1
|
Wang Y, Niu K, Shi Y, Zhou F, Li X, Li Y, Chen T, Zhang Y. A review: targeting UBR5 domains to mediate emerging roles and mechanisms - chance or necessity? Int J Surg 2024; 110:4947-4964. [PMID: 38701508 PMCID: PMC11326040 DOI: 10.1097/js9.0000000000001541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Ubiquitinases are known to catalyze ubiquitin chains on target proteins to regulate various physiological functions like cell proliferation, autophagy, apoptosis, and cell cycle progression. As a member of E3 ligase, ubiquitin protein ligase E3 component n-recognin 5 (UBR5) belongs to the HECT E3 ligase and has been reported to be correlated with various pathophysiological processes. In this review, the authors give a comprehensive insight into the structure and function of UBR5. The authors discuss the specific domains of UBR5 and explore their biological functions separately. Furthermore, the authors describe the involvement of UBR5 in different pathophysiological conditions, including immune response, virus infection, DNA damage response, and protein quality control. Moreover, the authors provide a thorough summary of the important roles and regulatory mechanisms of UBR5 in cancers and other diseases. On the whole, investigating the domains and functions of UBR5, elucidating the underlying mechanisms of UBR5 with various substrates in detail may provide new theoretical basis for the treatment of diseases, including cancers, which could improve future studies to construct novel UBR5-targeted therapy strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| |
Collapse
|
2
|
Ragon M, Bertheau L, Dumont J, Bellanger T, Grosselin M, Basu M, Pourcelot E, Horrigue W, Denimal E, Marin A, Vaucher B, Berland A, Lepoivre C, Dupont S, Beney L, Davey H, Guyot S. The Yin-Yang of the Green Fluorescent Protein: Impact on Saccharomyces cerevisiae stress resistance. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112603. [PMID: 36459911 DOI: 10.1016/j.jphotobiol.2022.112603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Although fluorescent proteins are widely used as biomarkers (Yin), no study focuses on their influence on the microbial stress response. Here, the Green Fluorescent Protein (GFP) was fused to two proteins of interest in Saccharomyces cerevisiae. Pab1p and Sur7p, respectively involved in stress granules structure and in Can1 membrane domains. These were chosen since questions remain regarding the understanding of the behavior of S. cerevisiae facing different heat kinetics or oxidative stresses. The main results showed that Pab1p-GFP fluorescent mutant displayed a higher resistance than that of the wild type under a heat shock. Moreover, fluorescent mutants exposed to oxidative stresses displayed changes in the cultivability compared to the wild type strain. In silico approaches showed that the presence of the GFP did not influence the structure and so the functionality of the tagged proteins meaning that changes in yeast resistance were certainly related to GFP ROS-scavenging ability (Yang).
Collapse
Affiliation(s)
- Mélanie Ragon
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Lucie Bertheau
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Jennifer Dumont
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Tiffany Bellanger
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Marie Grosselin
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Mohini Basu
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Eléonore Pourcelot
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Walid Horrigue
- UMR Agroécologie Équipe Biocom, INRAE Dijon, Institut Agro, 26 Bd Dr Petitjean, 21000 Dijon, France
| | - Emmanuel Denimal
- Institut Agro Dijon, Direction Scientifique, Appui à la Recherche, 26 Bd Dr Petitjean, 21000 Dijon, France
| | - Ambroise Marin
- Plateau Technique d'IMagerie Spectroscopique (PIMS), DImaCell Platform Université de Bourgogne - INRAE, Dijon, France
| | - Basile Vaucher
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Antoine Berland
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Corentin Lepoivre
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Sébastien Dupont
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Laurent Beney
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Hazel Davey
- Department of Life Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Stéphane Guyot
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France.
| |
Collapse
|
3
|
Zhouravleva GA, Bondarev SA, Zemlyanko OM, Moskalenko SE. Role of Proteins Interacting with the eRF1 and eRF3 Release Factors in the Regulation of Translation and Prionization. Mol Biol 2022. [DOI: 10.1134/s0026893322010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Abstract
Viruses have evolved diverse strategies to hijack the cellular gene expression system for their replication. The poly(A) binding proteins (PABPs), a family of critical gene expression factors, are viruses' common targets. PABPs act not only as a translation factor but also as a key factor of mRNA metabolism. During viral infections, the activities of PABPs are manipulated by various viruses, subverting the host translation machinery or evading the cellular antiviral defense mechanism. Viruses harness PABPs by modifying their stability, complex formation with other translation initiation factors, or subcellular localization to promote viral mRNAs translation while shutting off or competing with host protein synthesis. For the past decade, many studies have demonstrated the PABPs' roles during viral infection. This review summarizes a comprehensive perspective of PABPs' roles during viral infection and how viruses evade host antiviral defense through the manipulations of PABPs.
