1
|
Paschinger K, Wöls F, Yan S, Jin C, Vanbeselaere J, Dutkiewicz Z, Arcalis E, Malzl D, Wilson IBH. N-glycan antennal modifications are altered in Caenorhabditis elegans lacking the HEX-4 N-acetylgalactosamine-specific hexosaminidase. J Biol Chem 2023; 299:103053. [PMID: 36813232 PMCID: PMC10060765 DOI: 10.1016/j.jbc.2023.103053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Simple organisms are often considered to have simple glycomes, but plentiful paucimannosidic and oligomannosidic glycans overshadow the less abundant N-glycans with highly variable core and antennal modifications; Caenorhabditis elegans is no exception. By use of optimized fractionation and assessing wildtype in comparison to mutant strains lacking either the HEX-4 or HEX-5 β-N-acetylgalactosaminidases, we conclude that the model nematode has a total N-glycomic potential of 300 verified isomers. Three pools of glycans were analyzed for each strain: either PNGase F released and eluted from a reversed-phase C18 resin with either water or 15% methanol or PNGase Ar released. While the water-eluted fractions were dominated by typical paucimannosidic and oligomannosidic glycans and the PNGase Ar-released pools by glycans with various core modifications, the methanol-eluted fractions contained a huge range of phosphorylcholine-modified structures with up to three antennae, sometimes with four N-acetylhexosamine residues in series. There were no major differences between the C. elegans wildtype and hex-5 mutant strains, but the hex-4 mutant strains displayed altered sets of methanol-eluted and PNGase Ar-released pools. In keeping with the specificity of HEX-4, there were more glycans capped with N-acetylgalactosamine in the hex-4 mutants, as compared with isomeric chito-oligomer motifs in the wildtype. Considering that fluorescence microscopy showed that a HEX-4::enhanced GFP fusion protein colocalizes with a Golgi tracker, we conclude that HEX-4 plays a significant role in late-stage Golgi processing of N-glycans in C. elegans. Furthermore, finding more "parasite-like" structures in the model worm may facilitate discovery of glycan-processing enzymes occurring in other nematodes.
Collapse
Affiliation(s)
| | - Florian Wöls
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Shi Yan
- Department für Chemie, Universität für Bodenkultur, Wien, Austria; Institut für Parasitologie, Veterinärmedizinische Universität, Wien, Austria
| | - Chunsheng Jin
- Institutionen för Biomedicin, Göteborgs universitet, Göteborg, Sweden
| | | | | | - Elsa Arcalis
- Department für angewandte Genetik und Zellbiologie, Universität für Bodenkultur, Wien, Austria
| | - Daniel Malzl
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Wien, Austria.
| |
Collapse
|
2
|
Wijdeven MA, van Geel R, Hoogenboom JH, Verkade JMM, Janssen BMG, Hurkmans I, de Bever L, van Berkel SS, van Delft FL. Enzymatic glycan remodeling–metal free click (GlycoConnect™) provides homogenous antibody-drug conjugates with improved stability and therapeutic index without sequence engineering. MAbs 2022; 14:2078466. [PMID: 35634725 PMCID: PMC9154768 DOI: 10.1080/19420862.2022.2078466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are increasingly powerful medicines for targeted cancer therapy. Inspired by the trend to further improve their therapeutic index by generation of homogenous ADCs, we report here how the clinical-stage GlycoConnect™ technology uses the globally conserved N-glycosylation site to generate stable and site-specific ADCs based on enzymatic remodeling and metal-free click chemistry. We demonstrate how an engineered endoglycosidase and a native glycosyl transferase enable highly efficient, one-pot glycan remodeling, incorporating a novel sugar substrate 6-azidoGalNAc. Metal-free click attachment of an array of cytotoxic payloads was highly optimized, in particular by inclusion of anionic surfactants. The therapeutic potential of GlycoConnect™, in combination with HydraSpace™ polar spacer technology, was compared to that of Kadcyla® (ado-trastuzumab emtansine), showing significantly improved efficacy and tolerability.
Collapse
|
3
|
Cao R, Li JX, Chen H, Cao C, Zheng F, Huang K, Chen YR, Flitsch SL, Liu L, Voglmeir J. Complete shift in glycosyl donor specificity in mammalian, but not C. elegans β1,4‐GalT1 Y286L mutants, enables the synthesis of N,N‐diacetyllactosamine. ChemCatChem 2022. [DOI: 10.1002/cctc.202101699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ran Cao
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | - Jing-Xuan Li
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | - Huan Chen
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | - Cui Cao
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | - Feng Zheng
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | - Kun Huang
- Nanjing Agricultural University College of Food Science And Technology UNITED KINGDOM
| | - Ya-Ran Chen
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | | | - Li Liu
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | - Josef Voglmeir
- Nanjing Agricultural University College of Food Science And Technology 1 Weigang 210095 Nanjing CHINA
| |
Collapse
|
4
|
Kremer J, Brendel C, Mack EKM, Mack HID. Expression of β-1,4-galactosyltransferases during Aging in Caenorhabditis elegans. Gerontology 2020; 66:571-581. [PMID: 33171474 DOI: 10.1159/000510722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Altered plasma activity of β-1,4-galac-tosyl-transferases (B4GALTs) is a novel candidate biomarker of human aging. B4GALT1 is assumed to be largely responsible for this activity increase, but how it modulates the aging process is unclear at present. OBJECTIVES To determine how expression of B4GALT1 and other B4GALT enzymes changes during aging of an experimentally tractable model organism, Caenorhabditis elegans. METHODS Targeted analysis of mRNA levels of all 3 C. elegans B4GALT family members was performed by qPCR in wild-type and in long-lived daf-2 (insulin/IGF1-like receptor)-deficient or germline-deficient animals. RESULTS bre-4 (B4GALT1/2/3/4) is the only B4GALT whose expression increases during aging in wild-type worms. In addition, bre-4 levels also rise during aging in long-lived daf-2-deficient worms, but not in animals that are long-lived due to the lack of germline stem cells. On the other hand, expression of sqv-3 (B4GALT7) and of W02B12.11 (B4GALT5/6) appears decreased or constant, respectively, in all backgrounds during aging. CONCLUSIONS The age-dependent bre-4 mRNA increase in C. elegans parallels the age-dependent B4GALT activity increase in humans and is consistent with C. elegans being a suitable experimental organism to define potentially conserved roles of B4GALT1 during aging.
Collapse
Affiliation(s)
- Jennifer Kremer
- Department of Hematology, Oncology and Immunology, Philipps-University Marburg, and University Hospital Gießen and Marburg, Marburg, Germany
| | - Cornelia Brendel
- Department of Hematology, Oncology and Immunology, Philipps-University Marburg, and University Hospital Gießen and Marburg, Marburg, Germany
| | - Elisabeth Karin Maria Mack
- Department of Hematology, Oncology and Immunology, Philipps-University Marburg, and University Hospital Gießen and Marburg, Marburg, Germany,
| | | |
Collapse
|
5
|
Pham J, Hernandez A, Cioce A, Achilli S, Goti G, Vivès C, Thepaut M, Bernardi A, Fieschi F, Reichardt NC. Chemo-Enzymatic Synthesis of S. mansoni O-Glycans and Their Evaluation as Ligands for C-Type Lectin Receptors MGL, DC-SIGN, and DC-SIGNR. Chemistry 2020; 26:12818-12830. [PMID: 32939912 DOI: 10.1002/chem.202000291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/07/2020] [Indexed: 12/28/2022]
Abstract
Due to their interactions with C-type lectin receptors (CLRs), glycans from the helminth Schistosoma mansoni represent promising leads for treatment of autoimmune diseases, allergies or cancer. We chemo-enzymatically synthesized nine O-glycans based on the two predominant O-glycan cores observed in the infectious stages of schistosomiasis, the mucin core 2 and the S. mansoni core. The O-glycans were fucosylated next to a selection of N-glycans directly on a microarray slide using a recombinant fucosyltransferase and GDP-fucose or GDP-6-azidofucose as donor. Binding assays with fluorescently labelled human CLRs DC-SIGN, DC-SIGNR and MGL revealed the novel O-glycan O8 as the best ligand for MGL from our panel. Significant binding to DC-SIGN was also found for azido-fucosylated glycans. Contrasting binding specificities were observed between the monovalent carbohydrate recognition domain (CRD) and the tetravalent extracellular domain (ECD) of DC-SIGNR.
