1
|
Li L, Scott WS, Khristich AN, Armenia JF, Mirkin SM. Recurrent DNA nicks drive massive expansions of (GAA) n repeats. Proc Natl Acad Sci U S A 2024; 121:e2413298121. [PMID: 39585990 PMCID: PMC11626148 DOI: 10.1073/pnas.2413298121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
Over 50 hereditary degenerative disorders are caused by expansions of short tandem DNA repeats (STRs). (GAA)n repeat expansions are responsible for Friedreich's ataxia as well as late-onset cerebellar ataxias (LOCAs). Thus, the mechanisms of (GAA)n repeat expansions attract broad scientific attention. To investigate the role of DNA nicks in this process, we utilized a CRISPR-Cas9 nickase system to introduce targeted nicks adjacent to the (GAA)n repeat tract. We found that DNA nicks 5' of the (GAA)100 run led to a dramatic increase in both the rate and scale of its expansion in dividing cells. Strikingly, they also promoted large-scale expansions of carrier- and large normal-size (GAA)n repeats, recreating, in a model system, the expansion events that occur in human pedigrees. DNA nicks 3' of the (GAA)100 repeat led to a smaller but significant increase in the expansion rate as well. Our genetic analysis implies that in dividing cells, conversion of nicks into double-strand breaks (DSBs) during DNA replication followed by DSB or fork repair leads to repeat expansions. Finally, we showed that 5' GAA-strand nicks increase expansion frequency in nondividing yeast cells, albeit to a lesser extent than in dividing cells.
Collapse
Affiliation(s)
- Liangzi Li
- Department of Biology, Tufts University, Medford, MA02155
| | - W. Shem Scott
- Department of Biology, Tufts University, Medford, MA02155
| | | | | | | |
Collapse
|
2
|
Papp D, Hernandez LA, Mai TA, Haanen TJ, O’Donnell MA, Duran AT, Hernandez SM, Narvanto JE, Arguello B, Onwukwe MO, Mirkin SM, Kim JC. Massive contractions of myotonic dystrophy type 2-associated CCTG tetranucleotide repeats occur via double-strand break repair with distinct requirements for DNA helicases. G3 (BETHESDA, MD.) 2024; 14:jkad257. [PMID: 37950892 PMCID: PMC10849350 DOI: 10.1093/g3journal/jkad257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/06/2023] [Accepted: 10/19/2023] [Indexed: 11/13/2023]
Abstract
Myotonic dystrophy type 2 (DM2) is a genetic disease caused by expanded CCTG DNA repeats in the first intron of CNBP. The number of CCTG repeats in DM2 patients ranges from 75 to 11,000, yet little is known about the molecular mechanisms responsible for repeat expansions or contractions. We developed an experimental system in Saccharomyces cerevisiae that enables the selection of large-scale contractions of (CCTG)100 within the intron of a reporter gene and subsequent genetic analysis. Contractions exceeded 80 repeat units, causing the final repetitive tract to be well below the threshold for disease. We found that Rad51 and Rad52 are involved in these massive contractions, indicating a mechanism that uses homologous recombination. Srs2 helicase was shown previously to stabilize CTG, CAG, and CGG repeats. Loss of Srs2 did not significantly affect CCTG contraction rates in unperturbed conditions. In contrast, loss of the RecQ helicase Sgs1 resulted in a 6-fold decrease in contraction rate with specific evidence that helicase activity is required for large-scale contractions. Using a genetic assay to evaluate chromosome arm loss, we determined that CCTG and reverse complementary CAGG repeats elevate the rate of chromosomal fragility compared to a short-track control. Overall, our results demonstrate that the genetic control of CCTG repeat contractions is notably distinct among disease-causing microsatellite repeat sequences.
Collapse
Affiliation(s)
- David Papp
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Luis A Hernandez
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Theresa A Mai
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Terrance J Haanen
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Meghan A O’Donnell
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Ariel T Duran
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Sophia M Hernandez
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Jenni E Narvanto
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Berenice Arguello
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Marvin O Onwukwe
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Jane C Kim
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| |
Collapse
|
3
|
Panda S, Swain SK, Sahu BP, Sarangi R. Insights into genome plasticity and gene regulation in Orientia tsutsugamushi through genome-wide mining of microsatellite markers. 3 Biotech 2023; 13:366. [PMID: 37840877 PMCID: PMC10575825 DOI: 10.1007/s13205-023-03795-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023] Open
Abstract
Microsatellite markers are being used for molecular identification and characterization as well as estimation of evolution patterns due to their highly polymorphic nature. The repeats hold 40% of the entire genome of Orientia tsutsugamushi (OT), but not yet been characterized. Thus, we investigated the genome-wide presence of microsatellites within nine complete genomes of OT and analyzed their distribution pattern, composition, and complexity. The in-silico study revealed that the genome of OT enriched with microsatellites having a total of 126,187 SSRs and 10,374 cSSRs throughout the genome, of which 70% and 30% are represented within the coding and non-coding regions, respectively. The relative density (RD) and relative abundance (RA) of SSRs were 42-44.43/kb and 6.25-6.59/kb, while for cSSRs this value ranged from 7.06 to 8.1/kb and 0.50 to 0.55/kb, respectively. However, RA and RD were weakly correlated with genome size and incidence of microsatellites. The mononucleotide repeats (54.55%) were prevalent over di- (33.22%), tri- (11.88%), tetra- (0.27%), penta- (0.02%), hexanucleotide (0.04%) repeats, with poly (A/T) richness over poly (G/C). The motif composition of cSSRs revealed that maximum cSSRs were made up of two microsatellites having unique duplication patterns such as AT-x-AT and CG-x-CG. To our knowledge, this is the first study of microsatellites in the OT genome, where characterization of such variations in repeat sequences would be important in deciphering the origin, rate of mutation, and role of repeat sequences in the genome. More numbers of microsatellites represented within the coding region provide an insight into the genome plasticity that may interfere with gene regulation to mitigate host-pathogen interaction and evolution of the species.
Collapse
Affiliation(s)
- Subhasmita Panda
- Department of Pediatrics, IMS and SUM Hospital, Siksha ‘O’ Anusandhan (Deemed to be University), K8, Kalinga Nagar, Bhubaneswar, Odisha 751003 India
| | - Subrat Kumar Swain
- Medical Research Laboratory, IMS and SUM Hospital, Siksha ‘O’ Anusandhan (Deemed to be University), K8, Kalinga Nagar, Bhubaneswar, Odisha 751003 India
| | - Basanta Pravas Sahu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Rachita Sarangi
- Department of Pediatrics, IMS and SUM Hospital, Siksha “O” Anusandhan (Deemed to be University), K8, Kalinga Nagar, Bhubaneswar, Odisha 751003 India
| |
Collapse
|
4
|
Papp D, Hernandez LA, Mai TA, Haanen TJ, O'Donnell MA, Duran AT, Hernandez SM, Narvanto JE, Arguello B, Onwukwe MO, Kolar K, Mirkin SM, Kim JC. Massive contractions of Myotonic Dystrophy Type 2-associated CCTG tetranucleotide repeats occur via double strand break repair with distinct requirements for helicases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.548036. [PMID: 37461657 PMCID: PMC10350092 DOI: 10.1101/2023.07.06.548036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Myotonic Dystrophy Type 2 (DM2) is a genetic disease caused by expanded CCTG DNA repeats in the first intron of CNBP. The number of CCTG repeats in DM2 patients ranges from 75-11,000, yet little is known about the molecular mechanisms responsible for repeat expansions or contractions. We developed an experimental system in Saccharomyces cerevisiae that enables selection of large-scale contractions of (CCTG)100 within the intron of a reporter gene and subsequent genetic analysis. Contractions exceeded 80 repeat units, causing the final repetitive tract to be well below the threshold for disease. We found that Rad51 and Rad52 are required for these massive contractions, indicating a mechanism that involves homologous recombination. Srs2 helicase was shown previously to stabilize CTG, CAG, and CGG repeats. Loss of Srs2 did not significantly affect CCTG contraction rates in unperturbed conditions. In contrast, loss of the RecQ helicase Sgs1 resulted in a 6-fold decrease in contraction rate with specific evidence that helicase activity is required for large-scale contractions. Using a genetic assay to evaluate chromosome arm loss, we determined that CCTG and reverse complementary CAGG repeats elevate the rate of chromosomal fragility compared to a low-repeat control. Overall, our results demonstrate that the genetic control of CCTG repeat contractions is notably distinct among disease-causing microsatellite repeat sequences.