Collapse
Affiliation(s)
- Jie Gao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wei Hu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Alberta, Canada
| |
Collapse
|
5
|
Crystal Structure of a Variant PAM2 Motif of LARP4B Bound to the MLLE Domain of PABPC1. Biomolecules 2020; 10:biom10060872. [PMID: 32517187 PMCID: PMC7356810 DOI: 10.3390/biom10060872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022] Open
Abstract
Eukaryotic cells determine the protein output of their genetic program by regulating mRNA transcription, localization, translation and turnover rates. This regulation is accomplished by an ensemble of RNA-binding proteins (RBPs) that bind to any given mRNA, thus forming mRNPs. Poly(A) binding proteins (PABPs) are prominent members of virtually all mRNPs that possess poly(A) tails. They serve as multifunctional scaffolds, allowing the recruitment of diverse factors containing a poly(A)-interacting motif (PAM) into mRNPs. We present the crystal structure of the variant PAM motif (termed PAM2w) in the N-terminal part of the positive translation factor LARP4B, which binds to the MLLE domain of the poly(A) binding protein C1 cytoplasmic 1 (PABPC1). The structural analysis, along with mutational studies in vitro and in vivo, uncovered a new mode of interaction between PAM2 motifs and MLLE domains.
Collapse
|
6
|
Brambilla M, Martani F, Bertacchi S, Vitangeli I, Branduardi P. The Saccharomyces cerevisiae
poly (A) binding protein (Pab1): Master regulator of mRNA metabolism and cell physiology. Yeast 2018; 36:23-34. [DOI: 10.1002/yea.3347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/26/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Marco Brambilla
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Francesca Martani
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Stefano Bertacchi
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Ilaria Vitangeli
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Paola Branduardi
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| |
Collapse
|
7
|
Roque S, Cerciat M, Gaugué I, Mora L, Floch AG, de Zamaroczy M, Heurgué-Hamard V, Kervestin S. Interaction between the poly(A)-binding protein Pab1 and the eukaryotic release factor eRF3 regulates translation termination but not mRNA decay in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2015; 21:124-134. [PMID: 25411355 PMCID: PMC4274632 DOI: 10.1261/rna.047282.114] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/26/2014] [Indexed: 06/04/2023]
Abstract
Eukaryotic release factor 3 (eRF3) is implicated in translation termination and also interacts with the poly(A)-binding protein (PABP, Pab1 in yeast), a major player in mRNA metabolism. Despite conservation of this interaction, its precise function remains elusive. First, we showed experimentally that yeast eRF3 does not contain any obvious consensus PAM2 (PABP-interacting motif 2). Thus, in yeast this association is different from the well described interaction between the metazoan factors. To gain insight into the exact function of this interaction, we then analyzed the phenotypes resulting from deleting the respective binding domains. Deletion of the Pab1 interaction domain on eRF3 did not affect general mRNA stability or nonsense-mediated mRNA decay (NMD) pathway and induced a decrease in translational readthrough. Furthermore, combined deletions of the respective interacting domains on eRF3 and on Pab1 were viable, did not affect Pab1 function in mRNA stability and harbored an antisuppression phenotype. Our results show that in Saccharomyces cerevisiae the role of the Pab1 C-terminal domain in mRNA stability is independent of eRF3 and the association of these two factors negatively regulates translation termination.
Collapse
Affiliation(s)
- Sylvain Roque
- CNRS FRE3630 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris 75005, France
| | - Marie Cerciat
- CNRS FRE3630 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris 75005, France
| | - Isabelle Gaugué
- CNRS FRE3630 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris 75005, France
| | - Liliana Mora
- CNRS FRE3630 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris 75005, France
| | - Aurélie G Floch
- CNRS FRE3630 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris 75005, France
| | - Miklos de Zamaroczy
- CNRS FRE3630 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris 75005, France
| | - Valérie Heurgué-Hamard
- CNRS FRE3630 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris 75005, France
| | - Stephanie Kervestin
- CNRS FRE3630 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris 75005, France Metabolism and function of RNA in the nucleus, Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris 75013, France
| |
Collapse
|
8
|
The "tale" of poly(A) binding protein: the MLLE domain and PAM2-containing proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1062-8. [PMID: 25120199 DOI: 10.1016/j.bbagrm.2014.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/11/2014] [Accepted: 08/04/2014] [Indexed: 11/21/2022]
Abstract
The cytoplasmic poly(A) binding protein 1 (PABPC1) is an essential eukaryotic translational initiation factor first described over 40 years ago. Most studies of PABPC1 have focused on its N-terminal RRM domains, which bind the mRNA 3' poly(A) tail and 5' translation complex eIF4F via eIF4G; however, the protein also contains a C-terminal MLLE domain that binds a peptide motif, termed PAM2, found in many proteins involved in translation regulation and mRNA metabolism. Studies over the past decade have revealed additional functions of PAM2-containing proteins (PACs) in neurodegenerative diseases, circadian rhythms, innate defense, and ubiquitin-mediated protein degradation. Here, we summarize functional and structural studies of the MLLE/PAM2 interaction and discuss the diverse roles of PACs.