Collapse
Affiliation(s)
- Julie Pham
- CIC biomaGUNE, Glycotechnology Group, Paseo Miramón 182, 20014, San Sebastian, Spain
| | - Alvaro Hernandez
- CIC biomaGUNE, Glycotechnology Group, Paseo Miramón 182, 20014, San Sebastian, Spain.,Asparia Glycomics S.L., Mikeletegi 83, 20009, San Sebastian, Spain
| | - Anna Cioce
- CIC biomaGUNE, Glycotechnology Group, Paseo Miramón 182, 20014, San Sebastian, Spain
| | - Silvia Achilli
- CNRS, CEA, Institut de Biologie Structurale, Université Grenoble Alpes, 38100, Grenoble, France.,Present address: DCM, UMR 5250, Université Grenoble Alpes, CNRS, 38000, Grenoble, France
| | - Giulio Goti
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133, Milano, Italy
| | - Corinne Vivès
- CNRS, CEA, Institut de Biologie Structurale, Université Grenoble Alpes, 38100, Grenoble, France
| | - Michel Thepaut
- CNRS, CEA, Institut de Biologie Structurale, Université Grenoble Alpes, 38100, Grenoble, France
| | - Anna Bernardi
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133, Milano, Italy
| | - Franck Fieschi
- CNRS, CEA, Institut de Biologie Structurale, Université Grenoble Alpes, 38100, Grenoble, France
| | - Niels-Christian Reichardt
- CIC biomaGUNE, Glycotechnology Group, Paseo Miramón 182, 20014, San Sebastian, Spain.,CIBER-BBN, Paseo Miramón 182, 20014, San Sebastian, Spain.,Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014, San Sebastian, Spain
| |
Collapse
|
6
|
Cao R, Zhang TC, Chen YR, Cao C, Chen H, Huang YF, Fujita M, Liu L, Voglmeir J. Aberration of Serum and Tissue N-Glycans in Mouse β1,4-GalT1 Y286L Mutant Variants. Glycoconj J 2020; 37:767-775. [PMID: 32926333 DOI: 10.1007/s10719-020-09946-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/04/2020] [Accepted: 09/04/2020] [Indexed: 12/01/2022]
Abstract
β1,4-GalT1 is a type II membrane glycosyltransferase. It catalyzes the production of lactose in the lactating mammary gland and is supposedly also involved in the galactosylation of terminal GlcNAc of complex-type N-glycans. In-vitro studies of the bovine β4Gal-T1 homolog showed that replacing a single residue of tyrosine with leucine at position 289 alters the donor substrate specificity from UDP-Gal to UDP-N-acetyl-galactosamine (UDP-GalNAc). The effect of this peculiar change in β1,4GalT1 specificity was investigated in-vivo, by generating biallelic Tyr286Leu β1,4GalT1 mice using CRISPR/Cas9 and crossbreeding. Mice bearing this mutation showed no appreciable defects when compared to wild-type mice, with the exception of biallelic female B4GALT1 mutant mice, which were unable to produce milk. The detailed comparison of wild-type and mutant mice derived from liver, kidney, spleen, and intestinal tissues showed only small differences in their N-glycan pattern. Comparable N-glycosylation was also observed in HEK 293 wild-type and knock-out B4GALT1 cells. Remarkably and in contrast to the other analyzed tissue samples, sialylation and galactosylation of serum N-glycans of biallelic Tyr286Leu GalT1 mice almost disappeared completely. These results suggest that β1,4GalT1 plays a special role in the synthesis of serum N-glycans. The herein described Tyr286Leu β1,4GalT1 mutant mouse model may, therefore, prove useful in the investigation of the mechanism which regulates tissue-dependent galactosylation.
Collapse
Affiliation(s)
- Ran Cao
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tian-Chan Zhang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ya-Ran Chen
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Cui Cao
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huan Chen
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yi-Fan Huang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
7
|
Cummings RD. "Stuck on sugars - how carbohydrates regulate cell adhesion, recognition, and signaling". Glycoconj J 2019; 36:241-257. [PMID: 31267247 DOI: 10.1007/s10719-019-09876-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Abstract
We have explored the fundamental biological processes by which complex carbohydrates expressed on cellular glycoproteins and glycolipids and in secretions of cells promote cell adhesion and signaling. We have also explored processes by which animal pathogens, such as viruses, bacteria, and parasites adhere to glycans of animal cells and initiate disease. Glycans important in cell signaling and adhesion, such as key O-glycans, are essential for proper animal development and cellular differentiation, but they are also involved in many pathogenic processes, including inflammation, tumorigenesis and metastasis, and microbial and parasitic pathogenesis. The overall hypothesis guiding these studies is that glycoconjugates are recognized and bound by a growing class of proteins called glycan-binding proteins (GBPs or lectins) expressed by all types of cells. There is an incredible variety and diversity of GBPs in animal cells involved in binding N- and O-glycans, glycosphingolipids, and proteoglycan/glycosaminoglycans. We have specifically studied such molecular determinants recognized by selectins, galectins, and many other C-type lectins, involved in leukocyte recruitment to sites of inflammation in human tissues, lymphocyte trafficking, adhesion of human viruses to human cells, structure and immunogenicity of glycoproteins on the surfaces of human parasites. We have also explored the molecular basis of glycoconjugate biosynthesis by exploring the enzymes and molecular chaperones required for correct protein glycosylation. From these studies opportunities for translational biology have arisen, involving production of function-blocking antibodies, anti-glycan specific antibodies, and synthetic glycoconjugates, e.g. glycosulfopeptides, that specifically are recognized by GBPs. This invited short review is based in part on my presentation for the IGO Award 2019 given by the International Glycoconjugate Organization in Milan.
Collapse
Affiliation(s)
- Richard D Cummings
- Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Abstract
Many invertebrates are either parasites themselves or vectors involved in parasite transmission; thereby, the interactions of parasites with final or intermediate hosts are often mediated by glycans. Therefore, it is of interest to compare the glycan structures or motifs present across invertebrate species. While a typical vertebrate modification such as sialic acid is rare in lower animals, antennal and core modifications of N-glycans are highly varied and range from core fucose, galactosylated fucose, fucosylated galactose, methyl groups, glucuronic acid and sulphate through to addition of zwitterionic moieties (phosphorylcholine, phosphoethanolamine and aminoethylphosphonate). Only in some cases are the enzymatic bases and the biological function of these modifications known. We are indeed still in the phase of discovering invertebrate glycomes primarily using mass spectrometry, but molecular biology and microarraying techniques are complementary to the determination of novel glycan structures and their functions.
Collapse
|
9
|
Paschinger K, Yan S, Wilson IBH. N-glycomic Complexity in Anatomical Simplicity: Caenorhabditis elegans as a Non-model Nematode? Front Mol Biosci 2019; 6:9. [PMID: 30915340 PMCID: PMC6422873 DOI: 10.3389/fmolb.2019.00009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/12/2019] [Indexed: 12/28/2022] Open
Abstract
Caenorhabditis elegans is a genetically well-studied model nematode or "worm"; however, its N-glycomic complexity is actually baffling and still not completely unraveled. Some features of its N-glycans are, to date, unique and include bisecting galactose and up to five fucose residues associated with the asparagine-linked Man2-3GlcNAc2 core; the substitutions include galactosylation of fucose, fucosylation of galactose and methylation of mannose or fucose residues as well as phosphorylcholine on antennal (non-reducing) N-acetylglucosamine. Only some of these modifications are shared with various other nematodes, while others have yet to be detected in any other species. Thus, C. elegans can be used as a model for some aspects of N-glycan function, but its glycome is far from identical to those of other organisms and is actually far from simple. Possibly the challenges of its native environment, which differ from those of parasitic or necromenic species, led to an anatomically simple worm possessing a complex glycome.
Collapse
Affiliation(s)
| | - Shi Yan
- Institut für Parasitologie, Veterinärmedizinische Universität, Wien, Austria
| | | |
Collapse
|
10
|
Su YL, Wang B, Hu MD, Cui ZW, Wan J, Bai H, Yang Q, Cui YF, Wan CH, Xiong L, Zhang YA, Geng H. Site-Specific N-Glycan Characterization of Grass Carp Serum IgM. Front Immunol 2018; 9:2645. [PMID: 30487799 PMCID: PMC6246689 DOI: 10.3389/fimmu.2018.02645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/26/2018] [Indexed: 01/22/2023] Open
Abstract
Immunoglobulin M (IgM) is the major antibody in teleost fish and plays an important role in humoral adaptive immunity. The N-linked carbohydrates presenting on IgM have been well documented in higher vertebrates, but little is known regarding site-specific N-glycan characteristics in teleost IgM. In order to characterize these site-specific N-glycans, we conducted the first study of the N-glycans of each glycosylation site of the grass carp serum IgM. Among the four glycosylation sites, the Asn-262, Asn-303, and Asn-426 residues were efficiently glycosylated, while Asn-565 at the C-terminal tailpiece was incompletely occupied. A striking decrease in the level of occupancy at the Asn-565 glycosite was observed in dimeric IgM compared to that in monomeric IgM, and no glycan occupancy of Asn-565 was observed in tetrameric IgM. Glycopeptide analysis with liquid chromatography-electrospray ionization tandem mass spectrometry revealed mainly complex-type glycans with substantial heterogeneity, with neutral; monosialyl-, disialyl- and trisialylated; and fucosyl-and non-fucosyl-oligosaccharides conjugated to grass carp serum IgM. Glycan variation at a single site was greatest at the Asn-262 glycosite. Unlike IgMs in other species, only traces of complex-type and no high-mannose glycans were found at the Asn-565 glycosite. Matrix-assisted laser desorption ionization analysis of released glycans confirmed the overwhelming majority of carbohydrates were of the complex-type. These results indicate that grass carp serum IgM exhibits unique N-glycan features and highly processed oligosaccharides attached to individual glycosites.
Collapse
Affiliation(s)
- Yi-Ling Su
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Bing Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Meng-Die Hu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zheng-Wei Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Wan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Hao Bai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Qian Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yan-Fang Cui
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Central China Normal University, Wuhan, China
| | - Cui-Hong Wan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Li Xiong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yong-An Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui Geng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
11
|
Mucin-Type O-Glycosylation in Invertebrates. Molecules 2015; 20:10622-40. [PMID: 26065637 PMCID: PMC6272458 DOI: 10.3390/molecules200610622] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022] Open
Abstract
O-Glycosylation is one of the most important posttranslational modifications of proteins. It takes part in protein conformation, protein sorting, developmental processes and the modulation of enzymatic activities. In vertebrates, the basics of the biosynthetic pathway of O-glycans are already well understood. However, the regulation of the processes and the molecular aspects of defects, especially in correlation with cancer or developmental abnormalities, are still under investigation. The knowledge of the correlating invertebrate systems and evolutionary aspects of these highly conserved biosynthetic events may help improve the understanding of the regulatory factors of this pathway. Invertebrates display a broad spectrum of glycosylation varieties, providing an enormous potential for glycan modifications which may be used for the design of new pharmaceutically active substances. Here, overviews of the present knowledge of invertebrate mucin-type O-glycan structures and the currently identified enzymes responsible for the biosynthesis of these oligosaccharides are presented, and the few data dealing with functional aspects of O-glycans are summarised.