Collapse
Affiliation(s)
- David Papp
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Luis A Hernandez
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Theresa A Mai
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Terrance J Haanen
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Meghan A O'Donnell
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Ariel T Duran
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Sophia M Hernandez
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Jenni E Narvanto
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Berenice Arguello
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Marvin O Onwukwe
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Kara Kolar
- Department of Biology, Tufts University, Medford, MA 02155
| | | | - Jane C Kim
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
| |
Collapse
|
5
|
Rau EM, Ertesvåg H. Method Development Progress in Genetic Engineering of Thraustochytrids. Mar Drugs 2021; 19:515. [PMID: 34564177 PMCID: PMC8467673 DOI: 10.3390/md19090515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 01/29/2023] Open
Abstract
Thraustochytrids are unicellular, heterotrophic marine eukaryotes. Some species are known to store surplus carbon as intracellular lipids, and these also contain the long-chain polyunsaturated fatty acid docosahexaenoic acid (DHA). Most vertebrates are unable to synthesize sufficient amounts of DHA, and this fatty acid is essential for, e.g., marine fish, domesticated animals, and humans. Thraustochytrids may also produce other commercially valuable fatty acids and isoprenoids. Due to the great potential of thraustochytrids as producers of DHA and other lipid-related molecules, a need for more knowledge on this group of organisms is needed. This necessitates the ability to do genetic manipulation of the different strains. Thus far, this has been obtained for a few strains, while it has failed for other strains. Here, we systematically review the genetic transformation methods used for different thraustochytrid strains, with the aim of aiding studies on strains not yet successfully transformed. The designs of transformation cassettes are also described and compared. Moreover, the potential problems when trying to establish transformation protocols in new thraustochytrid species/strains are discussed, along with suggestions utilized in other organisms to overcome similar challenges. The approaches discussed in this review could be a starting point when designing protocols for other non-model organisms.
Collapse
Affiliation(s)
| | - Helga Ertesvåg
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N7491 Trondheim, Norway;
| |
Collapse
|
6
|
Young SJ, West SC. Coordinated roles of SLX4 and MutSβ in DNA repair and the maintenance of genome stability. Crit Rev Biochem Mol Biol 2021; 56:157-177. [PMID: 33596761 PMCID: PMC7610648 DOI: 10.1080/10409238.2021.1881433] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
SLX4 provides a molecular scaffold for the assembly of multiple protein complexes required for the maintenance of genome stability. It is involved in the repair of DNA crosslinks, the resolution of recombination intermediates, the response to replication stress and the maintenance of telomere length. To carry out these diverse functions, SLX4 interacts with three structure-selective endonucleases, MUS81-EME1, SLX1 and XPF-ERCC1, as well as the telomere binding proteins TRF2, RTEL1 and SLX4IP. Recently, SLX4 was shown to interact with MutSβ, a heterodimeric protein involved in DNA mismatch repair, trinucleotide repeat instability, crosslink repair and recombination. Importantly, MutSβ promotes the pathogenic expansion of CAG/CTG trinucleotide repeats, which is causative of myotonic dystrophy and Huntington's disease. The colocalization and specific interaction of MutSβ with SLX4, together with their apparently overlapping functions, are suggestive of a common role in reactions that promote DNA maintenance and genome stability. This review will focus on the role of SLX4 in DNA repair, the interplay between MutSβ and SLX4, and detail how they cooperate to promote recombinational repair and DNA crosslink repair. Furthermore, we speculate that MutSβ and SLX4 may provide an alternative cellular mechanism that modulates trinucleotide instability.
Collapse
Affiliation(s)
- Sarah J Young
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London, UK
| | - Stephen C West
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
7
|
McGinty RJ, Mirkin SM. Cis- and Trans-Modifiers of Repeat Expansions: Blending Model Systems with Human Genetics. Trends Genet 2018; 34:448-465. [PMID: 29567336 PMCID: PMC5959756 DOI: 10.1016/j.tig.2018.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/30/2022]
Abstract
Over 30 hereditary diseases are caused by the expansion of microsatellite repeats. The length of the expandable repeat is the main hereditary determinant of these disorders. They are also affected by numerous genomic variants that are either nearby (cis) or physically separated from (trans) the repetitive locus, which we review here. These genetic variants have largely been elucidated in model systems using gene knockouts, while a few have been directly observed as single-nucleotide polymorphisms (SNPs) in patients. There is a notable disconnect between these two bodies of knowledge: knockouts poorly approximate the SNP-level variation in human populations that gives rise to medically relevant cis- and trans-modifiers, while the rarity of these diseases limits the statistical power of SNP-based analysis in humans. We propose that high-throughput SNP-based screening in model systems could become a useful approach to quickly identify and characterize modifiers of clinical relevance for patients.
Collapse
Affiliation(s)
- Ryan J McGinty
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
8
|
Abstract
Eukaryotic genomes contain many repetitive DNA sequences that exhibit size instability. Some repeat elements have the added complication of being able to form secondary structures, such as hairpin loops, slipped DNA, triplex DNA or G-quadruplexes. Especially when repeat sequences are long, these DNA structures can form a significant impediment to DNA replication and repair, leading to DNA nicks, gaps, and breaks. In turn, repair or replication fork restart attempts within the repeat DNA can lead to addition or removal of repeat elements, which can sometimes lead to disease. One important DNA repair mechanism to maintain genomic integrity is recombination. Though early studies dismissed recombination as a mechanism driving repeat expansion and instability, recent results indicate that mitotic recombination is a key pathway operating within repetitive DNA. The action is two-fold: first, it is an important mechanism to repair nicks, gaps, breaks, or stalled forks to prevent chromosome fragility and protect cell health; second, recombination can cause repeat expansions or contractions, which can be deleterious. In this review, we summarize recent developments that illuminate the role of recombination in maintaining genome stability at DNA repeats.
Collapse
|
9
|
GEORGE B, GEORGE B, AWASTHI M, SINGH RN. In silico genome-wide identification and analysis of microsatelliterepeats in the largest RNA virus family (Closteroviridae). Turk J Biol 2016. [DOI: 10.3906/biy-1503-11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
10
|
George B, Alam CM, Kumar RV, Gnanasekaran P, Chakraborty S. Potential linkage between compound microsatellites and recombination in geminiviruses: Evidence from comparative analysis. Virology 2015; 482:41-50. [DOI: 10.1016/j.virol.2015.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/16/2015] [Accepted: 03/05/2015] [Indexed: 01/10/2023]
|
11
|
George B, George B, awasthi M, Singh RN. Genome wide survey and analysis of microsatellites in Tombusviridae family. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0295-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Usdin K, House NCM, Freudenreich CH. Repeat instability during DNA repair: Insights from model systems. Crit Rev Biochem Mol Biol 2015; 50:142-67. [PMID: 25608779 DOI: 10.3109/10409238.2014.999192] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The expansion of repeated sequences is the cause of over 30 inherited genetic diseases, including Huntington disease, myotonic dystrophy (types 1 and 2), fragile X syndrome, many spinocerebellar ataxias, and some cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Repeat expansions are dynamic, and disease inheritance and progression are influenced by the size and the rate of expansion. Thus, an understanding of the various cellular mechanisms that cooperate to control or promote repeat expansions is of interest to human health. In addition, the study of repeat expansion and contraction mechanisms has provided insight into how repair pathways operate in the context of structure-forming DNA, as well as insights into non-canonical roles for repair proteins. Here we review the mechanisms of repeat instability, with a special emphasis on the knowledge gained from the various model systems that have been developed to study this topic. We cover the repair pathways and proteins that operate to maintain genome stability, or in some cases cause instability, and the cross-talk and interactions between them.
Collapse
Affiliation(s)
- Karen Usdin
- Laboratory of Cell and Molecular Biology, NIDDK, NIH , Bethesda, MD , USA
| | | | | |
Collapse
|
13
|
Abstract
DNA mismatch repair is a conserved antimutagenic pathway that maintains genomic stability through rectification of DNA replication errors and attenuation of chromosomal rearrangements. Paradoxically, mutagenic action of mismatch repair has been implicated as a cause of triplet repeat expansions that cause neurological diseases such as Huntington disease and myotonic dystrophy. This mutagenic process requires the mismatch recognition factor MutSβ and the MutLα (and/or possibly MutLγ) endonuclease, and is thought to be triggered by the transient formation of unusual DNA structures within the expanded triplet repeat element. This review summarizes the current knowledge of DNA mismatch repair involvement in triplet repeat expansion, which encompasses in vitro biochemical findings, cellular studies, and various in vivo transgenic animal model experiments. We present current mechanistic hypotheses regarding mismatch repair protein function in mediating triplet repeat expansions and discuss potential therapeutic approaches targeting the mismatch repair pathway.
Collapse
Affiliation(s)
- Ravi R Iyer
- Teva Branded Pharmaceutical Products R&D, Inc., West Chester, Pennsylvania 19380;
| | | | | | | |
Collapse
|
14
|
George B, Gnanasekaran P, Jain SK, Chakraborty S. Genome wide survey and analysis of small repetitive sequences in caulimoviruses. INFECTION GENETICS AND EVOLUTION 2014; 27:15-24. [PMID: 24999243 DOI: 10.1016/j.meegid.2014.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/01/2014] [Accepted: 06/22/2014] [Indexed: 12/19/2022]
Abstract
Microsatellites are known to exhibit ubiquitous presence across all kingdoms of life including viruses. Members of the Caulimoviridae family severely affect growth of vegetable and fruit plants and reduce economic yield in diverse cropping systems worldwide. Here, we analyzed the nature and distribution of both simple and complex microsatellites present in complete genome of 44 species of Caulimoviridae. Our results showed, in all analyzed genomes, genome size and GC content had a weak influence on number, relative abundance and relative density of microsatellites, respectively. For each genome, mono- and dinucleotide repeats were found to be highly predominant and are overrepresented in genome of majority of caulimoviruses. AT/TA and GAA/AAG/AGA was the most abundant di- and trinucleotide repeat motif, respectively. Repeats larger than trinucleotide were rarely found in these genomes. Comparative study of occurrence, abundance and density of microsatellite among available RNA and DNA viral genomes indicated that simple repeats were least abundant in genomes of caulimoviruses. Polymorphic repeats even though rare were observed in the large intergenic region of the genome, indicating strand slippage and/or unequal recombination processes do occur in caulimoviruses. To our knowledge, this is the first analysis of microsatellites occurring in any dsDNA viral genome. Characterization of such variations in repeat sequences would be important in deciphering the origin, mutational processes, and role of repeat sequences in viral genomes.
