1
|
Zheng Z, Blum A, Banerjee T, Wang Q, Dantis V, Oliver D. Determination of the Oligomeric State of SecYEG Protein Secretion Channel Complex Using in Vivo Photo- and Disulfide Cross-linking. J Biol Chem 2016; 291:5997-6010. [PMID: 26747607 DOI: 10.1074/jbc.m115.694844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Indexed: 11/06/2022] Open
Abstract
SecYEG protein of bacteria or Sec61αβγ of eukaryotes is a universally conserved heterotrimeric protein channel complex that accommodates the partitioning of membrane proteins into the lipid bilayer as well as the secretion of proteins to the trans side of the plasma or endoplasmic reticular membrane, respectively. SecYEG function is facilitated by cytosolic partners, mainly a nascent chain-ribosome complex or the SecA ATPase motor protein. Extensive efforts utilizing both biochemical and biophysical approaches have been made to determine whether SecYEG functions as a monomer or a dimer, but such approaches have often generated conflicting results. Here we have employed site-specific in vivo photo-cross-linking or cysteine cross-linking, along with co-immunoprecipitation or SecA footprinting techniques to readdress this issue. Our findings show that the SecY dimer to monomer ratio is relatively constant regardless of whether translocons are actively engaged with protein substrate or not. Under the former conditions the SecY dimer can be captured associated with a translocon-jammed substrate, indicative of SecY dimer function. Furthermore, SecA ATPase can be cross-linked to two copies of SecY when the complex contains a translocation intermediate. Collectively, our results suggest that SecYEG dimers are functional units of the translocon.
Collapse
Affiliation(s)
- Zeliang Zheng
- From the Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459
| | - Amy Blum
- From the Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459
| | - Tithi Banerjee
- From the Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459
| | - Qianyu Wang
- From the Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459
| | - Virginia Dantis
- From the Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459
| | - Donald Oliver
- From the Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459.
| |
Collapse
|
2
|
du Plessis DJF, Nouwen N, Driessen AJM. The Sec translocase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:851-65. [PMID: 20801097 DOI: 10.1016/j.bbamem.2010.08.016] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/19/2010] [Accepted: 08/20/2010] [Indexed: 11/18/2022]
Abstract
The vast majority of proteins trafficking across or into the bacterial cytoplasmic membrane occur via the translocon. The translocon consists of the SecYEG complex that forms an evolutionarily conserved heterotrimeric protein-conducting membrane channel that functions in conjunction with a variety of ancillary proteins. For posttranslational protein translocation, the translocon interacts with the cytosolic motor protein SecA that drives the ATP-dependent stepwise translocation of unfolded polypeptides across the membrane. For the cotranslational integration of membrane proteins, the translocon interacts with ribosome-nascent chain complexes and membrane insertion is coupled to polypeptide chain elongation at the ribosome. These processes are assisted by the YidC and SecDF(yajC) complex that transiently interacts with the translocon. This review summarizes our current understanding of the structure-function relationship of the translocon and its interactions with ancillary components during protein translocation and membrane protein insertion. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- David J F du Plessis
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, 9751NN Haren, The Netherlands
| | | | | |
Collapse
|
3
|
Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane--distinct translocases and mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:1735-56. [PMID: 17935691 DOI: 10.1016/j.bbamem.2007.07.015] [Citation(s) in RCA: 343] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 07/23/2007] [Accepted: 07/24/2007] [Indexed: 11/20/2022]
Abstract
In bacteria, two major pathways exist to secrete proteins across the cytoplasmic membrane. The general Secretion route, termed Sec-pathway, catalyzes the transmembrane translocation of proteins in their unfolded conformation, whereupon they fold into their native structure at the trans-side of the membrane. The Twin-arginine translocation pathway, termed Tat-pathway, catalyses the translocation of secretory proteins in their folded state. Although the targeting signals that direct secretory proteins to these pathways show a high degree of similarity, the translocation mechanisms and translocases involved are vastly different.
Collapse
|
4
|
Flower AM. The SecY translocation complex: convergence of genetics and structure. Trends Microbiol 2007; 15:203-10. [PMID: 17368028 DOI: 10.1016/j.tim.2007.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/26/2007] [Accepted: 03/01/2007] [Indexed: 11/19/2022]
Abstract
All organisms share a requirement for translocation of proteins across membranes. The major mechanism for this process is the universally conserved SecY/Sec61 pathway. Many years of extensive genetic and biochemical analyses identified the components of the SecY/Sec61 pathway, demonstrated that most exported proteins use this route for translocation, and led to understanding of many functions of the components. Recently, structural predictions based on genetic analyses in Escherichia coli were confirmed, in a striking and satisfying manner, by the solution of an X-ray crystal structure from an archaeal SecY complex. This review discusses the genetic background that led to those hypotheses and the convergence of genetic studies with structural data.