Collapse
|
12
|
Brzezicka K, Echeverria B, Serna S, van Diepen A, Hokke CH, Reichardt NC. Synthesis and microarray-assisted binding studies of core xylose and fucose containing N-glycans. ACS Chem Biol 2015; 10:1290-302. [PMID: 25664929 DOI: 10.1021/cb501023u] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of a collection of 33 xylosylated and core-fucosylated N-glycans found only in nonmammalian organisms such as plants and parasitic helminths has been achieved by employing a highly convergent chemo-enzymatic approach. The influence of these core modifications on the interaction with plant lectins, with the human lectin DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Nonintegrin), and with serum antibodies from schistosome-infected individuals was studied. Core xylosylation markedly reduced or completely abolished binding to several mannose-binding plant lectins and to DC-SIGN, a C-type lectin receptor present on antigen presenting cells. Employing the synthetic collection of core-fucosylated and core-xylosylated N-glycans in the context of a larger glycan array including structures lacking these core modifications, we were able to dissect core xylose and core fucose specific antiglycan antibody responses in S. mansoni infection sera, and we observed clear and immunologically relevant differences between children and adult groups infected with this parasite. The work presented here suggests that, quite similar to bisecting N-acetylglucosamine, core xylose distorts the conformation of the unsubstituted glycan, with important implications for the immunogenicity and protein binding properties of complex N-glycans.
Collapse
Affiliation(s)
- Katarzyna Brzezicka
- Glycotechnology
Laboratory, CIC biomaGUNE, Paseo Miramón 182, 20009 San Sebastian, Spain
| | - Begoña Echeverria
- Glycotechnology
Laboratory, CIC biomaGUNE, Paseo Miramón 182, 20009 San Sebastian, Spain
| | - Sonia Serna
- Glycotechnology
Laboratory, CIC biomaGUNE, Paseo Miramón 182, 20009 San Sebastian, Spain
| | - Angela van Diepen
- Parasite
Glycobiology Group, Department of Parasitology, Leiden University Medical Center, P.O.
Box 9600, 2300 RC Leiden, The Netherlands
| | - Cornelis H. Hokke
- Parasite
Glycobiology Group, Department of Parasitology, Leiden University Medical Center, P.O.
Box 9600, 2300 RC Leiden, The Netherlands
| | - Niels-Christian Reichardt
- Glycotechnology
Laboratory, CIC biomaGUNE, Paseo Miramón 182, 20009 San Sebastian, Spain
- CIBER BBN, Paseo Miramón
182, 20009 San Sebastian, Spain
| |
Collapse
|
13
|
Mickum ML, Prasanphanich NS, Heimburg-Molinaro J, Leon KE, Cummings RD. Deciphering the glycogenome of schistosomes. Front Genet 2014; 5:262. [PMID: 25147556 PMCID: PMC4122909 DOI: 10.3389/fgene.2014.00262] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/15/2014] [Indexed: 11/16/2022] Open
Abstract
Schistosoma mansoni and other Schistosoma sp. are multicellular parasitic helminths (worms) that infect humans and mammals worldwide. Infection by these parasites, which results in developmental maturation and sexual differentiation of the worms over a period of 5–6 weeks, induces antibodies to glycan antigens expressed in surface and secreted glycoproteins and glycolipids. There is growing interest in defining these unusual parasite-synthesized glycan antigens and using them to understand immune responses, their roles in immunomodulation, and in using glycan antigens as potential vaccine targets. A key problem in this area, however, has been the lack of information about the enzymes involved in elaborating the complex repertoire of glycans represented by the schistosome glycome. Recent availability of the nuclear genome sequences for Schistosoma sp. has created the opportunity to define the glycogenome, which represents the specific genes and cognate enzymes that generate the glycome. Here we describe the current state of information in regard to the schistosome glycogenome and glycome and highlight the important classes of glycans and glycogenes that may be important in their generation.
Collapse
Affiliation(s)
- Megan L Mickum
- Department of Biochemistry, Emory University School of Medicine Atlanta, GA, USA
| | - Nina S Prasanphanich
- Department of Biochemistry, Emory University School of Medicine Atlanta, GA, USA
| | | | - Kristoffer E Leon
- Department of Biochemistry, Emory University School of Medicine Atlanta, GA, USA
| | - Richard D Cummings
- Department of Biochemistry, Emory University School of Medicine Atlanta, GA, USA
| |
Collapse
|
14
|
Prasanphanich NS, Luyai AE, Song X, Heimburg-Molinaro J, Mandalasi M, Mickum M, Smith DF, Nyame AK, Cummings RD. Immunization with recombinantly expressed glycan antigens from Schistosoma mansoni induces glycan-specific antibodies against the parasite. Glycobiology 2014; 24:619-37. [PMID: 24727440 PMCID: PMC4038251 DOI: 10.1093/glycob/cwu027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 12/11/2022] Open
Abstract
Schistosomiasis caused by infection with parasitic helminths of Schistosoma spp. is a major global health problem due to inadequate treatment and lack of a vaccine. The immune response to schistosomes includes glycan antigens, which could be valuable diagnostic markers and vaccine targets. However, no precedent exists for how to design vaccines targeting eukaryotic glycoconjugates. The di- and tri-saccharide motifs LacdiNAc (GalNAcβ1,4GlcNAc; LDN) and fucosylated LacdiNAc (GalNAcβ1,4(Fucα1-3)GlcNAc; LDNF) are the basis for several important schistosome glycan antigens. They occur in monomeric form or as repeating units (poly-LDNF) and as part of a variety of different glycoconjugates. Because chemical synthesis and conjugation of such antigens is exceedingly difficult, we sought to develop a recombinant expression system for parasite glycans. We hypothesized that presentation of parasite glycans on the cell surface would induce glycan-specific antibodies. We generated Chinese hamster ovary (CHO) Lec8 cell lines expressing poly-LDN (L8-GT) and poly-LDNF (L8-GTFT) abundantly on their membrane glycoproteins. Sera from Schistosoma mansoni-infected mice were highly cross-reactive with the cells and with cell-surface N-glycans. Immunizing mice with L8-GT and L8-GTFT cells induced glycan-specific antibodies. The L8-GTFT cells induced a sustained booster response, with antibodies that bound to S. mansoni lysates and recapitulated the exquisite specificity of the anti-parasite response for particular presentations of LDNF antigen. In summary, this recombinant expression system promotes successful generation of antibodies to the glycans of S. mansoni, and it can be adapted to study the role of glycan antigens and anti-glycan immune responses in many other infections and pathologies.
Collapse
Affiliation(s)
- Nina Salinger Prasanphanich
- Emory University Glycomics Center, 4024 O. Wayne Rollins Research Building, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Anthony E Luyai
- Emory University Glycomics Center, 4024 O. Wayne Rollins Research Building, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Xuezheng Song
- Emory University Glycomics Center, 4024 O. Wayne Rollins Research Building, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Jamie Heimburg-Molinaro
- Emory University Glycomics Center, 4024 O. Wayne Rollins Research Building, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Msano Mandalasi
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Megan Mickum
- Emory University Glycomics Center, 4024 O. Wayne Rollins Research Building, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - David F Smith
- Emory University Glycomics Center, 4024 O. Wayne Rollins Research Building, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - A Kwame Nyame
- Department of Biochemistry, Emory University School of Medicine, O. Wayne Rollins Research Center, 1510 Clifton Road, Suite 4001, Atlanta, GA 30322, USA
| | - Richard D Cummings
- Emory University Glycomics Center, 4024 O. Wayne Rollins Research Building, 1510 Clifton Rd., Atlanta, GA 30322, USA Department of Biochemistry, Emory University School of Medicine, O. Wayne Rollins Research Center, 1510 Clifton Road, Suite 4001, Atlanta, GA 30322, USA
| |
Collapse
|
15
|
Luyai AE, Heimburg-Molinaro J, Prasanphanich NS, Mickum ML, Lasanajak Y, Song X, Nyame AK, Wilkins P, Rivera-Marrero CA, Smith DF, Van Die I, Secor WE, Cummings RD. Differential expression of anti-glycan antibodies in schistosome-infected humans, rhesus monkeys and mice. Glycobiology 2014; 24:602-18. [PMID: 24727442 PMCID: PMC4038252 DOI: 10.1093/glycob/cwu029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 12/30/2022] Open
Abstract
Schistosomiasis is a debilitating parasitic disease of humans, endemic in tropical areas, for which no vaccine is available. Evidence points to glycan antigens as being important in immune responses to infection. Here we describe our studies on the comparative humoral immune responses to defined schistosome-type glycan epitopes in Schistosoma mansoni-infected humans, rhesus monkeys and mice. Rhesus anti-glycan responses over the course of infection were screened on a defined glycan microarray comprising semi-synthetic glycopeptides terminating with schistosome-associated or control mammalian-type glycan epitopes, as well as a defined glycan microarray of mammalian-type glycans representing over 400 glycan structures. Infected rhesus monkeys generated a high immunoglobulin G (IgG) antibody response to the core xylose/core α3 fucose epitope of N-glycans, which peaked at 8-11 weeks post infection, coinciding with maximal ability to kill schistosomula in vitro. By contrast, infected humans generated low antibody levels to this epitope. At 18 months following praziquantel therapy to eliminate the parasite, antibody levels were negligible. Mice chronically infected with S. mansoni generated high levels of anti-fucosylated LacdiNAc (GalNAcβ1, 4(Fucα1, 3)GlcNAc) IgM antibodies, but lacked a robust response to the core xylose/core α3 fucose N-glycan antigens compared with other species studied, and their sera demonstrated an intermediate level of schistosomula killing in vitro. These differential responses to parasite glycan antigens may be related to the ability of rhesus monkeys to self-cure in contrast to the chronic infection seen in humans and mice. Our results validate defined glycan microarrays as a useful technology to evaluate diagnostic and vaccine antigens for schistosomiasis and perhaps other infections.
