1
|
Špírek M, Mlcoušková J, Belán O, Gyimesi M, Harami GM, Molnár E, Novacek J, Kovács M, Krejci L. Human RAD51 rapidly forms intrinsically dynamic nucleoprotein filaments modulated by nucleotide binding state. Nucleic Acids Res 2019; 46:3967-3980. [PMID: 29481689 PMCID: PMC5934667 DOI: 10.1093/nar/gky111] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/08/2018] [Indexed: 12/31/2022] Open
Abstract
Formation of RAD51 filaments on single-stranded DNA is an essential event during homologous recombination, which is required for homology search, strand exchange and protection of replication forks. Formation of nucleoprotein filaments (NF) is required for development and genomic stability, and its failure is associated with developmental abnormalities and tumorigenesis. Here we describe the structure of the human RAD51 NFs and of its Walker box mutants using electron microscopy. Wild-type RAD51 filaments adopt an ‘open’ conformation when compared to a ‘closed’ structure formed by mutants, reflecting alterations in helical pitch. The kinetics of formation/disassembly of RAD51 filaments show rapid and high ssDNA coverage via low cooperativity binding of RAD51 units along the DNA. Subsequently, a series of isomerization or dissociation events mediated by nucleotide binding state creates intrinsically dynamic RAD51 NFs. Our findings highlight important a mechanistic divergence among recombinases from different organisms, in line with the diversity of biological mechanisms of HR initiation and quality control. These data reveal unexpected intrinsic dynamic properties of the RAD51 filament during assembly/disassembly, which may be important for the proper control of homologous recombination.
Collapse
Affiliation(s)
- Mário Špírek
- Department of Biology, Masaryk University, Brno 62500, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno 65691, Czech Republic
| | - Jarmila Mlcoušková
- Department of Biology, Masaryk University, Brno 62500, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno 65691, Czech Republic
| | - Ondrej Belán
- Department of Biology, Masaryk University, Brno 62500, Czech Republic
| | - Máté Gyimesi
- Department of Biochemistry, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Gábor M Harami
- Department of Biochemistry, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Eszter Molnár
- Department of Biochemistry, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Jiri Novacek
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Mihály Kovács
- Department of Biochemistry, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Lumir Krejci
- Department of Biology, Masaryk University, Brno 62500, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno 65691, Czech Republic.,National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
2
|
Carra C, Cucinotta FA. Binding selectivity of RecA to a single stranded DNA, a computational approach. J Mol Model 2010; 17:133-50. [PMID: 20386943 DOI: 10.1007/s00894-010-0694-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 02/23/2010] [Indexed: 11/29/2022]
Abstract
Homologous recombination (HR) is the major DNA double strand break repair pathway which maintains the genomic integrity. It is fundamental for the survivability and functionality of all organisms. One of the initial steps in HR is the formation of the nucleoprotein filament composed by a single stranded DNA chain surrounded by the recombinases protein. The filament orchestrates the search for an undamaged homologue, as a template for the repair process. Our theoretical study was aimed at elucidating the selectivity of the interaction between a monomer of the recombinases enzyme in the Escherichia coli, EcRecA, the bacterial homologue of human Rad51, with a series of oligonucleotides of nine bases length. The complex, equilibrated for 20 ns with Langevian dynamics, was inserted in a periodic box with a 8 Å buffer of water molecules explicitly described by the TIP3P model. The absolute binding free energies are calculated in an implicit solvent using the Poisson-Boltzmann (PB) and the generalized Born (GB) solvent accessible surface area, using the MM-PB(GB)SA model. The solute entropic contribution is also calculated by normal mode analysis. The results underline how a significant contribution of the binding free energy is due to the interaction with the Arg196, a critical amino acid for the activity of the enzyme. The study revealed how the binding affinity of EcRecA is significantly higher toward dT₉ rather than dA₉, as expected from the experimental results.