Collapse
|
9
|
Goss DJ, Kleiman FE. Poly(A) binding proteins: are they all created equal? WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:167-79. [PMID: 23424172 DOI: 10.1002/wrna.1151] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The PABP family of proteins were originally thought of as a simple shield for the mRNA poly(A) tail. Years of research have shown that PABPs interact not only with the poly(A) tail, but also with specific sequences in the mRNA, having a general and specific role on the metabolism of different mRNAs. The complexity of PABPs function is increased by the interactions of PABPs with factors involved in different cellular functions. PABPs participate in all the metabolic pathways of the mRNA: polyadenylation/deadenylation, mRNA export, mRNA surveillance, translation, mRNA degradation, microRNA-associated regulation, and regulation of expression during development. In this review, we update information on the roles of PABPs and emerging data on the specific interactions of PABP homologs. Specific functions of individual members of PABPC family in development and viral infection are beginning to be elucidated. However, the interactions are complex and recent evidence for exchange of nuclear and cytoplasmic forms of the proteins, as well as post-translational modifications, emphasize the possibilities for fine-tuning the PABP metabolic network.
Collapse
Affiliation(s)
- Dixie J Goss
- Chemistry Department, Hunter College CUNY, New York, NY, USA.
| | | |
Collapse
|
10
|
Osawa M, Hosoda N, Nakanishi T, Uchida N, Kimura T, Imai S, Machiyama A, Katada T, Hoshino SI, Shimada I. Biological role of the two overlapping poly(A)-binding protein interacting motifs 2 (PAM2) of eukaryotic releasing factor eRF3 in mRNA decay. RNA (NEW YORK, N.Y.) 2012; 18:1957-67. [PMID: 23019593 PMCID: PMC3479387 DOI: 10.1261/rna.035311.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 07/31/2012] [Indexed: 05/18/2023]
Abstract
Eukaryotic releasing factor GSPT/eRF3 mediates translation termination-coupled mRNA decay via interaction with a cytosolic poly(A)-binding protein (PABPC1). A region of eRF3 containing two overlapping PAM2 (PABPC1-interacting motif 2) motifs is assumed to bind to the PABC domain of PABPC1, on the poly(A) tail of mRNA. PAM2 motifs are also found in the major deadenylases Caf1-Ccr4 and Pan2-Pan3, whose activities are enhanced upon PABPC1 binding to these motifs. Their deadenylase activities are regulated by eRF3, in which two overlapping PAM2 motifs competitively prevent interaction with PABPC1. However, it is unclear how these overlapping motifs recognize PABC and regulate deadenylase activity in a translation termination-coupled manner. We used a dominant-negative approach to demonstrate that the N-terminal PAM2 motif is critical for eRF3 binding to PABPC1 and that both motifs are required for function. Isothermal titration calorimetry (ITC) and NMR analyses revealed that the interaction is in equilibrium between the two PAM2-PABC complexes, where only one of the two overlapping PAM2 motifs is PABC-bound and the other is PABC-unbound and partially accessible to the other PABC. Based on these results, we proposed a biological role for the overlapping PAM2 motifs in the regulation of deadenylase accessibility to PABPC1 at the 3' end of poly(A).
Collapse
Affiliation(s)
- Masanori Osawa
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Nao Hosoda
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Tamiji Nakanishi
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naoyuki Uchida
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tomomi Kimura
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shunsuke Imai
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Asako Machiyama
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shin-ichi Hoshino
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Ichio Shimada
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Biomedicinal Information Research Center (BIRC), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
- Corresponding authorE-mail
| |
Collapse
|
11
|
Abstract
Shortening of the poly(A) tail is the first and often rate-limiting step in mRNA degradation. Three poly(A)-specific 3' exonucleases have been described that can carry out this reaction: PAN, composed of two subunits; PARN, a homodimer; and the CCR4-NOT complex, a heterooligomer that contains two catalytic subunits and may have additional functions in the cell. Current evidence indicates that all three enzymes use a two-metal ion mechanism to release nucleoside monophosphates in a hydrolytic reaction. The CCR4-NOT is the main deadenylase in all organisms examined, and mutations affecting the complex can be lethal. The contribution of PAN, apparently an initial deadenylation preceding the activity of CCR4-NOT, is less important, whereas the activity of PARN seems to be restricted to specific substrates or circumstances, for example, stress conditions. Rapid deadenylation and decay of specific mRNAs can be caused by recruitment of both PAN and the CCR4-NOT complex. This function can be carried out by RNA-binding proteins, for example, members of the PUF family. Alternatively, miRNAs can recruit the deadenylase complexes with the help of their associated GW182 proteins.