Collapse
Affiliation(s)
- Anthony E Luyai
- Department of Biochemistry, Emory University School of Medicine, O. Wayne Rollins Research Center, 1510 Clifton Road, Suite 4001, Atlanta, GA 30322, USA
| | - Jamie Heimburg-Molinaro
- Department of Biochemistry, Emory University School of Medicine, O. Wayne Rollins Research Center, 1510 Clifton Road, Suite 4001, Atlanta, GA 30322, USA
| | - Nina Salinger Prasanphanich
- Department of Biochemistry, Emory University School of Medicine, O. Wayne Rollins Research Center, 1510 Clifton Road, Suite 4001, Atlanta, GA 30322, USA
| | - Megan L Mickum
- Department of Biochemistry, Emory University School of Medicine, O. Wayne Rollins Research Center, 1510 Clifton Road, Suite 4001, Atlanta, GA 30322, USA
| | - Yi Lasanajak
- Department of Biochemistry, Emory University School of Medicine, O. Wayne Rollins Research Center, 1510 Clifton Road, Suite 4001, Atlanta, GA 30322, USA
| | - Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, O. Wayne Rollins Research Center, 1510 Clifton Road, Suite 4001, Atlanta, GA 30322, USA
| | - A Kwame Nyame
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Patricia Wilkins
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Carlos A Rivera-Marrero
- Division of Select Agents and Toxins, Centers for Disease Control and Prevention, Atlanta, GA 30333
| | - David F Smith
- Department of Biochemistry, Emory University School of Medicine, O. Wayne Rollins Research Center, 1510 Clifton Road, Suite 4001, Atlanta, GA 30322, USA
| | - Irma Van Die
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - W Evan Secor
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Richard D Cummings
- Department of Biochemistry, Emory University School of Medicine, O. Wayne Rollins Research Center, 1510 Clifton Road, Suite 4001, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
Aryal RP, Ju T, Cummings RD. Identification of a novel protein binding motif within the T-synthase for the molecular chaperone Cosmc. J Biol Chem 2014; 289:11630-11641. [PMID: 24616093 DOI: 10.1074/jbc.m114.555870] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prior studies suggested that the core 1 β3-galactosyltransferase (T-synthase) is a specific client of the endoplasmic reticulum chaperone Cosmc, whose function is required for T-synthase folding, activity, and consequent synthesis of normal O-glycans in all vertebrate cells. To explore whether the T-synthase encodes a specific recognition motif for Cosmc, we used deletion mutagenesis to identify a cryptic linear and relatively hydrophobic peptide in the N-terminal stem region of the T-synthase that is essential for binding to Cosmc (Cosmc binding region within T-synthase, or CBRT). Using this sequence information, we synthesized a peptide containing CBRT and found that it directly interacts with Cosmc and also inhibits Cosmc-assisted in vitro refolding of denatured T-synthase. Moreover, engineered T-synthase carrying mutations within CBRT exhibited diminished binding to Cosmc that resulted in the formation of inactive T-synthase. To confirm the general recognition of CBRT by Cosmc, we performed a domain swap experiment in which we inserted the stem region of the T-synthase into the human β4GalT1 and found that the CBRT element can confer Cosmc binding onto the β4GalT1 chimera. Thus, CBRT is a unique recognition motif for Cosmc to promote its regulation and formation of active T-synthase and represents the first sequence-specific chaperone recognition system in the ER/Golgi required for normal protein O-glycosylation.
Collapse
Affiliation(s)
- Rajindra P Aryal
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Tongzhong Ju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322.
| | - Richard D Cummings
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322.
| |
Collapse
|
17
|
Beloqui A, Calvo J, Serna S, Yan S, Wilson IBH, Martin-Lomas M, Reichardt NC. Analysis of Microarrays by MALDI-TOF MS. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302455] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Beloqui A, Calvo J, Serna S, Yan S, Wilson IBH, Martin-Lomas M, Reichardt NC. Analysis of microarrays by MALDI-TOF MS. Angew Chem Int Ed Engl 2013; 52:7477-81. [PMID: 23757366 DOI: 10.1002/anie.201302455] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Indexed: 01/21/2023]
Abstract
Ligand libraries can be printed onto a sandwich composed of activated lipids embedded in a hydrophobic layer conjugated to an indium-tin oxide (ITO) surface. Arrays produced this way can be analyzed by fluorescence spectroscopy and mass spectrometry. Applications include the assignment of enzyme specificity, the profiling of glycoforms and the identification of lectins.
Collapse
Affiliation(s)
- Ana Beloqui
- CICbiomaGUNE, Biofunctional Nanomaterials Unit, Paseo Miramon 182, 20009 San Sebastian, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Many oligosaccharides are not commercially available, which limits studies focused on elucidation of glycan functions; therefore chemo-enzymatic methods to synthesize them can be very useful. Here, we describe the procedure to synthesize the Galα1-3GalNAcβ1-4GlcNAcβ-R (Gal-LDN) moiety, containing the Galα1-3GalNAc epitope found on the parasitic helminth Haemonchus contortus. An acceptor substrate providing a terminal N-acetylglucosamine was prepared by coupling the fluorescent hydrophobic aglycon, 2,6-diaminopyridine (DAP), to N,N'-diacetylchitobiose. By the subsequent action of recombinant Caenorhabditis elegans β1,4-N-acetylgalactosaminyltransferase the substrate was efficiently converted to GalNAcβ1-4GlcNAcβ-R (LDN-R). Since no recombinant α1,3-galactosyltransferase has been described that acts on terminal βGalNAc, we used bovine α1,3-galactosyltransferase to obtain a partial conversion of LDN-R to the Gal-LDN antigen. This method can be applied to synthesize any oligosaccharide, provided that specific glycosyltransferases are available, or related enzymes that can be pushed to elongate the selected acceptor.
Collapse
|
20
|
Ramakrishnan B, Boeggeman E, Qasba PK. Binding of N-acetylglucosamine (GlcNAc) β1-6-branched oligosaccharide acceptors to β4-galactosyltransferase I reveals a new ligand binding mode. J Biol Chem 2012; 287:28666-74. [PMID: 22740701 PMCID: PMC3436570 DOI: 10.1074/jbc.m112.373514] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/26/2012] [Indexed: 01/18/2023] Open
Abstract
N-acetyllactosamine is the most prevalent disaccharide moiety in the glycans on the surface of mammalian cells and often found as repeat units in the linear and branched polylactosamines, known as i- and I-antigen, respectively. The β1-4-galactosyltransferase-I (β4Gal-T1) enzyme is responsible for the synthesis of the N-acetyllactosamine moiety. To understand its oligosaccharide acceptor specificity, we have previously investigated the binding of tri- and pentasaccharides of N-glycan with a GlcNAc at their nonreducing end and found that the extended sugar moiety in these acceptor substrates binds to the crevice present at the acceptor substrate binding site of the β4Gal-T1 molecule. Here we report seven crystal structures of β4Gal-T1 in complex with an oligosaccharide acceptor with a nonreducing end GlcNAc that has a β1-6-glycosidic link and that are analogous to either N-glycan or i/I-antigen. In the crystal structure of the complex of β4Gal-T1 with I-antigen analog pentasaccharide, the β1-6-branched GlcNAc moiety is bound to the sugar acceptor binding site of the β4Gal-T1 molecule in a way similar to the crystal structures described previously; however, the extended linear tetrasaccharide moiety does not interact with the previously found extended sugar binding site on the β4Gal-T1 molecule. Instead, it interacts with the different hydrophobic surface of the protein molecule formed by the residues Tyr-276, Trp-310, and Phe-356. Results from the present and previous studies suggest that β4Gal-T1 molecule has two different oligosaccharide binding regions for the binding of the extended oligosaccharide moiety of the acceptor substrate.