Collapse
Affiliation(s)
- Claudio Carra
- Universities Space Research Association, 2101 NASA Parkway, Houston, TX 77058, USA.
| | | |
Collapse
|
3
|
Carra C, Cucinotta FA. Binding Sites of theE. ColiDNA Recombinase Protein to the ssDNA: A Computational Study. J Biomol Struct Dyn 2010; 27:407-28. [DOI: 10.1080/07391102.2010.10507327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
4
|
Lee AM, Wigle TJ, Singleton SF. A complementary pair of rapid molecular screening assays for RecA activities. Anal Biochem 2007; 367:247-58. [PMID: 17601483 PMCID: PMC2041836 DOI: 10.1016/j.ab.2007.04.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 04/04/2007] [Accepted: 04/17/2007] [Indexed: 11/23/2022]
Abstract
The bacterial RecA protein has been implicated in the evolution of antibiotic resistance in pathogens, which is an escalating problem worldwide. The discovery of small molecules that can selectively modulate RecA's activities can be exploited to tease apart its roles in the de novo development and transmission of antibiotic resistance genes. Toward the goal of discovering small-molecule ligands that can prevent either the assembly of an active RecA-DNA filament or its subsequent ATP-dependent motor activities, we report the design and initial validation of a pair of rapid and robust screening assays suitable for the identification of inhibitors of RecA activities. One assay is based on established methods for monitoring ATPase enzyme activity and the second is a novel assay for RecA-DNA filament assembly using fluorescence polarization. Taken together, the assay results reveal complementary sets of agents that can either suppress selectively only the ATP-driven motor activities of the RecA-DNA filament or prevent assembly of active RecA-DNA filaments altogether. The screening assays can be readily configured for use in future automated high-throughput screening projects to discover potent inhibitors that may be developed into novel adjuvants for antibiotic chemotherapy that moderate the development and transmission of antibiotic resistance genes and increase the antibiotic therapeutic index.
Collapse
Affiliation(s)
- Andrew M Lee
- Division of Medicinal Chemistry and Natural Products, School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7360, USA
| | | | | |
Collapse
|
5
|
Wigle TJ, Lee AM, Singleton SF. Conformationally selective binding of nucleotide analogues to Escherichia coli RecA: a ligand-based analysis of the RecA ATP binding site. Biochemistry 2006; 45:4502-13. [PMID: 16584186 DOI: 10.1021/bi052298h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The roles of the RecA protein in the survival of bacteria and the evolution of resistance to antibiotics make it an attractive target for inhibition by small molecules. The activity of RecA is dependent on the formation of a nucleoprotein filament on single-stranded DNA that hydrolyzes ATP. We probed the nucleotide binding site of the active RecA protein using modified nucleotide triphosphates to discern key structural elements of the nucleotide and of the binding site that result in the activation of RecA for NTP hydrolysis. Our results show that the RecA-catalyzed hydrolysis of a given nucleotide triphosphate or analogue thereof is exquisitely sensitive to certain structural elements of both the base and ribose moieties. Furthermore, our ligand-based approach to probing the RecA ATP binding site indicated that the binding of nucleotides by RecA was found to be conformationally selective. Using a binding screen that can be readily adapted to high-throughput techniques, we were able to segregate nucleotides that interact with RecA into two classes: (1) NTPs that preferentially bind the active nucleoprotein filament conformation and either serve as substrates for or competitively inhibit hydrolysis and (2) nonsubstrate NTPs that preferentially bind the inactive RecA conformation and facilitate dissociation of the RecA-DNA species. These results are discussed in the context of a recent structural model for the active RecA nucleoprotein filament and provide us with important information for the design of potent, conformationally selective modulators of RecA activities.