Collapse
Affiliation(s)
- Biju George
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Prabu Gnanasekaran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - S K Jain
- Department of Biotechnology, Jamia Hamdard University, New Delhi, Delhi 110062, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
15
|
Xu M, Gabison J, Liu Y. Trinucleotide repeat deletion via a unique hairpin bypass by DNA polymerase β and alternate flap cleavage by flap endonuclease 1. Nucleic Acids Res 2012; 41:1684-97. [PMID: 23258707 PMCID: PMC3561997 DOI: 10.1093/nar/gks1306] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Trinucleotide repeat (TNR) expansions and deletions are associated with human neurodegenerative diseases and prostate cancer. Recent studies have pointed to a linkage between oxidative DNA damage, base excision repair (BER) and TNR expansion, which is demonstrated by the observation that DNA polymerase β (pol β) gap-filling synthesis acts in concert with alternate flap cleavage by flap endonuclease 1 (FEN1) to mediate CAG repeat expansions. In this study, we provide the first evidence that the repair of a DNA base lesion can also contribute to CAG repeat deletions that were initiated by the formation of hairpins on both the template and the damaged strand of a continuous run of (CAG)20 or (CAG)25 repeats. Most important, we found that pol β not only bypassed one part of the large template hairpin but also managed to pass through almost the entire length of small hairpin. The unique hairpin bypass of pol β resulted in large and small deletions in coordination with FEN1 alternate flap cleavage. Our results provide new insight into the role of BER in modulating genome stability that is associated with human diseases.
Collapse
Affiliation(s)
- Meng Xu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | | | | |
Collapse
|
16
|
Taqi MM, Wärmländer SKTS, Yamskova O, Madani F, Bazov I, Luo J, Zubarev R, Verbeek D, Gräslund A, Bakalkin G. Conformation effects of CpG methylation on single-stranded DNA oligonucleotides: analysis of the opioid peptide dynorphin-coding sequences. PLoS One 2012; 7:e39605. [PMID: 22768096 PMCID: PMC3387154 DOI: 10.1371/journal.pone.0039605] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/23/2012] [Indexed: 11/19/2022] Open
Abstract
Single-stranded DNA (ssDNA) is characterized by high conformational flexibility that allows these molecules to adopt a variety of conformations. Here we used native polyacrylamide gel electrophoresis (PAGE), circular dichroism (CD) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy to show that cytosine methylation at CpG sites affects the conformational flexibility of short ssDNA molecules. The CpG containing 37-nucleotide PDYN (prodynorphin) fragments were used as model molecules. The presence of secondary DNA structures was evident from differences in oligonucleotide mobilities on PAGE, from CD spectra, and from formation of A-T, G-C, and non-canonical G-T base pairs observed by NMR spectroscopy. The oligonucleotides displayed secondary structures at 4°C, and some also at 37°C. Methylation at CpG sites prompted sequence-dependent formation of novel conformations, or shifted the equilibrium between different existing ssDNA conformations. The effects of methylation on gel mobility and base pairing were comparable in strength to the effects induced by point mutations in the DNA sequences. The conformational effects of methylation may be relevant for epigenetic regulatory events in a chromatin context, including DNA-protein or DNA-DNA recognition in the course of gene transcription, and DNA replication and recombination when double-stranded DNA is unwinded to ssDNA.
Collapse
Affiliation(s)
- Malik Mumtaz Taqi
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Sebastian K. T. S. Wärmländer
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Olga Yamskova
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Fatemeh Madani
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Igor Bazov
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Jinghui Luo
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Roman Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Dineke Verbeek
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
17
|
Abstract
Transcription stimulates the genetic instability of trinucleotide repeat sequences. However, the mechanisms leading to transcription-dependent repeat length variation are unclear. We demonstrate, using biochemical and genetic approaches, that the formation of stable RNA.DNA hybrids enhances the instability of CTG.CAG repeat tracts. In vitro transcribed CG-rich repeating sequences, unlike AT-rich repeats and nonrepeating sequences, form stable, ribonuclease A-resistant structures. These RNA.DNA hybrids are eliminated by ribonuclease H treatment. Mutation in the rnhA1 gene that decreases the activity of ribonuclease HI stimulates the instability of CTG.CAG repeats in E. coli. Importantly, the effect of ribonuclease HI depletion on repeat instability requires active transcription. We also showed that transcription-dependent CTG.CAG repeat instability in human cells is stimulated by siRNA knockdown of RNase H1 and H2. In addition, we used bisulfite modification, which detects single-stranded DNA, to demonstrate that the nontemplate DNA strand at transcribed CTG.CAG repeats remains partially single-stranded in human genomic DNA, thus indicating that it is displaced by an RNA.DNA hybrid. These studies demonstrate that persistent hybrids between the nascent RNA transcript and the template DNA strand at CTG.CAG tracts promote instability of DNA trinucleotide repeats.
Collapse
|
18
|
|
19
|
Shishkin AA, Voineagu I, Matera R, Cherng N, Chernet BT, Krasilnikova MM, Narayanan V, Lobachev KS, Mirkin SM. Large-scale expansions of Friedreich's ataxia GAA repeats in yeast. Mol Cell 2009; 35:82-92. [PMID: 19595718 PMCID: PMC2722067 DOI: 10.1016/j.molcel.2009.06.017] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 01/07/2009] [Accepted: 06/18/2009] [Indexed: 12/12/2022]
Abstract
Large-scale expansions of DNA repeats are implicated in numerous hereditary disorders in humans. We describe a yeast experimental system to analyze large-scale expansions of triplet GAA repeats responsible for the human disease Friedreich's ataxia. When GAA repeats were placed into an intron of the chimeric URA3 gene, their expansions caused gene inactivation, which was detected on the selective media. We found that the rates of expansions of GAA repeats increased exponentially with their lengths. These rates were only mildly dependent on the repeat's orientation within the replicon, whereas the repeat-mediated replication fork stalling was exquisitely orientation dependent. Expansion rates were significantly elevated upon inactivation of the replication fork stabilizers, Tof1 and Csm3, but decreased in the knockouts of postreplication DNA repair proteins, Rad6 and Rad5, and the DNA helicase Sgs1. We propose a model for large-scale repeat expansions based on template switching during replication fork progression through repetitive DNA.
Collapse
Affiliation(s)
| | - Irina Voineagu
- Department of Biology, Tufts University, Medford, MA 02155
| | - Robert Matera
- Department of Biology, Tufts University, Medford, MA 02155
| | - Nicole Cherng
- Department of Biology, Tufts University, Medford, MA 02155
| | | | - Maria M. Krasilnikova
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802
| | - Vidhya Narayanan
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Kirill S. Lobachev
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | | |
Collapse
|
20
|
SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination. Nat Struct Mol Biol 2009; 16:159-67. [PMID: 19136956 DOI: 10.1038/nsmb.1544] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 12/04/2008] [Indexed: 01/30/2023]
Abstract
Several molecular mechanisms have been proposed to explain trinucleotide repeat expansions. Here we show that in yeast srs2Delta cells, CTG repeats undergo both expansions and contractions, and they show increased chromosomal fragility. Deletion of RAD52 or RAD51 suppresses these phenotypes, suggesting that recombination triggers trinucleotide repeat instability in srs2Delta cells. In sgs1Delta cells, CTG repeats undergo contractions and increased fragility by a mechanism partially dependent on RAD52 and RAD51. Analysis of replication intermediates revealed abundant joint molecules at the CTG repeats during S phase. These molecules migrate similarly to reversed replication forks, and their presence is dependent on SRS2 and SGS1 but not RAD51. Our results suggest that Srs2 promotes fork reversal in repetitive sequences, preventing repeat instability and fragility. In the absence of Srs2 or Sgs1, DNA damage accumulates and is processed by homologous recombination, triggering repeat rearrangements.
Collapse
|
21
|
Brandstrom M, Bagshaw AT, Gemmell NJ, Ellegren H. The Relationship Between Microsatellite Polymorphism and Recombination Hot Spots in the Human Genome. Mol Biol Evol 2008; 25:2579-87. [DOI: 10.1093/molbev/msn201] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
22
|
Pollard LM, Bourn RL, Bidichandani SI. Repair of DNA double-strand breaks within the (GAA*TTC)n sequence results in frequent deletion of the triplet-repeat sequence. Nucleic Acids Res 2008; 36:489-500. [PMID: 18045804 PMCID: PMC2241870 DOI: 10.1093/nar/gkm1066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 11/07/2007] [Accepted: 11/12/2007] [Indexed: 11/13/2022] Open
Abstract
Friedreich ataxia is caused by an expanded (GAA*TTC)n sequence, which is unstable during intergenerational transmission and in most patient tissues, where it frequently undergoes large deletions. We investigated the effect of DSB repair on instability of the (GAA*TTC)n sequence. Linear plasmids were transformed into Escherichia coli so that each colony represented an individual DSB repair event. Repair of a DSB within the repeat resulted in a dramatic increase in deletions compared with circular templates, but DSB repair outside the repeat tract did not affect instability. Repair-mediated deletions were independent of the orientation and length of the repeat, the location of the break within the repeat or the RecA status of the strain. Repair at the center of the repeat resulted in deletion of approximately half of the repeat tract, and repair at an off-center location produced deletions that were equivalent in length to the shorter of the two repeats flanking the DSB. This is consistent with a single-strand annealing mechanism of DSB repair, and implicates erroneous DSB repair as a mechanism for genetic instability of the (GAA*TTC)n sequence. Our data contrast significantly with DSB repair within (CTG*CAG)n repeats, indicating that repair-mediated instability is dependent on the sequence of the triplet repeat.