Collapse
Affiliation(s)
- Ann M Flower
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037, USA.
| |
Collapse
|
5
|
Rusch SL, Kendall DA. Oligomeric states of the SecA and SecYEG core components of the bacterial Sec translocon. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:5-12. [PMID: 17011510 PMCID: PMC2712355 DOI: 10.1016/j.bbamem.2006.08.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 07/27/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
Many proteins synthesized in the cytoplasm ultimately function in non-cytoplasmic locations. In Escherichia coli, the general secretory (Sec) pathway transports the vast majority of these proteins. Two fundamental components of the Sec transport pathway are the SecYEG heterotrimeric complex that forms the channel through the cytoplasmic membrane, and SecA, the ATPase that drives the preprotein to and across the membrane. This review focuses on what is known about the oligomeric states of these core Sec components and how the oligomeric state might change during the course of the translocation of a preprotein.
Collapse
Affiliation(s)
| | - Debra A. Kendall
- Corresponding author. Tel.: +1 860 486 1891. E-mail address: (D.A. Kendall)
| |
Collapse
|
6
|
Vrontou E, Economou A. Structure and function of SecA, the preprotein translocase nanomotor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1694:67-80. [PMID: 15546658 DOI: 10.1016/j.bbamcr.2004.06.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 06/03/2004] [Accepted: 06/17/2004] [Indexed: 11/22/2022]
Abstract
Most secretory proteins that are destined for the periplasm or the outer membrane are exported through the bacterial plasma membrane by the Sec translocase. Translocase is a complex nanomachine that moves processively along its aminoacyl polymeric substrates effectively pumping them to the periplasmic space. The salient features of this process are: (a) a membrane-embedded "clamp" formed by the trimeric SecYEG protein, (b) a "motor" provided by the dimeric SecA ATPase, (c) regulatory subunits that optimize catalysis and (d) both chemical and electrochemical metabolic energy. Significant recent strides have allowed structural, biochemical and biophysical dissection of the export reaction. A model incorporating stepwise strokes of the translocase nanomachine at work is discussed.
Collapse
Affiliation(s)
- Eleftheria Vrontou
- Laboratory Unicellular, Organisms Group, Institute of Molecular Biology and Biotechnology, FO.R.T.H. and Department of Biology, University of Crete, Vassilika Vouton, P.O. Box 1527, GR-711 10 Iraklio, Crete, Greece
| | | |
Collapse
|
7
|
Veenendaal AKJ, van der Does C, Driessen AJM. The protein-conducting channel SecYEG. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1694:81-95. [PMID: 15546659 DOI: 10.1016/j.bbamcr.2004.02.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 01/30/2004] [Accepted: 02/02/2004] [Indexed: 10/26/2022]
Abstract
In bacteria, the translocase mediates the translocation of proteins into or across the cytosolic membrane. It consists of a membrane embedded protein-conducting channel and a peripherally associated motor domain, the ATPase SecA. The channel is formed by SecYEG, a multimeric protein complex that assembles into oligomeric forms. The structure and subunit composition of this protein-conducting channel is evolutionary conserved and a similar system is found in the endoplasmic reticulum of eukaryotes and the cytoplasmic membrane of archaea. The ribosome and other membrane proteins can associate with the protein-conducting channel complex and affect its activity or functionality.
Collapse
Affiliation(s)
- Andreas K J Veenendaal
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9750 AA Haren, The Netherlands
| | | | | |
Collapse
|
8
|
Dalbey RE, Chen M. Sec-translocase mediated membrane protein biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1694:37-53. [DOI: 10.1016/j.bbamcr.2004.03.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 03/08/2004] [Accepted: 03/09/2004] [Indexed: 10/26/2022]
|
9
|
Mori H, Shimokawa N, Satoh Y, Ito K. Mutational analysis of transmembrane regions 3 and 4 of SecY, a central component of protein translocase. J Bacteriol 2004; 186:3960-9. [PMID: 15175310 PMCID: PMC419966 DOI: 10.1128/jb.186.12.3960-3969.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Accepted: 03/16/2004] [Indexed: 11/20/2022] Open
Abstract
The SecYEG heterotrimeric membrane protein complex functions as a channel for protein translocation across the Escherichia coli cytoplasmic membrane. SecY is the central subunit of the SecYEG complex and contains 10 transmembrane segments (TM1 to TM10). Previous mutation studies suggested that TM3 and TM4 are particularly important for SecY function. To further characterize TM3 and TM4, we introduced a series of cysteine-scanning mutations into these segments. With one exception (an unstable product), all the mutant proteins complemented the cold-sensitive growth defect of the secY39 mutant. A combination of this secY mutation and the secG deletion resulted in synthetic lethality, and the TM3 and TM4 SecY cysteine substitution mutations were examined for their ability to complement this lethality. Although they were all positive for complementation, some of the complemented cells exhibited significant retardation of protein export. The substitution-sensitive residues in TM3 can be aligned to one side of the alpha-helix, and those in TM4 revealed a tendency for residues closer to the cytosolic side of the membrane to be more severely affected. Disulfide cross-linking experiments identified a specific contact point for TM3 and SecG TM2 as well as for TM4 and SecG TM1. Thus, although TM3 and TM4 do not contain any single residue that is absolutely required, they include functionally important helix surfaces and specific contact points with SecG. These results are discussed in light of the structural information available for the SecY complex.
