosphorylation from approx. 4.6 mM to 2.6 mM. Taken together, the data indicate that L-phenylalanine and other amino acids enhance the Ca2+o-sensitivity of CaR-stimulated ERK1/2 phosphorylation; however, the effect is comparatively small and operates in the form of a fine-tuning mechanism.
Collapse
Affiliation(s)
- Heather J. Lee
- *School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Hee-Chang Mun
- *School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Narelle C. Lewis
- *School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Michael F. Crouch
- †TGR Biosciences and Australian Proteome Analysis Facility, Thebarton, SA 5031, Australia
| | - Emma L. Culverston
- *School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Rebecca S. Mason
- ‡Discipline of Physiology, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Arthur D. Conigrave
- *School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW 2006, Australia
- To whom correspondence should be addressed (email )
| |
Collapse
|
50
|
Huang Y, Zhou Y, Yang W, Butters R, Lee HW, Li S, Castiblanco A, Brown EM, Yang JJ. Identification and dissection of Ca(2+)-binding sites in the extracellular domain of Ca(2+)-sensing receptor. J Biol Chem 2007; 282:19000-10. [PMID: 17478419 PMCID: PMC2867057 DOI: 10.1074/jbc.m701096200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ca(2+)-sensing receptors (CaSRs) represent a class of receptors that respond to changes in the extracellular Ca(2+) concentration ([Ca(2+)](o)) and activate multiple signaling pathways. A major barrier to advancing our understanding of the role of Ca(2+) in regulating CaSRs is the lack of adequate information about their Ca(2+)-binding locations, which is largely hindered by the lack of a solved three-dimensional structure and rapid off rates due to low Ca(2+)-binding affinities. In this paper, we have reported the identification of three potential Ca(2+)-binding sites in a modeled CaSR structure using computational algorithms based on the geometric description and surface electrostatic potentials. Mutation of the predicted ligand residues in the full-length CaSR caused abnormal responses to [Ca(2+)](o), similar to those observed with naturally occurring activating or inactivating mutations of the CaR, supporting the essential role of these predicted Ca(2+)-binding sites in the sensing capability of the CaSR. In addition, to probe the intrinsic Ca(2+)-binding properties of the predicted sequences, we engineered two predicted continuous Ca(2+)-binding sequences individually into a scaffold protein provided by a non-Ca(2+)-binding protein, CD2. We report herein the estimation of the metal-binding affinities of these predicted sites in the CaSR by monitoring aromatic-sensitized Tb(3+) fluorescence energy transfer. Removing the predicted Ca(2+)-binding ligands resulted in the loss of or significantly weakened cation binding. The potential Ca(2+)-binding residues were shown to be involved in Ca(2+)/Ln(3+) binding by high resolution NMR and site-directed mutagenesis, further validating our prediction of Ca(2+)-binding sites within the extracellular domain of the CaSR.
Collapse
MESH Headings
- Algorithms
- Animals
- Binding Sites/physiology
- Calcium/metabolism
- Cell Line
- Extracellular Space/metabolism
- Humans
- Kidney/cytology
- Mice
- Models, Chemical
- Mutagenesis, Site-Directed
- Nuclear Magnetic Resonance, Biomolecular
- Protein Engineering
- Protein Structure, Quaternary
- Protein Structure, Tertiary
- Receptors, Calcium-Sensing/chemistry
- Receptors, Calcium-Sensing/genetics
- Receptors, Calcium-Sensing/metabolism
- Receptors, Metabotropic Glutamate/chemistry
- Receptors, Metabotropic Glutamate/metabolism
Collapse
Affiliation(s)
- Yun Huang
- Department of Chemistry, Center for Biotechnology and Drug Design Georgia State University, Atlanta, Georgia 30303
| | - Yubin Zhou
- Department of Chemistry, Center for Biotechnology and Drug Design Georgia State University, Atlanta, Georgia 30303
| | - Wei Yang
- Department of Chemistry, Center for Biotechnology and Drug Design Georgia State University, Atlanta, Georgia 30303
| | - Robert Butters
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Hsiau-Wei Lee
- Department of Chemistry, Center for Biotechnology and Drug Design Georgia State University, Atlanta, Georgia 30303
| | - Shunyi Li
- Department of Chemistry, Center for Biotechnology and Drug Design Georgia State University, Atlanta, Georgia 30303
| | - Adriana Castiblanco
- Department of Chemistry, Center for Biotechnology and Drug Design Georgia State University, Atlanta, Georgia 30303
| | - Edward M. Brown
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Jenny J. Yang
- Department of Chemistry, Center for Biotechnology and Drug Design Georgia State University, Atlanta, Georgia 30303
- To whom correspondence should be addressed: Dept. of Chemistry, Georgia State University, University Plaza, Atlanta, GA 30303. Tel.: 404-651-4620; Fax: 404-651-2751;
| |
Collapse
|