Collapse
Affiliation(s)
- Laura M. Pollard
- Department of Biochemistry and Molecular Biology and Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rebecka L. Bourn
- Department of Biochemistry and Molecular Biology and Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sanjay I. Bidichandani
- Department of Biochemistry and Molecular Biology and Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
23
|
Bagshaw ATM, Pitt JPW, Gemmell NJ. High frequency of microsatellites in S. cerevisiae meiotic recombination hotspots. BMC Genomics 2008; 9:49. [PMID: 18226240 PMCID: PMC2267716 DOI: 10.1186/1471-2164-9-49] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 01/28/2008] [Indexed: 11/25/2022] Open
Abstract
Background Microsatellites are highly abundant in eukaryotic genomes but their function and evolution are not yet well understood. Their elevated mutation rate makes them ideal markers of genetic difference, but high levels of unexplained heterogeneity in mutation rates among microsatellites at different genomic locations need to be elucidated in order to improve the power and accuracy of the many types of study that use them as genetic markers. Recombination could contribute to this heterogeneity, since while replication errors are thought to be the predominant mechanism for microsatellite mutation, meiotic recombination is involved in some mutation events. There is also evidence suggesting that microsatellites could function as recombination signals. The yeast S. cerevisiae is a useful model organism with which to further explore the link between microsatellites and recombination, since it is very amenable to genetic study, and meiotic recombination hotspots have been mapped throughout its entire genome. Results We examined in detail the relationship between microsatellites and hotspots of meiotic double-strand breaks, the precursors of meiotic recombination, throughout the S. cerevisiae genome. We included all tandem repeats with motif length (repeat period) between one and six base pairs. Long, short and two-copy arrays were considered separately. We found that long, mono-, di- and trinucleotide microsatellites are around twice as frequent in hot than non-hot intergenic regions. The associations are weak or absent for repeats with less than six copies, and also for microsatellites with 4–6 base pair motifs, but high-copy arrays with motif length greater than three are relatively very rare throughout the genome. We present evidence that the association between high-copy, short-motif microsatellites and recombination hotspots is not driven by effects on microsatellite distribution of other factors previously linked to both recombination and microsatellites, including transcription, GC-content and transposable elements. Conclusion Our findings suggest that a mutation bias relating to recombination hotspots causing repeats to form and grow, and/or regulation of a subset of hotspots by simple sequences, may be significant processes in yeast. Some previous evidence has cast doubt on both of these possibilities, and as a result they have not been explored on a large scale, but the strength of the association we report suggests that they deserve further experimental testing.
Collapse
|
24
|
Abstract
Friedreich ataxia, the most common inherited ataxia, is caused by the transcriptional silencing of the FXN gene, which codes for the 210 amino acid frataxin, a mitochondrial protein involved in iron-sulfur cluster biosynthesis. The expansion of the GAA x TTC tract in intron 1 to as many as 1700 repeats elicits the transcriptional silencing by the formation of non-B DNA structures (triplexes or sticky DNA), the formation of a persistent DNA x RNA hybrid, or heterochromatin formation. The triplex (sticky DNA) adopted by the long repeat sequence also elicits profound mutagenic, genetic instability, and recombination behaviors. Early stage therapeutic investigations involving polyamides or histone deacetylase inhibitors are being pursued. Friedreich ataxia may be one of the most thoroughly studied hereditary neurological disease from a pathophysiological standpoint.
Collapse
Affiliation(s)
- Robert D Wells
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, The Texas Medical Center, 2121 W. Holcombe Blvd., Houston, TX 77030-3303, USA.
| |
Collapse
|
25
|
Szwarocka ST, Staczek P, Parniewski P. Chromosomal model for analysis of a long CTG/CAG tract stability in wild-type Escherichia coli and its nucleotide excision repair mutants. Can J Microbiol 2008; 53:860-8. [PMID: 17898841 DOI: 10.1139/w07-047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many human hereditary neurological diseases, including fragile X syndrome, myotonic dystrophy, and Friedreich's ataxia, are associated with expansions of the triplet repeat sequences (TRS) (CGG/CCG, CTG/CAG, and GAA/TTC) within or near specific genes. Mechanisms that mediate mutations of TRS include DNA replication, repair, and gene conversion and (or) recombination. The involvement of the repair systems in TRS instability was investigated in Escherichia coli on plasmid models, and the results showed that the deficiency of some nucleotide excision repair (NER) functions dramatically affects the stability of long CTG inserts. In such models in which there are tens or hundreds of plasmid molecules in each bacterial cell, repetitive sequences may interact between themselves and according to a recombination hypothesis, which may lead to expansions and deletions within such repeated tracts. Since one cannot control interaction between plasmids, it is also sometimes difficult to give precise interpretation of the results. Therefore, using modified lambda phage (lambdaInCh), we have constructed a chromosomal model to study the instability of trinucleotide repeat sequences in E. coli. We have shown that the stability of (CTG/CAG)68 tracts in the bacterial chromosome is influenced by mutations in NER genes in E. coli. The absence of the uvrC or uvrD gene products greatly enhances the instability of the TRS in the chromosome, whereas the lack of the functional UvrA or UvrB proteins causes substantial stabilization of (CTG/CAG) tracts.
Collapse
Affiliation(s)
- Sylwia T Szwarocka
- Department of Genetics of Microorganisms, University of Łódź, 90-237 Łódź, Banacha 12/16, Poland.
| | | | | |
Collapse
|
26
|
Pollard LM, Chutake YK, Rindler PM, Bidichandani SI. Deficiency of RecA-dependent RecFOR and RecBCD pathways causes increased instability of the (GAA*TTC)n sequence when GAA is the lagging strand template. Nucleic Acids Res 2007; 35:6884-94. [PMID: 17932052 PMCID: PMC2175318 DOI: 10.1093/nar/gkm810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 09/17/2007] [Accepted: 09/18/2007] [Indexed: 11/13/2022] Open
Abstract
The most common mutation in Friedreich ataxia is an expanded (GAA*TTC)n sequence, which is highly unstable in human somatic cells and in the germline. The mechanisms responsible for this genetic instability are poorly understood. We previously showed that cloned (GAA*TTC)n sequences replicated in Escherichia coli are more unstable when GAA is the lagging strand template, suggesting erroneous lagging strand synthesis as the likely mechanism for the genetic instability. Here we show that the increase in genetic instability when GAA serves as the lagging strand template is seen in RecA-deficient but not RecA-proficient strains. We also found the same orientation-dependent increase in instability in a RecA+ temperature-sensitive E. coli SSB mutant strain (ssb-1). Since stalling of replication is known to occur within the (GAA*TTC)n sequence when GAA is the lagging strand template, we hypothesized that genetic stability of the (GAA*TTC)n sequence may require efficient RecA-dependent recombinational restart of stalled replication forks. Consistent with this hypothesis, we noted significantly increased instability when GAA was the lagging strand template in strains that were deficient in components of the RecFOR and RecBCD pathways. Our data implicate defective processing of stalled replication forks as a mechanism for genetic instability of the (GAA*TTC)n sequence.
Collapse
Affiliation(s)
- Laura M. Pollard
- Department of Biochemistry and Molecular Biology and Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yogesh K. Chutake
- Department of Biochemistry and Molecular Biology and Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Paul M. Rindler
- Department of Biochemistry and Molecular Biology and Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sanjay I. Bidichandani
- Department of Biochemistry and Molecular Biology and Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
27
|
Zahra R, Blackwood JK, Sales J, Leach DRF. Proofreading and secondary structure processing determine the orientation dependence of CAG x CTG trinucleotide repeat instability in Escherichia coli. Genetics 2007; 176:27-41. [PMID: 17339223 PMCID: PMC1893049 DOI: 10.1534/genetics.106.069724] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Expanded CAG x CTG trinucleotide repeat tracts are associated with several human inherited diseases, including Huntington's disease, myotonic dystrophy, and spinocerebellar ataxias. Here we describe a new model system to investigate repeat instability in the Escherichia coli chromosome. Using this system, we reveal patterns of deletion instability consistent with secondary structure formation in vivo and address the molecular basis of orientation-dependent instability. We demonstrate that the orientation dependence of CAG x CTG trinucleotide repeat deletion is determined by the proofreading subunit of DNA polymerase III (DnaQ) in the presence of the hairpin nuclease SbcCD (Rad50/Mre11). Our results suggest that, although initiation of slippage can occur independently of CAG x CTG orientation, the folding of the intermediate affects its processing and this results in orientation dependence. We propose that proofreading is inefficient on the CTG-containing strand because of its ability to misfold and that SbcCD contributes to processing in a manner that is dependent on proofreading and repeat tract orientation. Furthermore, we demonstrate that transcription and recombination do not influence instability in this system.