Collapse
Affiliation(s)
- Christiane Harnisch
- Martin-Luther-University of Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Strasse 3, Halle, Germany
| | - Bodo Moritz
- Martin-Luther-University of Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Strasse 3, Halle, Germany
| | - Christiane Rammelt
- Martin-Luther-University of Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Strasse 3, Halle, Germany
| | - Claudia Temme
- Martin-Luther-University of Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Strasse 3, Halle, Germany
| | - Elmar Wahle
- Martin-Luther-University of Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Strasse 3, Halle, Germany.
| |
Collapse
|
12
|
Guerra N, Vega-Sendino M, Pérez-Morgado MI, Ramos E, Soto M, Gonzalez VM, Martín ME. Identification and functional characterization of a poly(A)-binding protein from Leishmania infantum (LiPABP). FEBS Lett 2011; 585:193-8. [PMID: 21115009 DOI: 10.1016/j.febslet.2010.11.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 02/05/2023]
Abstract
Gene expression regulation in Leishmania has been related to post-transcriptional events involving mainly sequences present in the 5' and 3' untranslated regions. PABPs are high-affinity poly(A)-binding proteins that are implicated in the regulation of translation initiation, RNA stability and other important biological processes. We describe a PABP from Leishmania infantum (LiPABP) that shows a very high homology with PABPs from other eukaryotic organisms, including mammals and other parasites. LiPABP conserves the main domains present in other PABPs, maintains poly(A)-binding properties and is phosphorylated by p38 mitogen-activated protein kinase. Using the sera from dogs infected with L. infantum, we demonstrate that LiPABP is expressed in L. infantum promastigotes.
Collapse
Affiliation(s)
- Natalia Guerra
- Servicio de Bioquímica-Investigación, Hospital Ramón y Cajal, IRyCIS, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
13
|
Kozlov G, Gehring K. Molecular basis of eRF3 recognition by the MLLE domain of poly(A)-binding protein. PLoS One 2010; 5:e10169. [PMID: 20418951 PMCID: PMC2854688 DOI: 10.1371/journal.pone.0010169] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 03/26/2010] [Indexed: 12/29/2022] Open
Abstract
PABPC1 (cytosolic poly(A)-binding protein 1) is an RNA-binding protein that binds to the poly(A) tail of mRNAs to promote translation and mRNA turnover. In addition to RNA-binding domains, PABPC1 contains a unique protein-protein interaction domain, MLLE (also known as PABC) that binds regulatory proteins and translation factors that contain a conserved 12 amino acid peptide motif termed PAM2. Eukaryotic Release Factor 3 (eRF3/GSPT1) contains two overlapping PAM2 sequences, which are required for its activity. Here, we determined the crystal structures of the MLLE domain from PABPC1 in complex with the two PAM2 regions of eRF3. The structures reveal a mechanism of cooperativity between the two PAM2 sites that increases the binding affinity but prevents the binding of more than one molecule of eRF3 to PABPC1. Relative to previous structures, the high-resolution crystal structures force a re-evaluation of the PAM2 motif and improve our understanding of the molecular basis of MLLE peptide recognition.
Collapse
Affiliation(s)
- Guennadi Kozlov
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
- Groupe de recherche axé sur la structure des protéines, Montréal, Québec, Canada
| | - Kalle Gehring
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
- Groupe de recherche axé sur la structure des protéines, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
14
|
Kozlov G, Ménade M, Rosenauer A, Nguyen L, Gehring K. Molecular determinants of PAM2 recognition by the MLLE domain of poly(A)-binding protein. J Mol Biol 2010; 397:397-407. [PMID: 20096703 DOI: 10.1016/j.jmb.2010.01.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/13/2010] [Accepted: 01/14/2010] [Indexed: 10/19/2022]
Abstract
MLLE (previously known as PABC) is a peptide-binding domain that is found in poly(A)-binding protein (PABP) and EDD (E3 isolated by differential display), a HECT E3 ubiquitin ligase also known as HYD (hyperplastic discs tumor suppressor) or UBR5. The MLLE domain from PABP recruits various regulatory proteins and translation factors to poly(A) mRNAs through binding of a conserved 12 amino acid peptide motif called PAM2 (for PABP-interacting motif 2). Here, we determined crystal structures of the MLLE domain from PABP alone and in complex with PAM2 peptides from PABP-interacting protein 2. The structures provide a detailed view of hydrophobic determinants of the MLLE binding coded by PAM2 positions 3, 5, 7, 10, and 12 and reveal novel intermolecular polar contacts. In particular, the side chain of the invariant MLLE residue K580 forms hydrogen bonds with the backbone of PAM2 residues 5 and 7. The structures also show that peptide residues outside of the conserved PAM2 motif contribute to binding. Altogether, the structures provide a significant advance in understanding the molecular basis for the binding of PABP by PAM2-containing proteins involved in translational control, mRNA deadenylation, and other cellular processes.