Collapse
Affiliation(s)
- Hiroyuki Mori
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
10
|
Satoh Y, Matsumoto G, Mori H, Ito K. Nearest neighbor analysis of the SecYEG complex. 1. Identification of a SecY-SecG interface. Biochemistry 2003; 42:7434-41. [PMID: 12809499 DOI: 10.1021/bi034331a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Integral membrane components SecY, SecE, and SecG of protein translocase form a complex in the Escherichia coli plasma membrane. To characterize subunit interactions of the SecYEG complex, a series of SecY variants having a single cysteine in its cytoplasmic (C1-C6) or periplasmic (P1-P5) domain were subjected to site-specific cross-linking experiments using bifunctional agents with thiol-amine reactivity. Experiments using inverted membrane vesicles revealed specific cross-linkings between a cysteine residue placed in the C2 or C3 domain of SecY and the cytosolic lysine (Lys26) near the first transmembrane segment of SecG. These SecY Cys residues also formed a disulfide bond with an engineered cytosolic cysteine at position 28 of SecG. Thus, the C2-C3 region of SecY is in the proximity of the N-terminal half of the SecG cytoplasmic loop. Experiments using spheroplasts revealed the physical proximity of P2 (SecY) and the C-terminal periplasmic region of SecG. In addition, mutations in secG were isolated as suppressors against a cold-sensitive mutation (secY104) affecting the TM4-C3 boundary of SecY. These results collectively suggest that a C2-TM3-P2-TM4-C3 region of SecY serves as an interface with SecG.
Collapse
Affiliation(s)
- Yasunari Satoh
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
11
|
Satoh Y, Mori H, Ito K. Nearest neighbor analysis of the SecYEG complex. 2. Identification of a SecY-SecE cytosolic interface. Biochemistry 2003; 42:7442-7. [PMID: 12809500 DOI: 10.1021/bi034333v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although the importance of interactions involving both the cytosolic and transmembrane regions of SecY and SecE has been documented, no information has been available for the physical contact sites of these translocase subunits in their cytosolic domains. We now carried out site-specific cross-linking experiments to identify SecY and SecE regions that are physically close. Cysteines introduced into SecY residue 244 in the fourth cytosolic domain (C4) as well as into residues 354-356 and 362 in the C5 domain could be cross-linked with natural or engineered residues at positions 79 and 81 in the central part of the cytosolic loop of SecE. These cross-linkages were abolished by the Gly240 mutation in the SecY C4 region as well as by prlG alterations in SecE transmembrane segment 3, known to compromise SecY-SecE interaction. We suggest that the cytosolic and intramembrane interactions bring these two subunits together, forming a functionally crucial SecYE interface involving the SecY C5 region and the conserved cytosolic segment of SecE.
Collapse
Affiliation(s)
- Yasunari Satoh
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
12
|
Shimokawa N, Mori H, Ito K. Importance of transmembrane segments in Escherichia coli SecY. Mol Genet Genomics 2003; 269:180-7. [PMID: 12756530 DOI: 10.1007/s00438-003-0804-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2002] [Accepted: 12/30/2002] [Indexed: 11/26/2022]
Abstract
To assess the functional importance of the transmembrane regions of SecY, we constructed a series of SecY variants, in which the six central residues of each transmembrane segment were replaced by amino acid residues from either transmembrane segment 3 or 4 of LacY. The SecY function, as assessed by the ability to complement cold-sensitive secYmutants with respect to their growth and translocase defects, was eliminated by the alterations in transmembrane segments 2, 3, 4, 7, 9 and 10. Among them, those in segments 3 and 4 had especially severe effects. In contrast, transmembrane segments 1, 5, 6, and 8 were more tolerant to the sequence alterations. The purified protein with an altered transmembrane segment 6 retained, in large measure, the ability to support SecA-dependent preprotein translocation in vitro. These results will help us to further understand how the SecYEG protein translocation channel functions.