Collapse
Affiliation(s)
- Rabaab Zahra
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
| | | | | | | |
Collapse
|
28
|
Majchrzak M, Bowater RP, Staczek P, Parniewski P. SOS repair and DNA supercoiling influence the genetic stability of DNA triplet repeats in Escherichia coli. J Mol Biol 2006; 364:612-24. [PMID: 17028021 DOI: 10.1016/j.jmb.2006.08.093] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 08/25/2006] [Accepted: 08/31/2006] [Indexed: 01/27/2023]
Abstract
Molecular mechanisms responsible for the genetic instability of DNA trinucleotide sequences (TRS) account for at least 20 human hereditary disorders. Many aspects of DNA metabolism influence the frequency of length changes in such repeats. Herein, we demonstrate that expression of Escherichia coli SOS repair proteins dramatically decreases the genetic stability of long (CTG/CAG)n tracts contained in plasmids. Furthermore, the growth characteristics of the bacteria are affected by the (CTG/CAG)n tract, with the effect dependent on the length of the TRS. In an E. coli host strain with constitutive expression of the SOS regulon, the frequency of deletions to the repeat is substantially higher than that in a strain with no SOS response. Analyses of the topology of reporter plasmids isolated from the SOS+ and SOS- strains revealed higher levels of negative supercoiling in strains with the constitutively expressed SOS network. Hence, we used strains with mutations in topoisomerases to examine the effect of DNA topology upon the TRS instability. Higher levels of negative DNA supercoiling correlated with increased deletions in long (CTG/CAG)n, (CGG/CCG)n and (GAA/TTC)n. These observations suggest a link between the induction of bacterial SOS repair, changes in DNA topology and the mechanisms leading to genetic instability of repetitive DNA sequences.
Collapse
Affiliation(s)
- Marta Majchrzak
- Centre for Medical Biology, Polish Academy of Sciences, 106 Lodowa Street, 93-232 Lodz, Poland
| | | | | | | |
Collapse
|
29
|
Wojciechowska M, Napierala M, Larson JE, Wells RD. Non-B DNA conformations formed by long repeating tracts of myotonic dystrophy type 1, myotonic dystrophy type 2, and Friedreich's ataxia genes, not the sequences per se, promote mutagenesis in flanking regions. J Biol Chem 2006; 281:24531-43. [PMID: 16793772 DOI: 10.1074/jbc.m603888200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expansions of long repeating tracts of CTG.CAG, CCTG.CAGG, and GAA.TTC are integral to the etiology of myotonic dystrophy type 1 (DM1), myotonic dystrophy type 2 (DM2), and Friedreich's ataxia (FRDA). Essentially all studies on the molecular mechanisms of this expansion process invoke an important role for non-B DNA conformations which may be adopted by these repeat sequences. We have directly evaluated the role(s) of the repeating sequences per se, or of the non-B DNA conformations formed by these sequences, in the mutagenic process. Studies in Escherichia coli and three types of mammalian (COS-7, CV-1, and HEK-293) fibroblast-like cells revealed that conditions which promoted the formation of the non-B DNA structures enhanced the genetic instabilities, both within the repeat sequences and in the flanking sequences of up to approximately 4 kbp. The three strategies utilized included: the in vivo modulation of global negative supercoil density using topA and gyrB mutant E. coli strains; the in vivo cleavage of hairpin loops, which are an obligate consequence of slipped-strand structures, cruciforms, and intramolecular triplexes, by inactivation of the SbcC protein; and by genetic instability studies with plasmids containing long repeating sequence inserts that do, and do not, adopt non-B DNA structures in vitro. Hence, non-B DNA conformations are critical for these mutagenesis mechanisms.
Collapse
Affiliation(s)
- Marzena Wojciechowska
- Institute of Biosciences and Technology, Center for Genome Research, Texas A&M University System Health Science Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
30
|
Kim SH, Pytlos MJ, Rosche WA, Sinden RR. (CAG)*(CTG) repeats associated with neurodegenerative diseases are stable in the Escherichia coli chromosome. J Biol Chem 2006; 281:27950-5. [PMID: 16873366 DOI: 10.1074/jbc.m601129200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
(CAG)(n)*(CTG)(n) expansion is associated with many neurodegenerative diseases. Repeat instability has been extensively studied in bacterial plasmids, where repeats undergo deletion at high rates. We report an assay for (CAG)(n)*(CTG)(n) deletion from the chloramphenicol acetyltransferase gene integrated into the Escherichia coli chromosome. In strain AB1157, deletion rates for 25-60 (CAG) x (CTG) repeats integrated in the chromosome ranged from 6.88 x 10(-9) to 1.33 x 10(-10), or approximately 6,300 to 660,000-fold lower than in plasmid pBR325. In contrast to the situation in plasmids, deletions occur at a higher rate when (CTG)(43), rather than (CAG)(43), comprised the leading template strand, and complete rather than partial deletions were the predominant mutation observed. Repeats were also stable on long term growth following multiple passages through exponential and stationary phase. Mutations in priA and recG increased or decreased deletion rates, but repeats were still greatly stabilized in the chromosome. The remarkable stability of (CAG)(n) x (CTG)(n) repeats in the E. coli chromosome may result from the differences in the mechanisms for replication or the probability for recombination afforded by a high plasmid copy number. The integration of (CAG)(n) x (CTG)(n) repeats into the chromosome provides a model system in which the inherent stability of these repeats reflects that in the human genome more closely.
Collapse
Affiliation(s)
- Seung-Hwan Kim
- Laboratory of DNA Structure and Mutagenesis, Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, 77030-3303, USA
| | | | | | | |
Collapse
|
31
|
Dere R, Wells RD. DM2 CCTG•CAGG Repeats are Crossover Hotspots that are More Prone to Expansions than the DM1 CTG•CAG Repeats in Escherichia coli. J Mol Biol 2006; 360:21-36. [PMID: 16753177 DOI: 10.1016/j.jmb.2006.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 04/27/2006] [Accepted: 05/04/2006] [Indexed: 12/29/2022]
Abstract
Myotonic dystrophy type 2 (DM2) is caused by the extreme expansion of the repeating tetranucleotide CCTG*CAGG sequence from <30 repeats in normal individuals to approximately 11,000 for the full mutation in certain patients. This repeat is in intron 1 of the zinc finger protein 9 gene on chromosome 3q21. Since prior work demonstrated that CTG*CAG and GAA*TTC triplet repeats (responsible for DM1 and Friedreich's ataxia, respectively) can expand by genetic recombination, we investigated the capacity of the DM2 tetranucleotide repeats to also expand during this process. Both gene conversion and unequal crossing over are attractive mechanisms to effect these very large expansions. (CCTG*CAGG)n (where n=30, 75, 114 or 160) repeats showed high recombination crossover frequencies (up to 27-fold higher than the non-repeating control) in an intramolecular plasmid system in Escherichia coli. Furthermore, a distinct orientation effect was observed where orientation II (CAGG on the leading strand template) was more prone to recombine. Expansions of up to double the length of the tetranucleotide repeats were found. Also, the repeating tetranucleotide sequence was more prone to expansions (to give lengths longer than a single repeating tract) than deletions as observed for the CTG*CAG and GAA*TTC repeats. We determined that the DM2 tetranucleotide repeats showed a lower thermodynamic stability when compared to the DM1 trinucleotide repeats, which could make them better targets for DNA repair events, thus explaining their expansion-prone behavior. Genetic studies in SOS-repair mutants revealed high frequencies of recombination crossovers although the SOS-response itself was not induced. Thus, the genetic instabilities of the CCTG*CAGG repeats may be mediated by a recombination-repair mechanism that is influenced by DNA structure.
Collapse
Affiliation(s)
- Ruhee Dere
- Institute of Biosciences and Technology, Center for Genome Research, Texas A&M University System Health Science Center, Texas Medical Center, 2121 W. Holcombe Blvd., Houston, TX 77030-3303, USA
| | | |
Collapse
|
32
|
Son LS, Bacolla A, Wells RD. Sticky DNA: in vivo formation in E. coli and in vitro association of long GAA*TTC tracts to generate two independent supercoiled domains. J Mol Biol 2006; 360:267-84. [PMID: 16764889 DOI: 10.1016/j.jmb.2006.05.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 05/04/2006] [Accepted: 05/10/2006] [Indexed: 02/02/2023]
Abstract
The expanded GAA*TTC repeat sequence associated with Friedreich's ataxia (FRDA) adopts non-B DNA structures, (triplexes and sticky DNA). Sticky DNA is formed in plasmids by the association of two long GAA*TTC tracts at lengths that are found in the sequence of the frataxin gene in patients. Most FRDA patients have expanded GAA*TTC repeats (up to 1700 triplets), which inhibit the transcription of the gene, thus diminishing the synthesis of frataxin, a mitochondrial protein involved in iron-sulfur cluster biogenesis. Negative supercoiling and MgCl(2) (or MnCl(2)) are required to stabilize sticky DNA (a dumbbell-shaped structure) in plasmids with a pair of repeat tracts where n> or =60 in the direct repeat orientation in vitro. Since the triplet repeat sequences (TRS) were symmetrically positioned in the plasmids and because a number of unique restriction sites were present in the vector, studies were conducted to evaluate the influence of selectively linearizing one or the other supercoiled domains created by the DNA*DNA associated region, i.e. the stable complex at the pair of TRS's. The two domains behave independently, thus confirming the association of the two tracts and the dumbbell-shaped plasmid in our model for sticky DNA. Linking number investigations were performed on a family of plasmids harboring different lengths (30, 60, or 176 repeats), orientations and number of tracts (one or two) of a GAA*TTC repeat in Escherichia coli to evaluate the in vivo role, if any, of sticky DNA. Unexpectedly, this non-B DNA conformation elicited the formation of a TRS-length dependent change in the global topology of the plasmids, indicative of an apparent compression of the primary helices. Thus, linking number determinations confirm that sticky DNA has an important consequence in vivo.