Collapse
Affiliation(s)
- Tim J Wigle
- School of Pharmacy, Division of Medicinal Chemistry and Natural Products, University of North Carolina, CB #7360, Chapel Hill, North Carolina 27599-7360, USA
| | | | | |
Collapse
|
6
|
Fujii S, Gasser V, Fuchs RP. The biochemical requirements of DNA polymerase V-mediated translesion synthesis revisited. J Mol Biol 2004; 341:405-17. [PMID: 15276832 DOI: 10.1016/j.jmb.2004.06.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 06/04/2004] [Accepted: 06/08/2004] [Indexed: 11/29/2022]
Abstract
In addition to replicative DNA polymerases, cells contain specialized DNA polymerases involved in processes such as lesion tolerance, mutagenesis and immunoglobulin diversity. In Escherichia coli, DNA polymerase V (Pol V), encoded by the umuDC locus, is involved in translesion synthesis (TLS) and mutagenesis. Genetic studies have established that mutagenesis requires both UmuC and a proteolytic product of UmuD (UmuD'). In addition, RecA protein and the replication processivity factor, the beta-clamp, were genetically found to be essential co-factors for mutagenesis. Here, we have reconstituted Pol V-mediated bypass of three common replication-blocking lesions, namely the two major UV-induced lesions and a guanine adduct formed by a chemical carcinogen (G-AAF) under conditions that fulfil these in vivo requirements. Two co-factors are essential for efficient Pol V-mediated lesion bypass: (i) a DNA substrate onto which the beta-clamp is stably loaded; and (ii) an extended single-stranded RecA/ATP filament assembled downstream from the lesion site. For efficient bypass, Pol V needs to interact simultaneously with the beta-clamp and the 3' tip of the RecA filament. Formation of an extended RecA/ATP filament and stable loading of the beta-clamp are best achieved on long single-stranded circular DNA templates. In contrast to previously published data, the single-stranded DNA-binding protein (SSB) is not absolutely required for Pol V-mediated lesion bypass provided ATP, instead of ATPgammaS, activates the RecA filament. Further discrepancies with the existing literature are explainable by the use of either inadequate DNA substrates or a UmuC fusion protein instead of native Pol V.
Collapse
Affiliation(s)
- Shingo Fujii
- UPR 9003 du CNRS, Cancerogenese et Mutagenese Moleculaire et Structurale, 67400 Strasbourg, France
| | | | | |
Collapse
|
7
|
Ramreddy T, Sen S, Rao BJ, Krishnamoorthy G. DNA dynamics in RecA-DNA filaments: ATP hydrolysis-related flexibility in DNA. Biochemistry 2004; 42:12085-94. [PMID: 14556640 DOI: 10.1021/bi034667k] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RecA-catalyzed DNA recombination is initiated by a mandatory, high-energy form of DNA in RecA-nucleoprotein filaments, where bases are highly unstacked and the backbone is highly unwound. Interestingly, only the energetics consequent to adenosine triphosphate (ATP) binding, rather than its hydrolysis, seems sufficient to mediate such a high-energy structural hallmark of a recombination filament. The structural consequence of ATP hydrolysis on the DNA part of the filament thus remains largely unknown. We report time-resolved fluorescence dynamics of bases in RecA-DNA complexes and demonstrate that DNA bases in the same exhibit novel, motional dynamics with a rotational correlation time of 7-10 ns, specifically in the presence of ATP hydrolysis. When the ongoing ATP hydrolysis of RecA-DNA filament is "poisoned" by a nonhydrolyzable form of ATP (ATPgammaS), the motional dynamics cease and reveal a global motion with a rotational correlation time of >20 ns. Such ATP hydrolysis-induced flexibility ensues in single-stranded as well as double-stranded bases of RecA-DNA filaments. These results suggest that the role of ATP hydrolysis is to induce a high level of backbone flexibility in RecA-DNA filament, a dynamic property that is likely to be important for efficient strand exchanges in ATP hydrolysis specific RecA reactions. It is the absence of these motions that may cause high rigidity in RecA-DNA filaments in ATPgammaS. Dynamic light scattering measurement comparisons of RecA-ss-DNA filaments formed in ATPgammaS vs that of ATP confirmed such an interpretation, where the former showed a complex of larger (30 nm) hydrodynamic radius than that of latter (12-15 nm). Taken together, these results reveal a more dynamic state of DNA in RecA-DNA filament that is hydrolyzing ATP, which encourage us to model the role of ATP hydrolysis in RecA-mediated DNA transactions.
Collapse
Affiliation(s)
- T Ramreddy
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | | | | | | |
Collapse
|