Collapse
Affiliation(s)
- Boopathy Ramakrishnan
- From the Structural Glycobiology Section and
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702
| | - Elizabeth Boeggeman
- From the Structural Glycobiology Section and
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702
| | | |
Collapse
|
21
|
Glycan microarray profiling of parasite infection sera identifies the LDNF glycan as a potential antigen for serodiagnosis of trichinellosis. Exp Parasitol 2011; 129:221-6. [PMID: 21893057 DOI: 10.1016/j.exppara.2011.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 08/16/2011] [Accepted: 08/17/2011] [Indexed: 11/24/2022]
Abstract
Diagnostic methods for parasite infections still highly depend on the identification of the parasites by direct methods such as microscopic examination of blood, stool and tissue biopsies. Serodiagnosis is often carried out to complement the direct methods; however, few synthetic antigens with sufficient sensitivity and specificity are available. Here we evaluated a glycan microarray approach to select for synthetic glycan antigens that could be used for serodiagnosis of parasitic infections. Using a glycan array containing over 250 different glycan antigens, we identified GalNAcβ1-4(Fucα1-3)GlcNAc-R (LDNF) as a glycan antigen that is recognized by antibodies from Trichinella-infected individuals. We synthesized a neoglycoconjugate, consisting of five LDNF molecules covalently coupled to bovine serum albumin (BSA), and used this neoglycoconjugate as an antigen to develop a highly sensitive total-Ig ELISA for serological screening of trichinellosis. The results indicate that glycan microarrays constitute a promising technology for fast and specific identification of parasite glycan antigens to improve serodiagnosis of different parasitic infections, either using an ELISA format, or parasite-specific glycan arrays.
Collapse
|
22
|
Matsumoto R, Shibata TF, Kohtsuka H, Sekifuji M, Sugii N, Nakajima H, Kojima N, Fujii Y, Kawsar SMA, Yasumitsu H, Hamako J, Matsui T, Ozeki Y. Glycomics of a novel type-2 N-acetyllactosamine-specific lectin purified from the feather star, Oxycomanthus japonicus (Pelmatozoa: Crinoidea). Comp Biochem Physiol B Biochem Mol Biol 2010; 158:266-73. [PMID: 21176791 DOI: 10.1016/j.cbpb.2010.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 11/28/2022]
Abstract
A lectin - designated OXYL for the purposes of this study that strongly recognizes complex-type oligosaccharides of serum glycoproteins - was purified from a crinoid, the feather star Oxycomanthus japonicus, the most basal group among extant echinoderms. OXYL was purified through a combination of anion-exchange and affinity chromatography using Q-sepharose and fetuin-sepharose gel, respectively. Lectin was determined to be a 14-kDa polypeptide by sodium dodecyl sulphate-polyacrylamide gel electrophoresis under reducing conditions. However, 14-kDa and 28-kDa bands appeared in the same proportion under non-reducing conditions. Gel permeation chromatography showed a 54-kDa peak, suggesting that lectin consists of four 14-kDa subunits. Divalent cations were not indicated, and stable haemagglutination activity was demonstrated at pH 4-12 and temperatures below 60°C. Surface plasmon resonance analysis of OXYL against fetuin showed k(ass) and k(diss) values of 1.4×10(-6)M(-1)s(-1) and 3.1×10(-3)s(-1), respectively, indicating that it has a strong binding affinity to the glycoprotein as lectin. Frontal affinity chromatography using 25 types of prydylamine-conjugated glycans indicated that OXYL specifically recognizes multi-antennary complex-type oligosaccharides containing type-2 N-acetyllactosamines (Galβ1-4GlcNAc) if α2-3-linked sialic acid is linked at the non-reducing terminal. However, type-1 N-acetyllactosamine (Galβ1-3GlcNAc) chains and α2-6-linked sialic acids were never recognized by OXYL. This profiling study showed that OXYL essentially recognizes β1-4-linkage at C-1 position and free OH group at C-6 position of Gal in addition to the conservation of N-acetyl groups at C-2 position and free OH groups at C-3 position of GlcNAc in N-acetyllactosamine. This is the first report on glycomics on a lectin purified from an echinoderm belonging to the subphylum Pelmatozoa.
Collapse
Affiliation(s)
- Ryo Matsumoto
- Laboratory of Glycobiology and Marine Biochemistry, Department of Genome System Sciences, Graduate School of NanoBiosciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ramakrishnan B, Qasba PK. Structure-based evolutionary relationship of glycosyltransferases: a case study of vertebrate β1,4-galactosyltransferase, invertebrate β1,4-N-acetylgalactosaminyltransferase and α-polypeptidyl-N-acetylgalactosaminyltransferase. Curr Opin Struct Biol 2010; 20:536-42. [PMID: 20705453 PMCID: PMC2974045 DOI: 10.1016/j.sbi.2010.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/02/2010] [Accepted: 07/19/2010] [Indexed: 02/07/2023]
Abstract
Cell surface glycans play important cellular functions and are synthesized by glycosyltransferases. Structure and function studies show that the donor sugar specificity of the invertebrate β1,4-N-acetyl-glactosaminyltransferase (β4GalNAc-T) and the vertebrate β1,4-galactosyltransferase I (β4Gal-T1) are related by a single amino acid residue change. Comparison of the catalytic domain crystal structures of the β4Gal-T1 and the α-polypeptidyl-GalNAc-T (αppGalNAc-T) shows that their protein structure and sequences are similar. Therefore, it seems that the invertebrate β4GalNAc-T and the catalytic domain of αppGalNAc-T might have emerged from a common primordial gene. When vertebrates emerged from invertebrates, the amino acid that determines the donor sugar specificity of the invertebrate β4GalNAc-T might have mutated, thus converting the enzyme to a β4Gal-T1 in vertebrates.
Collapse
Affiliation(s)
- Boopathy Ramakrishnan
- Structural Glycobiology Section, Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702
| | - Pradman K. Qasba
- Structural Glycobiology Section, Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702
| |
Collapse
|
24
|
Abstract
![]()
The nematode Caenorhabditis elegans is an excellent model organism for studies of glycan dynamics, a goal that requires tools for imaging glycans in vivo. Here we applied the bioorthogonal chemical reporter technique for the molecular imaging of mucin-type O-glycans in live C. elegans. We treated worms with azidosugar variants of N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GalNAc), and N-acetylmannosamine (ManNAc), resulting in the metabolic labeling of their cell-surface glycans with azides. Subsequently, the worms were reacted via copper-free click reaction with fluorophore-conjugated difluorinated cyclooctyne (DIFO) reagents. We identified prominent localization of mucins in the pharynx of all four larval stages, in the adult hermaphrodite pharynx, vulva and anus, and in the tail of the adult male. Using a multicolor, time-resolved imaging strategy, we found that the distribution and dynamics of the glycans varied anatomically and with respect to developmental stage.
Collapse
Affiliation(s)
| | - Carolyn R. Bertozzi
- Department of Molecular and Cell Biology
- Department of Chemistry
- Howard Hughes Medical Institute,
- The Molecular Foundry, Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
25
|
Tefsen B, van Stijn CMW, van den Broek M, Kalay H, Knol JC, Jimenez CR, van Die I. Chemoenzymatic synthesis of multivalent neoglycoconjugates carrying the helminth glycan antigen LDNF. Carbohydr Res 2009; 344:1501-7. [PMID: 19541294 DOI: 10.1016/j.carres.2009.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 05/11/2009] [Accepted: 05/21/2009] [Indexed: 01/19/2023]
Abstract
Several parasitic helminthes, such as the human parasite Schistosoma mansoni, express glycoconjugates that contain terminal GalNAc beta1-4(Fuc alpha1-3)GlcNAc beta-R (LDNF) moieties. These LDNF glycans are dominant antigens of the parasite and are recognized by human dendritic cells via the C-type lectin DC-SIGN. To study the functional role of the LDNF antigen in interaction with the immune system, we have developed an easy chemoenzymatic method to synthesize multivalent neoglycoconjugates carrying defined amounts of LDNF antigens. An acceptor substrate providing a terminal N-acetylglucosamine was prepared by coupling a fluorescent hydrophobic aglycon, 2,6-diaminopyridine (DAP), to N,N'-diacetylchitobiose. By the subsequent action of recombinant Caenorhabditis elegans beta1,4-N-acetylgalactosaminyltransferase and human alpha1,3-fucosyltransferase VI (FucT-VI), this substrate was converted to the LDNF antigen. We showed that human FucT-VI has a relatively high affinity for the unusual substrate GalNAc beta1-4GlcNAc (LDN), and this enzyme was used to produce micromolar amounts of LDNF-DAP. The synthesized LDNF-DAP was coupled to carrier protein via activation of the DAP moiety by diethyl squarate. By varying the molar glycan:protein ratio, neoglycoconjugates were constructed with defined amounts of LDNF, as was determined by MALDI-TOF analysis and ELISA using an anti-LDNF antibody.
Collapse
Affiliation(s)
- Boris Tefsen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
26
|
Johswich A, Kraft B, Wuhrer M, Berger M, Deelder AM, Hokke CH, Gerardy-Schahn R, Bakker H. Golgi targeting of Drosophila melanogaster beta4GalNAcTB requires a DHHC protein family-related protein as a pilot. ACTA ACUST UNITED AC 2009; 184:173-83. [PMID: 19139268 PMCID: PMC2615082 DOI: 10.1083/jcb.200801071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Drosophila melanogaster β4GalNAcTB mutant flies revealed that this particular N-acetylgalactosaminyltransferase is predominant in the formation of lacdiNAc (GalNAcβ1,4GlcNAc)-modified glycolipids, but enzymatic activity could not be confirmed for the cloned enzyme. Using a heterologous expression cloning approach, we isolated β4GalNAcTB together with β4GalNAcTB pilot (GABPI), a multimembrane-spanning protein related to Asp-His-His-Cys (DHHC) proteins but lacking the DHHC consensus sequence. In the absence of GABPI, inactive β4GalNAcTB is trapped in the endoplasmic reticulum (ER). Coexpression of β4GalNAcTB and GABPI generates the active enzyme that is localized together with GABPI in the Golgi. GABPI associates with β4GalNAcTB and, when expressed with an ER retention signal, holds active β4GalNAcTB in the ER. Importantly, treatment of isolated membrane vesicles with Triton X-100 disturbs β4GalNAcTB activity. This phenomenon occurs with multimembrane-spanning glycosyltransferases but is normally not a property of glycosyltransferases with one membrane anchor. In summary, our data provide evidence that GABPI is required for ER export and activity of β4GalNAcTB.