Collapse
Affiliation(s)
- Guennadi Kozlov
- Department of Biochemistry, Groupe de recherche axé sur la structure des protéines, McGill University, 3655 Promenade Sir William Osler, Montréal, Québec, Canada H3G 1Y6
| | | | | | | | | |
Collapse
|
15
|
Simón E, Séraphin B. A specific role for the C-terminal region of the Poly(A)-binding protein in mRNA decay. Nucleic Acids Res 2007; 35:6017-28. [PMID: 17766253 PMCID: PMC2094065 DOI: 10.1093/nar/gkm452] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
mRNA poly(A) tails affect translation, mRNA export and mRNA stability, with translation initiation involving a direct interaction between eIF4G and the poly(A)-binding protein Pab1. The latter factor contains four RNA recognition motifs followed by a C-terminal region composed of a linker and a PABC domain. We show here that yeast mutants lacking the C-terminal domains of Pab1 display specific synthetic interactions with mutants in the 5′-3′ mRNA decay pathway. Moreover, these mutations impair mRNA decay in vivo without significantly affecting mRNA export or translation. Inhibition of mRNA decay occurs through slowed deadenylation. In vitro analyses demonstrate that removal of the Pab1 linker domain directly interferes with the ability of the Pop2–Ccr4 complex to deadenylate the Pab1-bound poly(A). Binding assays demonstrate that this results from a modulation of poly(A) packaging by the Pab1 linker region. Overall, our results demonstrate a direct involvement of Pab1 in mRNA decay and reveal the modular nature of this factor, with different domains affecting various cellular processes. These data suggest new models involving the modulation of poly(A) packaging by Pab1 to control mRNA decay.
Collapse
Affiliation(s)
| | - Bertrand Séraphin
- *To whom correspondence should be addressed. +33 1 69 82 38 84+33 1 69 82 38 77
| |
Collapse
|
16
|
Siddiqui N, Mangus DA, Chang TC, Palermino JM, Shyu AB, Gehring K. Poly(A) nuclease interacts with the C-terminal domain of polyadenylate-binding protein domain from poly(A)-binding protein. J Biol Chem 2007; 282:25067-75. [PMID: 17595167 DOI: 10.1074/jbc.m701256200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The poly(A)-binding protein (PABP) is an essential protein found in all eukaryotes and is involved in an extensive range of cellular functions, including translation, mRNA metabolism, and mRNA export. Its C-terminal region contains a peptide-interacting PABC domain that recruits proteins containing a highly specific PAM-2 sequence motif to the messenger ribonucleoprotein complex. In humans, these proteins, including Paip1, Paip2, eRF3 (eukaryotic release factor 3), Ataxin-2, and Tob2, are all found to regulate translation through varying mechanisms. The following reports poly(A) nuclease (PAN) as a PABC-interacting partner in both yeast and humans. Their interaction is mediated by a PAM-2 motif identified within the PAN3 subunit. This site was identified in various fungal and animal species suggesting that the interaction is conserved throughout evolution. Our results indicate that PABP is directly involved in recruiting a deadenylase to the messenger ribonucleoprotein complex. This demonstrates a novel role for the PABC domain in mRNA metabolic processes and gives further insight into the function of PABP in mRNA maturation, export, and turnover.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Department of Biochemistry, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Siddiqui N, Osborne MJ, Gallie DR, Gehring K. Solution structure of the PABC domain from wheat poly (A)-binding protein: an insight into RNA metabolic and translational control in plants. Biochemistry 2007; 46:4221-31. [PMID: 17358048 DOI: 10.1021/bi061986d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In animals, the PABC domain from poly (A)-binding protein recruits proteins containing a specific interacting motif (PAM-2) to the mRNP complex. These proteins include Paip1, Paip2, and eukaryotic release factor 3 (eRF3), all of which regulate PABP function in translation. The following reports the solution structure of PABC from Triticum avestium (wheat) poly (A)-binding protein determined by NMR spectroscopy. Wheat PABC (wPABC) is an alpha-helical protein domain, which displays a fold highly similar to the human PABC domain and contains a PAM-2 peptide binding site. Through a bioinformatics search, several plant proteins containing a PAM-2 site were identified including the early response to dehydration protein (ERD-15), which was previously shown to regulate PABP-dependent translation. The plant PAM-2 proteins contain a variety of conserved sequences including a PABP-interacting 1 motif (PAM-1), RNA binding domains, an SMR endonuclease domain, and a poly (A)-nuclease regulatory domain, all of which suggest a function in either translation or mRNA metabolism. The proteins identified are well conserved throughout plant species but have no sequence homologues in metazoans. We show that wPABC binds to the plant PAM-2 motif with high affinity through a conserved mechanism. Overall, our results suggest that plant species have evolved a distinct regulatory mechanism involving novel PABP binding partners.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, QC H3G-1Y6, Canada
| | | | | | | |
Collapse
|
18
|
Marintchev A, Frueh D, Wagner G. NMR methods for studying protein-protein interactions involved in translation initiation. Methods Enzymol 2007; 430:283-331. [PMID: 17913643 DOI: 10.1016/s0076-6879(07)30012-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Translation in the cell is carried out by complex molecular machinery involving a dynamic network of protein-protein and protein-RNA interactions. Along the multiple steps of the translation pathway, individual interactions are constantly formed, remodeled, and broken, which presents special challenges when studying this sophisticated system. NMR is a still actively developing technology that has recently been used to solve the structures of several translation factors. However, NMR also has a number of other unique capabilities, of which the broader scientific community may not always be aware. In particular, when studying macromolecular interactions, NMR can be used for a wide range of tasks from testing unambiguously whether two molecules interact to solving the structure of the complex. NMR can also provide insights into the dynamics of the molecules, their folding/unfolding, as well as the effects of interactions with binding partners on these processes. In this chapter, we have tried to summarize, in a popular format, the various types of information about macromolecular interactions that can be obtained with NMR. Special attention is given to areas where the use of NMR provides unique information that is difficult to obtain with other approaches. Our intent was to help the general scientific audience become more familiar with the power of NMR, the current status of the technological limitations of individual NMR methods, as well as the numerous applications, in particular for studying protein-protein interactions in translation.
Collapse
Affiliation(s)
- Assen Marintchev
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
19
|
Lim NS, Kozlov G, Chang TC, Groover O, Siddiqui N, Volpon L, De Crescenzo G, Shyu AB, Gehring K. Comparative peptide binding studies of the PABC domains from the ubiquitin-protein isopeptide ligase HYD and poly(A)-binding protein. Implications for HYD function. J Biol Chem 2006; 281:14376-82. [PMID: 16554297 DOI: 10.1074/jbc.m600307200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PABC domain is a peptide-binding domain that is specifically found in poly(A)-binding protein (PABP) and a HECT ubiquitin-protein isopeptide ligase (E3) known as HYD (hyperplastic discs), EDD (E3 isolated by differential display), or Rat100. The PABC domain of PABP recruits various regulatory proteins and translation factors to poly(A) mRNAs through binding of a conserved 12-amino acid peptide motif, PAM2 (PABP-interacting motif 2). In contrast, little is known about the specificity or function of the domain from HYD. Here, we used isothermal calorimetry and surface plasmon resonance titrations to show that the PABC domain of HYD binds PAM2 peptides with micromolar affinity. NMR chemical shift perturbations were used to map the peptide-binding site in the PABC domain of HYD. The structural features of binding are very similar to those of the interactions with the domain of PABP, which explains the overlapping peptide specificity and binding affinity. We identified the anti-proliferative Tob proteins as potential binding partners of HYD. This was confirmed by glutathione S-transferase pulldown and immunoprecipitation experiments demonstrating the interaction with full-length Tob2. Altogether, our results point to a role of the PABC domain as a protein-protein interaction domain that brings together the processes of translation, ubiquitin-mediated protein degradation, and cell cycle control.