Collapse
Affiliation(s)
- Leslie S Son
- Institute of Biosciences and Technology, Center for Genome Research, Texas A&M University System Health Science Center, Texas Medical Center, 2121 W. Holcombe Blvd., Houston, TX 77030-3303, USA
| | | | | |
Collapse
|
33
|
Abstract
Hypermutable tandem repeat sequences (TRSs) are present in the genomes of both prokaryotic and eukaryotic organisms. Numerous studies have been conducted in several laboratories over the past decade to investigate the mechanisms responsible for expansions and contractions of microsatellites (a subset of TRSs with a repeat length of 1-6 nucleotides) in the model prokaryotic organism Escherichia coli. Both the frequency of tandem repeat instability (TRI), and the types of mutational events that arise, are markedly influenced by the DNA sequence of the repeat, the number of unit repeats, and the types of cellular pathways that process the TRS. DNA strand slippage is a general mechanism invoked to explain instability in TRSs. Misaligned DNA sequences are stabilized both by favorable base pairing of complementary sequences and by the propensity of TRSs to form relatively stable secondary structures. Several cellular processes, including replication, recombination and a variety of DNA repair pathways, have been shown to interact with such structures and influence TRI in bacteria. This paper provides an overview of our current understanding of mechanisms responsible for TRI in bacteria, with an emphasis on studies that have been carried out in E. coli. In addition, new experimental data are presented, suggesting that TLS polymerases (PolII, PolIV and PolV) do not contribute significantly to TRI in E. coli.
Collapse
Affiliation(s)
- M Bichara
- Département Intégrité du Génome de l'UMR 7175, PolAP1, Boulevard Sébastien Brant 67400, Strasbourg-Illkirch, France
| | | | | |
Collapse
|
34
|
Gao H, Kong J. The microsatellites and minisatellites in the genome of Fenneropenaeus chinensis. ACTA ACUST UNITED AC 2006; 16:426-36. [PMID: 16287622 DOI: 10.1080/10425170500354359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Through two-time sequencing randomly in Fenneropenaeus chinensis, 2,597,000 bp cumulative length random genomic sequences about occupying 1.23 per thousand of the entire genome are obtained, in which the length of the first time sequencing is 884,000 bp, by cutting the genome DNA with Sau3AI enzyme, and the second is 1,713,000 bp by breaking the genome DNA with the physical method, ultrasonic. Using tandem repeat finder (TRF) soft to analyze the sequences, 4,588 tandem repeats are found, in which the number of microsatellites (1-6 bp) is 3,888, and 700 for minisatellites ( >or= 7 bp). The cumulative length of repeats is 305,555 bp, accounting for 11.72% of total cumulative sequence length, in which the cumulative length of microsatellites is 232,979 bp, accounting for 8.97% of total sequence length, and greater than those of other organisms, such as human and mosquito, etc. The dinucleotide repeat type is dominant in which the dominant repeat class is AT. The second abundant repeat type is trinucleotide, of which the dominant repeat class is AAT. Interestingly, of all of repeat types, the repeat numbers and repeat classes of primer number repeat types, such as pentanucleotide, heptanucleotide, elevennucleotide, etc. are less than those of repeat types beside them. The phenomena may involve the genesis and the evolution of microsatellites and minisatellites.
Collapse
Affiliation(s)
- Huan Gao
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR of China
| | | |
Collapse
|
35
|
Hebert ML, Wells RD. Roles of double-strand breaks, nicks, and gaps in stimulating deletions of CTG.CAG repeats by intramolecular DNA repair. J Mol Biol 2005; 353:961-79. [PMID: 16213518 DOI: 10.1016/j.jmb.2005.09.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 08/30/2005] [Accepted: 09/09/2005] [Indexed: 11/19/2022]
Abstract
A series of plasmids harboring CTG.CAG repeats with double-strand breaks (DSB), single-strand nicks, or single-strand gaps (15 or 30 nucleotides) within the repeat regions were used to determine their capacity to induce genetic instabilities. These plasmids were introduced into Escherichia coli in the presence of a second plasmid containing a sequence that could support homologous recombination repair between the two plasmids. The transfer of a point mutation from the second to the first plasmid was used to monitor homologous recombination (gene conversion). Only DSBs increased the overall genetic instability. This instability took place by intramolecular repair, which was not dependent on RuvA. Double-strand break-induced instabilities were partially stabilized by a mutation in recF. Gaps of 30 nt formed a distinct 30 nt deletion product, whereas single strand nicks and gaps of 15 nt did not induce expansions or deletions. Formation of this deletion product required the CTG.CAG repeats to be present in the single-stranded region and was stimulated by E.coli DNA ligase, but was not dependent upon the RecFOR pathway. Models are presented to explain the intramolecular repair-induced instabilities and the formation of the 30 nt deletion product.
Collapse
Affiliation(s)
- Micheal L Hebert
- Center for Genome Research, Institute of Biosciences and Technology, Texas A and M University System Health Science Center, 2121 W. Holcombe Blvd., Houston, TX 77030-3303, USA
| | | |
Collapse
|
36
|
Napierala M, Bacolla A, Wells RD. Increased negative superhelical density in vivo enhances the genetic instability of triplet repeat sequences. J Biol Chem 2005; 280:37366-76. [PMID: 16166072 DOI: 10.1074/jbc.m508065200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The influence of negative superhelical density on the genetic instabilities of long GAA.TTC, CGG.CCG, and CTG.CAG repeat sequences was studied in vivo in topologically constrained plasmids in Escherichia coli. These repeat tracts are involved in the etiologies of Friedreich ataxia, fragile X syndrome, and myotonic dystrophy type 1, respectively. The capacity of these DNA tracts to undergo deletions-expansions was explored with three genetic-biochemical approaches including first, the utilization of topoisomerase I and/or DNA gyrase mutants, second, the specific inhibition of DNA gyrase by novobiocin, and third, the genetic removal of the HU protein, thus lowering the negative supercoil density (-sigma). All three strategies revealed that higher -sigma in vivo enhanced the formation of deleted repeat sequences. The effects were most pronounced for the Friedreich ataxia and the fragile X triplet repeat sequences. Higher levels of -sigma stabilize non-B DNA conformations (i.e. triplexes, sticky DNA, flexible and writhed DNA, slipped structures) at appropriate repeat tracts; also, numerous prior genetic instability investigations invoke a role for these structures in promoting the slippage of the DNA complementary strands. Thus, we propose that the in vivo modulation of the DNA structure, localized to the repeat tracts, is responsible for these behaviors. Presuming that these interrelationships are also found in humans, dynamic alterations in the chromosomal nuclear matrix may modulate the -sigma of certain DNA regions and, thus, stabilize/destabilize certain non-B conformations which regulate the genetic expansions-deletions responsible for the diseases.
Collapse
Affiliation(s)
- Marek Napierala
- Institute of Biosciences and Technology, Center for Genome Research, Texas A&M University System Health Science Center, Houston, 77030-3303, USA
| | | | | |
Collapse
|
37
|
Wells RD, Dere R, Hebert ML, Napierala M, Son LS. Advances in mechanisms of genetic instability related to hereditary neurological diseases. Nucleic Acids Res 2005; 33:3785-98. [PMID: 16006624 PMCID: PMC1174910 DOI: 10.1093/nar/gki697] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Substantial progress has been realized in the past several years in our understanding of the molecular mechanisms responsible for the expansions and deletions (genetic instabilities) of repeating tri-, tetra- and pentanucleotide repeating sequences associated with a number of hereditary neurological diseases. These instabilities occur by replication, recombination and repair processes, probably acting in concert, due to slippage of the DNA complementary strands relative to each other. The biophysical properties of the folded-back repeating sequence strands play a critical role in these instabilities. Non-B DNA structural elements (hairpins and slipped structures, DNA unwinding elements, tetraplexes, triplexes and sticky DNA) are described. The replication mechanisms are influenced by pausing of the replication fork, orientation of the repeat strands, location of the repeat sequences relative to replication origins and the flap endonuclease. Methyl-directed mismatch repair, nucleotide excision repair, and repair of damage caused by mutagens are discussed. Genetic recombination and double-strand break repair advances in Escherichia coli, yeast and mammalian models are reviewed. Furthermore, the newly discovered capacities of certain triplet repeat sequences to cause gross chromosomal rearrangements are discussed.