Collapse
Affiliation(s)
- Anita Johswich
- Department of Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Do SI. Generation of novel chimeric LacdiNAcS by gene fusion of alpha-lactalbumin and beta1,4-galactosyltransferase 1. Glycoconj J 2008; 26:567-75. [PMID: 19003527 DOI: 10.1007/s10719-008-9208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 09/29/2008] [Accepted: 10/24/2008] [Indexed: 11/25/2022]
Abstract
Novel chimeric lacdiNAc (GalNAc(beta1-4)GlcNAc) synthase (c-LacdiNAcS) was generated by gene fusion of alpha-lactalbumin (alpha-LA) and beta1,4-galactosyltransferase 1 (beta1,4-GalT1). c-LacdiNAcS was expressed in Lec8 Chinese hamster ovary (Lec8 CHO) cells and exhibited N-acetylgalactosaminyltransferase (GalNAcT) activity in the absence of exogenous alpha-LA as well as other glycosyltransferase activities including lactose synthase (LacS), and beta1,4-GalT. These glycosyltransferase activities of c-LacdiNAcS were compared to those activities induced in LacS system under the co-presence of bovine beta1,4-GalT1 and alpha-LA, indicating that each domain of alpha-LA and beta1,4-GalT1 on c-LacdiNAcS is not only folding correctly, but also interacting together. Furthermore, c-LacdiNAcS was found to be auto-lacdiNAcylated and can synthesize lacdiNAc structures on cellular glycoproteins, demonstrating that GalNAcT activity of c-LacdiNAcS is functional in Lec8 CHO cells.
Collapse
Affiliation(s)
- Su-Il Do
- Department of Life Science, Ajou University, Suwon City, Republic of Korea.
| |
Collapse
|
28
|
Ju T, Aryal RP, Stowell CJ, Cummings RD. Regulation of protein O-glycosylation by the endoplasmic reticulum-localized molecular chaperone Cosmc. ACTA ACUST UNITED AC 2008; 182:531-42. [PMID: 18695044 PMCID: PMC2500138 DOI: 10.1083/jcb.200711151] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Regulatory pathways for protein glycosylation are poorly understood, but expression of branchpoint enzymes is critical. A key branchpoint enzyme is the T-synthase, which directs synthesis of the common core 1 O-glycan structure (T-antigen), the precursor structure for most mucin-type O-glycans in a wide variety of glycoproteins. Formation of active T-synthase, which resides in the Golgi apparatus, requires a unique molecular chaperone, Cosmc, encoded on Xq24. Cosmc is the only molecular chaperone known to be lost through somatic acquired mutations in cells. We show that Cosmc is an endoplasmic reticulum (ER)–localized adenosine triphosphate binding chaperone that binds directly to human T-synthase. Cosmc prevents the aggregation and ubiquitin-mediated degradation of the T-synthase. These results demonstrate that Cosmc is a molecular chaperone in the ER required for this branchpoint glycosyltransferase function and show that expression of the disease-related Tn antigen can result from deregulation or loss of Cosmc function.
Collapse
Affiliation(s)
- Tongzhong Ju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
29
|
Paschinger K, Gutternigg M, Rendić D, Wilson IBH. The N-glycosylation pattern of Caenorhabditis elegans. Carbohydr Res 2007; 343:2041-9. [PMID: 18226806 DOI: 10.1016/j.carres.2007.12.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 12/07/2007] [Accepted: 12/17/2007] [Indexed: 01/21/2023]
Abstract
Determining the exact nature of N-glycosylation in Caenorhabditis elegans, a nematode worm and genetic model organism, has proved to have been an unexpected challenge in recent years; a wide range of modifications of its N-linked oligosaccharides have been proposed on the basis of structural and genomic analysis. Particularly mass spectrometric studies by a number of groups, as well as the characterisation of recombinant enzymes, have highlighted those aspects of N-glycosylation that are conserved in animals, those which are seemingly unique to this species and those which are shared with parasitic nematodes. These data, of importance for therapeutic developments, are reviewed.
Collapse
Affiliation(s)
- Katharina Paschinger
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria.
| | | | | | | |
Collapse
|
30
|
Rendić D, Wilson IBH, Lubec G, Gutternigg M, Altmann F, Léonard R. Adaptation of the "in-gel release method" to N-glycome analysis of low-milligram amounts of material. Electrophoresis 2007; 28:4484-92. [PMID: 18041037 DOI: 10.1002/elps.200700098] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Protein N-glycosylation is a post-translational modification which plays numerous crucial physiological roles. The N-glycan pattern varies depending on the species organs, tissues and even cell types and their respective physiological states. Obtaining enough starting material from a particular cell type or tissue for N-glycan purification by conventional methods can, in certain cases, be very difficult. Previously, a sensitive technique, the "in-gel release method" that allows the determination of N-glycans attached to a protein isolated by SDS-PAGE, has been developed in this and other laboratories. Here, we describe the adaptation of this method to obtain information on the N-glycome from minute amounts of tissue. The starting material, ranging from less than a milligram to a few milligrams of fresh tissue, is directly ground in Laemmli sample buffer and subject briefly to discontinuous Tris-glycine-SDS-PAGE. The Coomassie-stained band containing the majority of the proteins is subject to the "in-gel release method". The developed technique was used to analyze N-glycan patterns of different samples from Caenorhabditis elegans, Drosophila melanogaster, Spodoptera frugiperda, Trichoplusia ni, Nicotiana benthamiana, Arabidopsis thaliana, and Mus musculus. Furthermore, the technique was used to determine the effects of transient small-scale RNAi-mediated knock-down of a glycosylation-related gene in Drosophila Schneider 2 cell line.
Collapse
Affiliation(s)
- Dubravko Rendić
- Department für Chemie der Universität für Bodenkultur, Wien, Austria.
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
One of the major advantages of the baculovirus-insect cell system is that it is a eukaryotic system that can provide posttranslational modifications, such as protein N-glycosylation. However, this is a vastly oversimplified view, which reflects a poor understanding of insect glycobiology. In general, insect protein glycosylation pathways are far simpler than the corresponding pathways of higher eukaryotes. Paradoxically, it is increasingly clear that various insects encode and can express more elaborate protein glycosylation functions in restricted fashion. Thus, the information gathered in a wide variety of studies on insect protein N-glycosylation during the past 25 years has provided what now appears to be a reasonably detailed, comprehensive, and accurate understanding of the protein N-glycosylation capabilities of the baculovirus-insect cell system. In this chapter, we discuss the models of insect protein N-glycosylation that have emerged from these studies and how this impacts the use of baculovirus-insect cell systems for recombinant glycoprotein production. We also discuss the use of these models as baselines for metabolic engineering efforts leading to the development of new baculovirus-insect cell systems with humanized protein N-glycosylation pathways, which can be used to produce more authentic recombinant N-glycoproteins for drug development and other biomedical applications.
Collapse
Affiliation(s)
- Xianzong Shi
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071
- Chesapeake-PERL, Inc. 8510A Corridor Rd, Savage, MD 20763, USA
| | - Donald L. Jarvis
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071
| |
Collapse
|
32
|
Stolz A, Haines N, Pich A, Irvine KD, Hokke CH, Deelder AM, Gerardy-Schahn R, Wuhrer M, Bakker H. Distinct contributions of β4GalNAcTA and β4GalNAcTB to Drosophila glycosphingolipid biosynthesis. Glycoconj J 2007; 25:167-75. [PMID: 17876704 DOI: 10.1007/s10719-007-9069-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 07/19/2007] [Accepted: 08/01/2007] [Indexed: 12/20/2022]
Abstract
Drosophila melanogaster has two beta4-N-acetylgalactosaminyltransferases, beta4GalNAcTA and beta4GalNAcTB, that are able to catalyse the formation of lacdiNAc (GalNAcbeta,4GlcNAc). LacdiNAc is found as a structural element of Drosophila glycosphingolipids (GSLs) suggesting that beta4GalNAcTs contribute to the generation of GSL structures in vivo. Mutations in Egghead and Brainaic, enzymes that generate the beta4GalNAcT trisaccharide acceptor structure GlcNAcbeta,3Manbeta,4GlcbetaCer, are lethal. In contrast, flies doubly mutant for the beta4GalNAcTs are viable and fertile. Here, we describe the structural analysis of the GSLs in beta4GalNAcT mutants and find that in double mutant flies no lacdiNAc structure is generated and the trisaccharide GlcNAcbeta,3Manbeta,4GlcbetaCer accumulates. We also find that phosphoethanolamine transfer to GlcNAc in the trisaccharide does not occur, demonstrating that this step is dependent on prior or simultaneous transfer of GalNAc. By comparing GSL structures generated in the beta4GalNAcT single mutants we show that beta4GalNAcTB is the major enzyme for the overall GSL biosynthesis in adult flies. In beta4GalNAcTA mutants, composition of GSL structures is indistinguishable from wild-type animals. However, in beta4GalNAcTB mutants precursor structures are accumulating in different steps of GSL biosynthesis, without the complete loss of lacdiNAc, indicating that beta4GalNAcTA plays a minor role in generating GSL structures. Together our results demonstrate that both beta4GalNAcTs are able to generate lacdiNAc structures in Drosophila GSL, although with different contributions in vivo, and that the trisaccharide GlcNAcbeta,3Manbeta,4GlcbetaCer is sufficient to avoid the major phenotypic consequences associated with the GSL biosynthetic defects in Brainiac or Egghead.