Collapse
Affiliation(s)
- Nadia S Lim
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bravo J, Aguilar-Henonin L, Olmedo G, Guzmán P. Four distinct classes of proteins as interaction partners of the PABC domain of Arabidopsis thaliana Poly(A)-binding proteins. Mol Genet Genomics 2005; 272:651-65. [PMID: 15650869 DOI: 10.1007/s00438-004-1090-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Accepted: 11/11/2004] [Indexed: 10/25/2022]
Abstract
Poly(A)-binding proteins (PABPs) play an important role in the regulation of translation and the control of mRNA stability in eukaryotes, and their functions are known to be essential in many organisms. PABPs contain a highly conserved C-terminal segment termed the PABC domain. The PABC domain from human PABP interacts with the proteins PAIP1, PAIP2 and RF3 via its PAM2 motifs. These interactions are important for modulating translation. Arabidopsis has eight PABPs, an unexpectedly large number in comparison to other eukaryotes whose genomes have been sequenced. Six of the Arabidopsis PABPs contain the conserved PABC domain. In this work, we have identified PABC-interacting proteins in Arabidopsis. Two proteins, which we named CID1 and CID7, were initially isolated in a two-hybrid screen, and eleven more were predicted to be present in the Arabidopsis proteome and eleven in the rice proteome. Among the 24 PAM2-containing proteins in this set, we observed a diversity of modules of intriguing function, ranging from acidic regions similar to the PAM1 motif found in human PAIP1 and PAIP2, to domains such as the small MutS-related domain, the Lsm domains of Ataxin-2, and RNA recognition motifs (RRMs). We suggest that the large number of PABPs and PAM2-containing proteins may have evolved to provide plants with greater flexibility in modulating the metabolism of specific transcripts. We also found that two PABP genes, PAB2 (ubiquitously expressed) and PAB5 (expressed in reproductive tissues), are essential for viability, suggesting that each has a vital and specific function.
Collapse
Affiliation(s)
- Jaime Bravo
- Departamento de Ingeniería Genética de Plantas, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Apartado Postal 629, Irapuato, Gto., 36500, México
| | | | | | | |
Collapse
|
21
|
Kühn U, Wahle E. Structure and function of poly(A) binding proteins. ACTA ACUST UNITED AC 2004; 1678:67-84. [PMID: 15157733 DOI: 10.1016/j.bbaexp.2004.03.008] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 03/30/2004] [Accepted: 03/31/2004] [Indexed: 01/01/2023]
Abstract
Poly (A) tails are found at the 3' ends of almost all eukaryotic mRNAs. They are bound by two different poly (A) binding proteins, PABPC in the cytoplasm and PABPN1 in the nucleus. PABPC functions in the initiation of translation and in the regulation of mRNA decay. In both functions, an interaction with the m7G cap at the 5' end of the message plays an important role. PABPN1 is involved in the synthesis of poly (A) tails, increasing the processivity of poly (A) polymerase and contributing to defining the length of a newly synthesized poly (A) tail.
Collapse
Affiliation(s)
- Uwe Kühn
- Institut für Biochemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Stasse. 3, D-06120 Halle, Germany
| | | |
Collapse
|
22
|
Albrecht M, Lengauer T. Survey on the PABC recognition motif PAM2. Biochem Biophys Res Commun 2004; 316:129-38. [PMID: 15003521 DOI: 10.1016/j.bbrc.2004.02.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Indexed: 10/26/2022]
Abstract
The PABP-interacting motif PAM2 has been identified in various eukaryotic proteins as an important binding site for the PABC domain. This domain is contained in homologs of the poly(A)-binding protein PABP and the ubiquitin-protein ligase HYD. Despite the importance of the PAM2 motif, a comprehensive analysis of its occurrence in different proteins has been missing. Using iterated sequence profile searches, we obtained an extensive list of proteins carrying the PAM2 motif. We discuss their functional context and domain architecture, which often consists of RNA-binding domains. Our list of PAM2 motif proteins includes eukaryotic homologs of eRF3/GSPT1/2, PAIP1/2, Tob1/2, Ataxin-2, RBP37, RBP1, Blackjack, HELZ, TPRD, USP10, ERD15, C1D4.14, and the viral protease P29. The identification of the PAM2 motif in as yet uncharacterized proteins can give valuable hints with respect to their cellular function and potential interaction partners and suggests further experimentation. It is also striking that the PAM2 motif appears to occur solely outside globular protein domains.
Collapse
Affiliation(s)
- Mario Albrecht
- Max-Planck-Institute for Informatics, Stuhlsatzenhausweg 85, Saarbrücken 66123, Germany.
| | | |
Collapse
|
23
|
Kozlov G, De Crescenzo G, Lim NS, Siddiqui N, Fantus D, Kahvejian A, Trempe JF, Elias D, Ekiel I, Sonenberg N, O'Connor-McCourt M, Gehring K. Structural basis of ligand recognition by PABC, a highly specific peptide-binding domain found in poly(A)-binding protein and a HECT ubiquitin ligase. EMBO J 2003; 23:272-81. [PMID: 14685257 PMCID: PMC1271756 DOI: 10.1038/sj.emboj.7600048] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Accepted: 12/01/2003] [Indexed: 11/08/2022] Open
Abstract
The C-terminal domain of poly(A)-binding protein (PABC) is a peptide-binding domain found in poly(A)-binding proteins (PABPs) and a HECT (homologous to E6-AP C-terminus) family E3 ubiquitin ligase. In protein synthesis, the PABC domain of PABP functions to recruit several translation factors possessing the PABP-interacting motif 2 (PAM2) to the mRNA poly(A) tail. We have determined the solution structure of the human PABC domain in complex with two peptides from PABP-interacting protein-1 (Paip1) and Paip2. The structures show a novel mode of peptide recognition, in which the peptide binds as a pair of beta-turns with extensive hydrophobic, electrostatic and aromatic stacking interactions. Mutagenesis of PABC and peptide residues was used to identify key protein-peptide interactions and quantified by isothermal calorimetry, surface plasmon resonance and GST pull-down assays. The results provide insight into the specificity of PABC in mediating PABP-protein interactions.