Collapse
Affiliation(s)
- Robert D Wells
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Texas Medical Center, 2121 W. Holcombe Blvd, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
38
|
Wojciechowska M, Bacolla A, Larson JE, Wells RD. The Myotonic Dystrophy Type 1 Triplet Repeat Sequence Induces Gross Deletions and Inversions. J Biol Chem 2005; 280:941-52. [PMID: 15489504 DOI: 10.1074/jbc.m410427200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The capacity of (CTG.CAG)n and (GAA.TTC)n repeat tracts in plasmids to induce mutations in DNA flanking regions was evaluated in Escherichia coli. Long repeats of these sequences are involved in the etiology of myotonic dystrophy type 1 and Friedreich's ataxia, respectively. Long (CTG.CAG)n (where n = 98 and 175) caused the deletion of most, or all, of the repeats and the flanking GFP gene. Deletions of 0.6-1.8 kbp were found as well as inversions. Shorter repeat tracts (where n = 0 or 17) were essentially inert, as observed for the (GAA.TTC)176-containing plasmid. The orientation of the triplet repeat sequence (TRS) relative to the unidirectional origin of replication had a pronounced effect, signaling the participation of replication and/or repair systems. Also, when the TRS was transcribed, the level of deletions was greatly elevated. Under certain conditions, 30-50% of the products contained gross deletions. DNA sequence analyses of the breakpoint junctions in 47 deletions revealed the presence of 1-8-bp direct or inverted homologies in all cases. Also, the presence of non-B folded conformations (i.e. slipped structures, cruciforms, or triplexes) at or near the breakpoints was predicted in all cases. This genetic behavior, which was previously unrecognized for a TRS, may provide the basis for a new type of instability of the myotonic dystrophy protein kinase (DMPK) gene in patients with a full mutation.
Collapse
Affiliation(s)
- Marzena Wojciechowska
- Center for Genome Research Institute of Biosciences and Technology, Texas A & M University System Health Science Center, Texas Medical Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
39
|
Dere R, Napierala M, Ranum LPW, Wells RD. Hairpin Structure-forming Propensity of the (CCTG·CAGG) Tetranucleotide Repeats Contributes to the Genetic Instability Associated with Myotonic Dystrophy Type 2. J Biol Chem 2004; 279:41715-26. [PMID: 15292165 DOI: 10.1074/jbc.m406415200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The genetic instabilities of (CCTG.CAGG)(n) tetranucleotide repeats were investigated to evaluate the molecular mechanisms responsible for the massive expansions found in myotonic dystrophy type 2 (DM2) patients. DM2 is caused by an expansion of the repeat from the normal allele of 26 to as many as 11,000 repeats. Genetic expansions and deletions were monitored in an African green monkey kidney cell culture system (COS-7 cells) as a function of the length (30, 114, or 200 repeats), orientation, or proximity of the repeat tracts to the origin (SV40) of replication. As found for CTG.CAG repeats related to DM1, the instabilities were greater for the longer tetranucleotide repeat tracts. Also, the expansions and deletions predominated when cloned in orientation II (CAGG on the leading strand template) rather than I and when cloned proximal rather than distal to the replication origin. Biochemical studies on synthetic d(CAGG)(26) and d(CCTG)(26) as models of unpaired regions of the replication fork revealed that d(CAGG)(26) has a marked propensity to adopt a defined base paired hairpin structure, whereas the complementary d(CCTG)(26) lacks this capacity. The effect of orientation described above differs from all previous results with three triplet repeat sequences (including CTG.CAG), which are also involved in the etiologies of other hereditary neurological diseases. However, similar to the triplet repeat sequences, the ability of one of the two strands to form a more stable folded structure, in our case the CAGG strand, explains this unorthodox "reversed" behavior.
Collapse
Affiliation(s)
- Ruhee Dere
- Institute of Biosciences and Technology, Center for Genome Research, Texas A and M University System Health Science Center, Texas Medical Center, Houston, Texas 77030-3303, USA
| | | | | | | |
Collapse
|
40
|
Hebert ML, Spitz LA, Wells RD. DNA Double-strand Breaks Induce Deletion of CTG·CAG Repeats in an Orientation-dependent Manner in Escherichia coli. J Mol Biol 2004; 336:655-72. [PMID: 15095979 DOI: 10.1016/j.jmb.2003.12.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 12/11/2003] [Accepted: 12/11/2003] [Indexed: 10/26/2022]
Abstract
The influences of double-strand breaks (DSBs) within a triplet repeat sequence on its genetic instabilities (expansions and deletions) related to hereditary neurological diseases was investigated. Plasmids containing 43 or 70 CTG.CAG repeats or 43 CGG.CCG repeats were linearized in vitro near the center of the repeats and were transformed into parental, RecA-dependent homologous recombination-deficient, or RecBC exonuclease-deficient Escherichia coli. The resulting repair process considerably increased deletion of the repeating sequence compared to the circular DNA controls. Unexpectedly, the orientation of the insert relative to the unidirectional ColE1 origin of replication affected the amount of instability generated during the repair of the DSB. When the CTG strand was the template for lagging-strand synthesis, instability was increased, most markedly in the recA- strain. Results indicated that RecA and/or RecBC might play a role in DSB repair within the triplet repeat. Altering the length, orientation, and sequence composition of the triplet repeat suggested an important role of DNA secondary structures during repair intermediates. Hence, we hypothesize that ColE1 origin-dependent replication was involved during the repair of the DSB. A model is presented to explain the mechanisms of the observed genetic instabilities.
Collapse
Affiliation(s)
- Micheal L Hebert
- Institute of Biosciences and Technology, Center for Genome Research, Texas A and M University System Health Science Center, Texas Medical Center, 2121 W. Holcombe Blavd., Houston, TX 77030-3303, USA
| | | | | |
Collapse
|
41
|
Napierala M, Dere R, Vetcher A, Wells RD. Structure-dependent Recombination Hot Spot Activity of GAA·TTC Sequences from Intron 1 of the Friedreich's Ataxia Gene. J Biol Chem 2004; 279:6444-54. [PMID: 14625270 DOI: 10.1074/jbc.m309596200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The recombinational properties of long GAA.TTC repeating sequences were analyzed in Escherichia coli to gain further insights into the molecular mechanisms of the genetic instability of this tract as possibly related to the etiology of Friedreich's ataxia. Intramolecular and intermolecular recombination studies showed that the frequency of recombination between the GAA.TTC tracts was as much as 15 times higher than the non-repeating control sequences. Homologous, intramolecular recombination between GAA.TTC tracts and GAAGGA.TCCTTC repeats also occurred with a very high frequency (approximately 0.8%). Biochemical analyses of the recombination products demonstrated the expansions and deletions of the GAA.TTC repeats. These results, together with our previous studies on the CTG.CAG sequences, suggest that the recombinational hot spot characteristics may be a common feature of all triplet repeat sequences. Unexpectedly, we found that the recombination properties of the GAA.TTC tracts were unique, compared with CTG.CAG repeats, because they depended on the DNA secondary structure polymorphism. Increasing the length of the GAA.TTC repeats decreased the intramolecular recombination frequency between these tracts. Also, a correlation was found between the propensity of the GAA.TTC tracts to adopt the sticky DNA conformation and the inhibition of intramolecular recombination. The use of novobiocin to modulate the intracellular DNA topology, i.e. the lowering of the negative superhelical density, repressed the formation of the sticky DNA structure, thereby restoring the expected positive correlation between the length of the GAA.TTC tracts and the frequency of intramolecular recombination. Hence, our results demonstrate that sticky DNA exists and functions in E. coli.
Collapse
Affiliation(s)
- Marek Napierala
- Institute of Biosciences and Technology, Center for Genome Research, Texas A&M University System Health Science Center, Texas Medical Center, Houston, Texas 77030-3303, USA
| | | | | | | |
Collapse
|
42
|
Abstract
Our discovery that plasmids containing the Friedreich's ataxia (FRDA) expanded GAA.TTC sequence, which forms sticky DNA, are prone to form dimers compared with monomers in vivo is the basis of an intracellular assay in Escherichia coli for this unusual DNA conformation. Sticky DNA is a single long GAA.GAA.TTC triplex formed in plasmids harboring a pair of long GAA.TTC repeat tracts in the direct repeat orientation. This requirement is fulfilled by either plasmid dimers of DNAs with a single trinucleotide repeat sequence tract or by monomeric DNAs containing a pair of direct repeat GAA.TTC sequences. DNAs harboring a single GAA.TTC repeat are unable to form this type of triplex conformation. An excellent correlation was observed between the ability of a plasmid to adopt the sticky triplex conformation as assayed in vitro and its propensity to form plasmid dimers relative to monomers in vivo. The variables measured that strongly influenced these measurements are as follows: length of the GAA.TTC insert; the extent of periodic interruptions within the repeat sequence; the orientation of the repeat inserts; and the in vivo negative supercoil density. Nitrogen mustard cross-linking studies on a family of GAA.TTC-containing plasmids showed the presence of sticky DNA in vivo and, thus, serves as an important bridge between the in vitro and in vivo determinations. Biochemical genetic studies on FRDA containing DNAs grown in recA or nucleotide excision repair or ruv-deficient cells showed that the in vivo properties of sticky DNA play an important role in the monomer-dimer-sticky DNA intracellular intercon-versions. Thus, the sticky DNA triplex exists and functions in living cells, strengthening the likelihood of its role in the etiology of FRDA.