Collapse
Affiliation(s)
- Anita Stolz
- Zelluläre Chemie, Zentrum Biochemie, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pigott CR, Ellar DJ. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev 2007; 71:255-81. [PMID: 17554045 PMCID: PMC1899880 DOI: 10.1128/mmbr.00034-06] [Citation(s) in RCA: 408] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bacillus thuringiensis produces crystalline protein inclusions with insecticidal or nematocidal properties. These crystal (Cry) proteins determine a particular strain's toxicity profile. Transgenic crops expressing one or more recombinant Cry toxins have become agriculturally important. Individual Cry toxins are usually toxic to only a few species within an order, and receptors on midgut epithelial cells have been shown to be critical determinants of Cry specificity. The best characterized of these receptors have been identified for lepidopterans, and two major receptor classes have emerged: the aminopeptidase N (APN) receptors and the cadherin-like receptors. Currently, 38 different APNs have been reported for 12 different lepidopterans. Each APN belongs to one of five groups that have unique structural features and Cry-binding properties. While 17 different APNs have been reported to bind to Cry toxins, only 2 have been shown to mediate toxin susceptibly in vivo. In contrast, several cadherin-like proteins bind to Cry toxins and confer toxin susceptibility in vitro, and disruption of the cadherin gene has been associated with toxin resistance. Nonetheless, only a small subset of the lepidopteran-specific Cry toxins has been shown to interact with cadherin-like proteins. This review analyzes the interactions between Cry toxins and their receptors, focusing on the identification and validation of receptors, the molecular basis for receptor recognition, the role of the receptor in resistant insects, and proposed models to explain the sequence of events at the cell surface by which receptor binding leads to cell death.
Collapse
Affiliation(s)
- Craig R Pigott
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | | |
Collapse
|
34
|
Gutternigg M, Kretschmer-Lubich D, Paschinger K, Rendić D, Hader J, Geier P, Ranftl R, Jantsch V, Lochnit G, Wilson IBH. Biosynthesis of truncated N-linked oligosaccharides results from non-orthologous hexosaminidase-mediated mechanisms in nematodes, plants, and insects. J Biol Chem 2007; 282:27825-40. [PMID: 17636254 PMCID: PMC2850174 DOI: 10.1074/jbc.m704235200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In many invertebrates and plants, the N-glycosylation profile is dominated by truncated paucimannosidic N-glycans, i.e. glycans consisting of a simple trimannosylchitobiosyl core often modified by core fucose residues. Even though they lack antennal N-acetylglucosamine residues, the biosynthesis of these glycans requires the sequential action of GlcNAc transferase I, Golgi mannosidase II, and, finally, beta-N-acetylglucosaminidases. In Drosophila, the recently characterized enzyme encoded by the fused lobes (fdl) gene specifically removes the non-reducing N-acetylglucosamine residue from the alpha1,3-antenna of N-glycans. In the present study, we examined the products of five beta-N-acetylhexosaminidase genes from Caenorhabditis elegans (hex-1 to hex-5, corresponding to reading frames T14F9.3, C14C11.3, Y39A1C.4, Y51F10.5, and Y70D2A.2) in addition to three from Arabidopsis thaliana (AtHEX1, AtHEX2, and AtHEX3, corresponding to reading frames At1g65590, At3g55260, and At1g05590). Based on homology, the Caenorhabditis HEX-1 and all three Arabidopsis enzymes are members of the same sub-family as the aforementioned Drosophila fused lobes enzyme but either act as chitotriosidases or non-specifically remove N-acetylglucosamine from both N-glycan antennae. The other four Caenorhabditis enzymes are members of a distinct sub-family; nevertheless, two of these enzymes displayed the same alpha1,3-antennal specificity as the fused lobes enzyme. Furthermore, a deletion of part of the Caenorhabditis hex-2 gene drastically reduces the native N-glycan-specific hexosaminidase activity in mutant worm extracts and results in a shift in the N-glycan profile, which is a demonstration of its in vivo enzymatic relevance. Based on these data, it is hypothesized that the genetic origin of paucimannosidic glycans in nematodes, plants, and insects involves highly divergent members of the same hexosaminidase gene family.
Collapse
Affiliation(s)
- Martin Gutternigg
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | | | - Katharina Paschinger
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Dubravko Rendić
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Josef Hader
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Petra Geier
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Ramona Ranftl
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Verena Jantsch
- Abteilung für Chromosomenbiologie, Vienna Biocenter II, A-1030 Wien, Austria
| | - Günter Lochnit
- Institut für Biochemie, Justus-Liebig-Universität, D-35292 Gießen, Germany
| | - Iain B. H. Wilson
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
- To whom correspondence should be addressed: ; Tel: +43-1-36006-6541; Fax: +43-1-36006-6076
| |
Collapse
|
35
|
Chen YW, Pedersen JW, Wandall HH, Levery SB, Pizette S, Clausen H, Cohen SM. Glycosphingolipids with extended sugar chain have specialized functions in development and behavior of Drosophila. Dev Biol 2007; 306:736-49. [PMID: 17498683 DOI: 10.1016/j.ydbio.2007.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 03/27/2007] [Accepted: 04/11/2007] [Indexed: 12/18/2022]
Abstract
Glycosphingolipids (GSL) are glycosylated polar lipids in cell membranes essential for development of vertebrates as well as Drosophila. Mutants that impair enzymes involved in biosynthesis of GSL sugar chains provide a means to assess the functions of the sugar chains in vivo. The Drosophila glycosyltransferases Egghead and Brainiac are responsible for the 2nd and 3rd steps of GSL sugar chain elongation. Mutants lacking these enzymes are lethal and the nature of the defects that occur has suggested that GSL might impact on signaling by the Notch and EGFR pathways. Here we report on characterization of enzymes involved in the 4th and 5th steps of GSL sugar chain elongation in vitro and explore the biological consequences of removing the enzymes involved in step 4 in vivo. Two beta4-N-Acetylgalactosyltransferase enzymes can carry out step 4 (beta4GalNAcTA and beta4GalNAcTB), and while they may have overlapping activity, the mutants produce distinct phenotypes. The beta4GalNAcTA mutant displays behavioral defects, which are also observed in viable brainiac mutants, suggesting that proper locomotion and coordination primarily depend on GSL elongation. beta4GalNAcTB mutant animal shows ventralization of ovarian follicle cells, which is caused by defective EGFR signaling between the oocyte and the dorsal follicle cells to specify dorsal fate. GSL sequentially elongated by Egh, Brn and beta4GalNAcTB in the oocyte contribute to this signaling pathway. Despite the similar enzymatic activity, we provide evidence that the two enzymes are not functionally redundant in vivo, but direct distinct developmental functions of GSL.
Collapse
Affiliation(s)
- Ya-Wen Chen
- Developmental Biology Program, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Nguyen K, van Die I, Grundahl KM, Kawar ZS, Cummings RD. Molecular cloning and characterization of the Caenorhabditis elegans alpha1,3-fucosyltransferase family. Glycobiology 2007; 17:586-99. [PMID: 17369288 DOI: 10.1093/glycob/cwm023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The genome of Caenorhabditis elegans encodes five genes with homology to known alpha1,3 fucosyltransferases (alpha1,3FTs), but their expression and functions are poorly understood. Here we report the molecular cloning and characterization of these C. elegans alpha1,3FTs (CEFT-1 through -5). The open-reading frame for each enzyme predicts a type II transmembrane protein and multiple potential N-glycosylation sites. We prepared recombinant epitope-tagged forms of each CEFT and found that they had unusual acceptor specificity, cation requirements, and temperature sensitivity. CEFT-1 acted on the N-glycan pentasaccharide core acceptor to generate Manalpha1-3(Manalpha1-6)Manbeta1-4GlcNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-Asn. In contrast, CEFT-2 did not act on the pentasaccharide acceptor, but instead utilized a LacdiNAc acceptor to generate GalNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4Glc, which is a novel activity. CEFT-3 utilized a LacNAc acceptor to generate Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4Glc without requiring cations. CEFT-4 was similar to CEFT-3, but its activity was enhanced by some divalent cations. Recombinant CEFT-5 was well expressed, but did not act on available acceptors. Each CEFT was optimally active at room temperature and rapidly lost activity at 37 degrees C. Promoter analysis showed that CEFT-1 is expressed in C. elegans eggs and adults, but its expression was restricted to a few neuronal cells at the head and tail. We prepared deletion mutants for each enzyme for phenotypic analysis. While loss of CEFT-1 correlated with loss of pentasaccharide core activity and core alpha1,3-fucosylated glycans in worms, loss of other enzymes did not correlate with any phenotypic changes. These results suggest that each of the alpha1,3FTs in C. elegans has unique specificity and expression patterns.