Collapse
Affiliation(s)
- Guennadi Kozlov
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Gregory De Crescenzo
- Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Canada
| | - Nadia S Lim
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Nadeem Siddiqui
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Daniel Fantus
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Avak Kahvejian
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Jean-François Trempe
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Demetra Elias
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Irena Ekiel
- Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Canada
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Maureen O'Connor-McCourt
- Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Canada
| | - Kalle Gehring
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6. Tel.: +1 514 398 7287; Fax: +1 514 398 7384; E-mail:
| |
Collapse
|
24
|
Siddiqui N, Kozlov G, D'Orso I, Trempe JF, Gehring K. Solution structure of the C-terminal domain from poly(A)-binding protein in Trypanosoma cruzi: a vegetal PABC domain. Protein Sci 2003; 12:1925-33. [PMID: 12930992 PMCID: PMC2323990 DOI: 10.1110/ps.0390103] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PABC is a phylogenetically conserved peptide-binding domain primarily found within the C terminus of poly(A)-binding proteins (PABPs). This domain recruits a series of translation factors including poly(A)-interacting proteins (Paip1 and Paip2) and release factor 3 (RF3/GSPT) to the initiation complex on mRNA. Here, we determine the solution structure of the Trypanosoma cruzi PABC domain (TcPABC), a representative of the vegetal class of PABP proteins. TcPABC is similar to human PABC (hPABC) and consists of five alpha-helices, in contrast to the four helices observed in PABC domains from yeast (yPABC) and hyper plastic disk proteins (hHYD). A mobile N-terminal helix is observed in TcPABC that does not pack against the core of the protein, as found in hPABC. Characteristic to all PABC domains, the last four helices of TcPABC fold into a right-handed super coil. TcPABC demonstrates high-affinity binding to PABP interacting motif-2 (PAM-2) and reveals a peptide-binding surface homologous to that of hPABC. Our results demonstrate the last four helices in TcPABC are sufficient for peptide recognition and we predict a similar binding mode in PABC domains. Furthermore, these results point to the presence of putative PAM-2 site-containing proteins in trypanosomes.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | |
Collapse
|
25
|
Mangus DA, Evans MC, Jacobson A. Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol 2003; 4:223. [PMID: 12844354 PMCID: PMC193625 DOI: 10.1186/gb-2003-4-7-223] [Citation(s) in RCA: 431] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Most eukaryotic mRNAs are subject to considerable post-transcriptional modification, including capping, splicing, and polyadenylation. The process of polyadenylation adds a 3' poly(A) tail and provides the mRNA with a binding site for a major class of regulatory factors, the poly(A)-binding proteins (PABPs). These highly conserved polypeptides are found only in eukaryotes; single-celled eukaryotes each have a single PABP, whereas humans have five and Arabidopis has eight. They typically bind poly(A) using one or more RNA-recognition motifs, globular domains common to numerous other eukaryotic RNA-binding proteins. Although they lack catalytic activity, PABPs have several roles in mediating gene expression. Nuclear PABPs are necessary for the synthesis of the poly(A) tail, regulating its ultimate length and stimulating maturation of the mRNA. Association with PABP is also a requirement for some mRNAs to be exported from the nucleus. In the cytoplasm, PABPs facilitate the formation of the 'closed loop' structure of the messenger ribonucleoprotein particle that is crucial for additional PABP activities that promote translation initiation and termination, recycling of ribosomes, and stability of the mRNA. Collectively, these sequential nuclear and cytoplasmic contributions comprise a cycle in which PABPs and the poly(A) tail first create and then eliminate a network of cis- acting interactions that control mRNA function.
Collapse
Affiliation(s)
- David A Mangus
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655-0122, USA
| | - Matthew C Evans
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655-0122, USA
| | - Allan Jacobson
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655-0122, USA
| |
Collapse
|
26
|
Current awareness on yeast. Yeast 2002; 19:1277-84. [PMID: 12400546 DOI: 10.1002/yea.829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|