Collapse
Affiliation(s)
- Alexandre A Vetcher
- Center for Genome Research, Institute of Biosciences and Technology, Texas A & M University System Health Science Center, Texas Medical Center, Houston, Texas 77030-3303, USA
| | | |
Collapse
|
43
|
Lenzmeier BA, Freudenreich CH. Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair. Cytogenet Genome Res 2003; 100:7-24. [PMID: 14526162 DOI: 10.1159/000072836] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2002] [Accepted: 01/06/2003] [Indexed: 11/19/2022] Open
Abstract
The trinucleotide repeats that expand to cause human disease form hairpin structures in vitro that are proposed to be the major source of their genetic instability in vivo. If a replication fork is a train speeding along a track of double-stranded DNA, the trinucleotide repeats are a hairpin curve in the track. Experiments have demonstrated that the train can become derailed at the hairpin curve, resulting in significant damage to the track. Repair of the track often results in contractions and expansions of track length. In this review we introduce the in vitro evidence for why CTG/CAG and CCG/CGG repeats are inherently unstable and discuss how experiments in model organisms have implicated the replication, recombination and repair machinery as contributors to trinucleotide repeat instability in vivo.
Collapse
Affiliation(s)
- B A Lenzmeier
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
44
|
Marcadier JL, Pearson CE. Fidelity of primate cell repair of a double-strand break within a (CTG).(CAG) tract. Effect of slipped DNA structures. J Biol Chem 2003; 278:33848-56. [PMID: 12807901 DOI: 10.1074/jbc.m304284200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
At least 15 human diseases are caused by the instability of gene-specific (CTG).(CAG) repeats. The precise mechanism of instability remains unknown, though bacterial and yeast models have suggested a role for aberrant repair of double-strand breaks (DSBs). Using an established primate DSB repair system, we have investigated the fidelity of repair of a DSB within a (CTG).(CAG) repeat tract. DSB repair substrates were generated from plasmids that are stably replicated in their circular form, permitting us to highlight the effects of DSB repair on repeat stability and minimize the contribution of replication. DSBs were introduced into repeat-containing plasmids using a unique BsmI site, such that the entire repeat tract comprised one free end of the linearized plasmid. Substrates containing 17, 47, and 79 repeats, in either their linear duplex form or containing slipped structures (out-of-register interstrand mispairings at repeat sequences), were transiently transfected into primate cells. Linearized plasmids with repeats were repaired with mildly reduced efficiency, while the presence of slipped structures considerably reduced repair efficiency. The repaired products were characterized for alterations within the repeat tract and flanking sequence. DSB repair induced predominantly repeat deletions. Notably, a polarized/directional deletion effect was observed, in that the repetitive end of the DSB was preferentially removed. This phenomenon was dramatically enhanced when slipped structures were present within the repeat tract, providing the first evidence for error-prone processing of slipped-strand structures. These results suggest the existence of primate nuclease activities that are specific for (CTG).(CAG) repeats and the structures they form.
Collapse
Affiliation(s)
- Julien L Marcadier
- Department of Molecular & Medical Genetics, University of Toronto, Ontario M5A 1X8, Canada
| | | |
Collapse
|
45
|
Göhler T, Reimann M, Cherny D, Walter K, Warnecke G, Kim E, Deppert W. Specific interaction of p53 with target binding sites is determined by DNA conformation and is regulated by the C-terminal domain. J Biol Chem 2002; 277:41192-203. [PMID: 12171916 DOI: 10.1074/jbc.m202344200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcriptional activation of p53-regulated genes is initiated by sequence-specific DNA binding of p53 to target binding sites. Regulation of sequence-specific DNA binding is complex and occurs at various levels. We demonstrate that DNA topology is an important parameter for regulating the selective and highly specific interaction of p53 with its target binding sites. Specific binding of wild-type p53 is greatly enhanced when cognate binding sites are present in a non-linear stem-loop conformation. The C-terminal domain plays a key role in regulating the specific interactions of p53 with target binding sites in a DNA conformation-dependent manner. The C-terminal domain is required for binding to target sites in a non-linear DNA conformation in contrast to the strong inhibitory effects of the C terminus on p53 interaction with linear DNA. We propose that selective binding of p53 to various promoters may be determined by the DNA conformation within p53 cognate sites.
Collapse
Affiliation(s)
- Thomas Göhler
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie, Universität Hamburg, Martinistrasse 52, Hamburg D-20251, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Vetcher AA, Napierala M, Wells RD. Sticky DNA: effect of the polypurine.polypyrimidine sequence. J Biol Chem 2002; 277:39228-34. [PMID: 12161438 DOI: 10.1074/jbc.m205210200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The polypurine.polypyrimidine sequence requirements for the formation of sticky DNA were evaluated in Escherichia coli plasmid systems to determine the potential occurrence of this conformation throughout biological systems. A mirror repeat, dinucleotide tract of (GA.TC)(37), which is ubiquitous in eukaryotes, formed sticky DNA, but shorter sequences of 10 or 20 repeats were inert. (GGA.TCC)(n) inserts (where n = 126, 159, and 222 bp) also formed sticky DNA. As shown previously, the control sequence (GAA.TTC)(150) (450 bp) readily adopted the X-shaped sticky structure; however, this structure has never been found for the nonpathogenic (GAAGGA.TCCTTC)(65) of the same approximate length (390 bp). A sequence that is replete with polypurine.polypyrimidine tracts that can form triplexes and slipped structures but lacks long repeating motifs (the 2.5-kbp intron 21 sequence from the polycystic kidney disease gene 1) was also inert. Interestingly, tracts of (GAA.TTC)(n) (where n = 176 or 80) readily formed sticky DNA with (GAAGGA.TCCTTC)(65) cloned into the same plasmid when the pair of inserts was in the direct, but not in the indirect (inverted), orientation. The stabilities of the triple base (Watson-Crick and Hoogsteen) interactions in the DNA/DNA associated triplex region of the sticky conformations account for these observations. Our results have significant chemical and biological implications for the structure and function of this unusual DNA conformation in Friedreich's ataxia.
Collapse
Affiliation(s)
- Alexandre A Vetcher
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University, Texas Medical Center, Houston, Texas 77030-3303, USA
| | | | | |
Collapse
|
47
|
Vetcher AA, Napierala M, Iyer RR, Chastain PD, Griffith JD, Wells RD. Sticky DNA, a long GAA.GAA.TTC triplex that is formed intramolecularly, in the sequence of intron 1 of the frataxin gene. J Biol Chem 2002; 277:39217-27. [PMID: 12161437 DOI: 10.1074/jbc.m205209200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Friedreich's ataxia is caused by the massive expansion of GAA.TTC repeats in intron 1 of the frataxin (X25) gene. Our prior investigations showed that long GAA.TTC repeats formed very stable triplex structures which caused two repeat tracts to adhere to each other (sticky DNA). This process was dependent on negative supercoiling and the presence of divalent metal ions. Herein, we have investigated the formation of sticky DNA from plasmid monomers and dimers; sticky DNA is formed only when two tracts of sufficiently long (GAA.TTC)(n) (n = 59-270) are present in a single plasmid DNA and are in the direct repeat orientation. If the inserts are in the indirect (inverted) repeat orientation, no sticky DNA was observed. Furthermore, kinetic studies support the intramolecular nature of sticky DNA formation. Electron microscopy investigations also provide strong data for sticky DNA as a single long triplex. Hence, these results give new insights into our understanding of the capacity of sticky DNA to inhibit transcription and thereby reduce the level of frataxin protein as related to the etiology of Friedreich's ataxia.
Collapse
Affiliation(s)
- Alexandre A Vetcher
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University, Texas Medical Center, Houston, Texas 77030-3303, USA
| | | | | | | | | | | |
Collapse
|
48
|
Pluciennik A, Iyer RR, Napierala M, Larson JE, Filutowicz M, Wells RD. Long CTG.CAG repeats from myotonic dystrophy are preferred sites for intermolecular recombination. J Biol Chem 2002; 277:34074-86. [PMID: 12087090 DOI: 10.1074/jbc.m202127200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homologous recombination was shown to enable the expansion of CTG.CAG repeat sequences. Other prior investigations revealed the involvement of replication and DNA repair in these genetic instabilities. Here we used a genetic assay to measure the frequency of homologous intermolecular recombination between two CTG.CAG tracts. When compared with non-repeating sequences of similar lengths, long (CTG.CAG)(n) repeats apparently recombine with an approximately 60-fold higher frequency. Sequence polymorphisms that interrupt the homogeneity of the CTG.CAG repeat tracts reduce the apparent recombination frequency as compared with the pure uninterrupted repeats. The orientation of the repeats relative to the origin of replication strongly influenced the apparent frequency of recombination. This suggests the involvement of DNA replication in the recombination process of triplet repeats. We propose that DNA polymerases stall within the CTG.CAG repeat tracts causing nicks or double-strand breaks that stimulate homologous recombination. The recombination process is RecA-dependent.
Collapse
Affiliation(s)
- Anna Pluciennik
- Institute of Biosciences and Technology, Center for Genome Research, Texas A & M University System Health Science Center, Texas Medical Center, 2121 W. Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|