Collapse
Affiliation(s)
- N Shimokawa
- Institute for Virus Research, Kyoto University, Sakyo-ku, Japan
| | | | | |
Collapse
|
13
|
Matsuo E, Mori H, Ito K. Interfering mutations provide in vivo evidence that Escherichia coli SecE functions in multimeric states. Mol Genet Genomics 2003; 268:808-15. [PMID: 12655407 DOI: 10.1007/s00438-003-0803-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2002] [Accepted: 12/30/2002] [Indexed: 11/29/2022]
Abstract
SecY, SecE and SecG form a heterotrimer, which functions as a protein translocation channel in Escherichia coli. The cytosolic loop of SecE contains a segment that is conserved among different organisms. Here we show that mutational alterations in this segment not only inactivate the SecE function but confer dominant interfering properties on the altered SecE molecule. Such effects were especially evident in mutant cells in which the requirement for SecE function was increased. Overproduction of SecE, but not of SecY, alleviated the dominant negative effects. These results suggest that the inactive SecE molecule sequesters wild-type SecE. It was also found that an amino acid substitution, D112P, in the C-terminal periplasmic region intragenically suppressed the dominant interference. These results are consistent with a notion that there is significant SecE-SecE interaction in vivo, in which the C-terminal region has an important role. The data hence suggest that dimeric SecE participates in the formation of the functional translocation channel.
Collapse
Affiliation(s)
- E Matsuo
- Institute for Virus Research, Kyoto University, Sakyo-ku, Japan
| | | | | |
Collapse
|
14
|
Mori H, Akiyama Y, Ito K. A SecE mutation that modulates SecY-SecE translocase assembly, identified as a specific suppressor of SecY defects. J Bacteriol 2003; 185:948-56. [PMID: 12533470 PMCID: PMC142837 DOI: 10.1128/jb.185.3.948-956.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Accepted: 11/04/2002] [Indexed: 11/20/2022] Open
Abstract
The SecY39(Cs) (cold-sensitive) alteration of Arg357 results in a defect of translocation initiation. As a means to dissect the Sec translocation machinery, we isolated mutations that act as suppressors of the secY39 defect. A specific secE mutation, designated secE105, was thus isolated. This mutation proved to be identical with the prlG2 mutation and to suppress a number of cold-sensitive secY mutations. However, other prlG mutations did not effectively suppress the secY defects. Evidence indicates that the Ser105-to-Pro alteration in the C-terminal transmembrane segment of SecE weakens SecY-SecE association. In vitro analyses showed that the SecE(S105P) alteration preferentially stimulates the initial phase of translocation. It is suggested that the S105P alteration affects the SecYEG channel such that it is more prone to open and to accept the translocation initiation domain of a preprotein molecule.
Collapse
Affiliation(s)
- Hiroyuki Mori
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
15
|
Cao TB, Saier MH. The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1609:115-25. [PMID: 12507766 DOI: 10.1016/s0005-2736(02)00662-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have identified all homologues in the current databases of the ubiquitous protein constituents of the general secretory (Sec) pathway. These prokaryotic/eukaryotic proteins include (1) SecY/Sec61alpha, (2) SecE/Sec61gamma, (3) SecG/Sec61beta, (4) Ffh/SRP54 and (5) FtsY/SRP receptor subunit-alpha. Phylogenetic and sequence analyses lead to major conclusions concerning (1) the ubiquity of these proteins in living organisms, (2) the topological uniformity of some but not other Sec constituents, (3) the orthologous nature of almost all of them, (4) a total lack of paralogues in almost all organisms for which complete genome sequences are available, (5) the occurrence of two or even three paralogues in a few bacteria, plants, and yeast, depending on the Sec constituent, and (6) a tremendous degree of sequence divergence in bacteria compared with that in archaea or eukaryotes. The phylogenetic analyses lead to the conclusion that with a few possible exceptions, the five families of Sec constituents analyzed generally underwent sequence divergence in parallel but at different characteristic rates. The results provide evolutionary insights as well as guides for future functional studies. Because every organism with a fully sequenced genome exhibits at least one orthologue of each of these Sec proteins, we conclude that all living organisms have relied on the Sec system as their primary protein secretory/membrane insertion system. Because most prokaryotes and many eukaryotes encode within their genomes only one of each constituent, we also conclude that strong evolutionary pressure has minimized gene duplication events leading to the establishment of Sec paralogues. Finally, the sequence diversity of bacterial proteins as compared with their archaeal and eukaryotic counterparts is in agreement with the suggestion that bacteria were the evolutionary predecessors of archaea and eukaryotes.
Collapse
Affiliation(s)
- Thien B Cao
- Division of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|