Collapse
Affiliation(s)
- Kiem Nguyen
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
37
|
Haines N, Stewart BA. Functional roles for beta1,4-N-acetlygalactosaminyltransferase-A in Drosophila larval neurons and muscles. Genetics 2007; 175:671-9. [PMID: 17151241 PMCID: PMC1800592 DOI: 10.1534/genetics.106.065565] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 11/07/2006] [Indexed: 11/18/2022] Open
Abstract
Adult Drosophila mutant for the glycosyltransferase beta1,4-N-acetlygalactosaminyltransferase-A (beta4GalNAcTA) display an abnormal locomotion phenotype, indicating a role for this enzyme, and the glycan structures that it generates, in the neuromuscular system. To investigate the functional role of this enzyme in more detail, we turned to the accessible larval neuromuscular system and report here that larvae mutant for beta4GalNAcTA display distinct nerve and muscle phenotypes. Mutant larvae exhibit abnormal backward crawling, reductions in nerve terminal bouton number, decreased spontaneous transmitter-release frequency, and short, wide muscles. This muscle shape change appears to result from hypercontraction since the individual sarcomeres are shorter in mutant muscles. Analysis of muscle calcium signals showed altered calcium handling in the mutant, suggesting a mechanism by which hypercontraction could occur. All of these phenotypes can be rescued by a transgene carrying the beta4GalNAcTA genomic region. Tissue-specific expression, using the Gal4-UAS system, reveals that neural expression rescues the mutant crawling phenotype, while muscle expression rescues the muscle defect. Tissue-specific expression did not appear to rescue the decrease in neuromuscular junction bouton number, suggesting that this defect arises from cooperation between nerve and muscle. Altogether, these results suggest that beta4GalNAcTA has at least three distinct functional roles.
Collapse
Affiliation(s)
- Nicola Haines
- Department of Biology, University of Toronto, Mississauga, Ontario L5L 1C6, Canada.
| | | |
Collapse
|
38
|
Ramakrishnan B, Qasba PK. Role of a single amino acid in the evolution of glycans of invertebrates and vertebrates. J Mol Biol 2007; 365:570-6. [PMID: 17084860 PMCID: PMC1850938 DOI: 10.1016/j.jmb.2006.10.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 10/09/2006] [Accepted: 10/10/2006] [Indexed: 11/25/2022]
Abstract
Structures of glycoconjugate N-glycans and glycolipids of invertebrates show significant differences from those of vertebrates. These differences are due largely to the vertebrate beta1,4-galactosyltransferase-1 (beta4Gal-T1), which is found as a beta1,4-N-acetylgalactosaminyltransferase (beta4GalNAc-T1) in invertebrates. Mutation of Tyr285 to Ile or Leu in human beta4Gal-T1 converts the enzyme into an equally efficient beta4GalNAc-T1. A comparison of all the human beta4Gal-T1 ortholog enzymes shows that this Tyr285 residue in human beta4Gal-T1 is conserved either as Tyr or Phe in all vertebrate enzymes, while in all invertebrate enzymes it is conserved as an Ile or Leu. We find that mutation of the corresponding Ile residue to Tyr in Drosophila beta4GalNAc-T1 converts the enzyme to a beta4Gal-T1 by reducing its N-acetylgalactosaminyltransferase activity by nearly 1000-fold, while enhancing its galactosyltransferase activity by 80-fold. Furthermore, we find that, similar to the vertebrate/mammalian beta4Gal-T1 enzymes, the wild-type Drosophila beta4GalNAc-T1 enzyme binds to a mammary gland-specific protein, alpha-lactalbumin (alpha-LA). Thus, it would seem that, during the evolution of vertebrates from invertebrates over 500 million years ago, beta4Gal-T1 appeared as a result of the single amino acid substitution of Tyr or Phe for Leu or Ile in the invertebrate beta4GalNAc-T1. Subsequently, the pre-existing alpha-LA-binding site was utilized during mammalian evolution to synthesize lactose in the mammary gland during lactation.
Collapse
Affiliation(s)
- Boopathy Ramakrishnan
- Structural Glycobiology Section§, CCR Nanobiology Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD
- Basic Research Program¶, SAIC-Frederick, Inc., Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD
| | - Pradman K. Qasba
- Structural Glycobiology Section§, CCR Nanobiology Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD
| |
Collapse
|
39
|
Sasaki N, Yoshida H, Fuwa TJ, Kinoshita-Toyoda A, Toyoda H, Hirabayashi Y, Ishida H, Ueda R, Nishihara S. Drosophila beta 1,4-N-acetylgalactosaminyltransferase-A synthesizes the LacdiNAc structures on several glycoproteins and glycosphingolipids. Biochem Biophys Res Commun 2007; 354:522-7. [PMID: 17239818 DOI: 10.1016/j.bbrc.2007.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
The GalNAcbeta1,4GlcNAc (LacdiNAc or LDN) structure is a more common structural feature in invertebrate glycoconjugates when compared with the Galbeta1,4GlcNAc structure. Recently, beta1,4-N-acetylgalactosaminyltransferase (beta4GalNAcT) was identified in some invertebrates including Drosophila. However, the LDN structure has not been reported in Drosophila, and the biological function of LDN remains to be determined. In this study, we examined acceptor substrate specificity of Drosophila beta4GalNAcTA by using some N- and O-glycans on glycoproteins and neutral glycosphingolipids (GSLs). GalNAc was efficiently transferred toward N-glycans, O-glycans, and the arthro-series GSLs. Moreover, we showed that dbeta4GalNAcTA contributed to the synthesis of the LDN structure in vivo. The dbeta4GalNAcTA mRNA was highly expressed in the developmental and adult neuronal tissues. Thus, these results suggest that dbeta4GalNAcTA acts on the terminal GlcNAc residue of some glycans for the synthesis of LDN, and the LDN structure may play a role in the physiological or neuronal development of Drosophila.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Hachioji, Tokyo 192-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fiete D, Mi Y, Oats EL, Beranek MC, Baenziger JU. N-Linked Oligosaccharides on the Low Density Lipoprotein Receptor Homolog SorLA/LR11 Are Modified with Terminal GalNAc-4-SO4 in Kidney and Brain. J Biol Chem 2007; 282:1873-81. [PMID: 17121844 DOI: 10.1074/jbc.m606455200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sorting protein-related receptor (SorLA/LR11) is a highly conserved mosaic receptor that is expressed by cells in a number of different tissues including principal cells of the collecting ducts in the kidney and neurons in the central and peripheral nervous systems. SorLA/LR11 has features that indicate it serves as a sorting receptor shuttling between the plasma membrane, endosomes, and the Golgi. We have found that a fraction of SorLA/LR11 that is synthesized in the kidney and the brain bears N-linked oligosaccharides that are modified with terminal beta1,4-linked GalNAc-4-SO(4). Oligosaccharides located in the vacuolar sorting (Vps) 10p domain (Vps10p domain) are modified with beta1,4-linked GalNAc when the Vps10p domain is expressed in cells along with either of two recently cloned protein-specific beta1,4GalNAc-transferases, GalNAcTIII and GalNAcTIV. Either of two sequences with basic amino acids located within the Vps10p domain is able to mediate recognition by these beta1,4GalNAc-transferases. The highly specific modification of oligosaccharides in the Vps10p domain of SorLA/LR11 with terminal GalNAc-4-SO(4) suggests that this unusual modification may modulate the interaction of SorLA/LR11 with proteins and influence their trafficking.
Collapse
Affiliation(s)
- Dorothy Fiete
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
41
|
Ju T, Zheng Q, Cummings RD. Identification of core 1 O-glycan T-synthase from Caenorhabditis elegans. Glycobiology 2006; 16:947-58. [PMID: 16762980 DOI: 10.1093/glycob/cwl008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The common O-glycan core structure in animal glycoproteins is the core 1 disaccharide Galbeta1-3GalNAcalpha1-Ser/Thr, which is generated by the addition of Gal to GalNAcalpha1-Ser/Thr by core 1 UDP-alpha-galactose (UDP-Gal):GalNAcalpha1-Ser/Thr beta1,3-galactosyltransferase (core 1 beta3-Gal-T or T-synthase, EC2.4.1.122). Although O-glycans play important roles in vertebrates, much remains to be learned from model organisms such as the free-living nematode Caenorhabditis elegans, which offer many advantages in exploring O-glycan structure/function. Here, we report the cloning and enzymatic characterization of T-synthase from C. elegans (Ce-T-synthase). A putative C. elegans gene for T-synthase, C38H2.2, was identified in GenBank by a BlastP search using the human T-synthase protein sequence. The full-length cDNA for Ce-T-synthase, which was generated by polymerase chain reaction using a C. elegans cDNA library as the template, contains 1170 bp including the stop TAA. The cDNA encodes a protein of 389 amino acids with typical type II membrane topology and a remarkable 42.7% identity to the human T-synthase. Ce-T-synthase has seven Cys residues in the lumenal domain including six conserved Cys residues in all orthologs. The Ce-T-synthase has four potential N-glycosylation sequons, whereas the mammalian orthologs lack N-glycosylation sequons. Only one gene for Ce-T-synthase was identified in the genome-wide search, and it contains eight exons. Promoter analysis of the Ce-T-synthase using green fluorescent protein (GFP) constructs shows that the gene is expressed at all developmental stages and appears to be in all cells. Unexpectedly, only minimal activity was recovered in the recombinant, soluble Ce-T-synthase secreted from a wide variety of mammalian cell lines, whereas robust enzyme activity was recovered in the soluble Ce-T-synthase expressed in Hi-5 insect cells. Vertebrate T-synthase requires the molecular chaperone Cosmc, but our results show that Ce-T-synthase does not require Cosmc and might require invertebrate-specific factors for the formation of the optimally active enzyme. These results show that the Ce-T-synthase is a functional ortholog to the human T-synthase in generating core 1 O-glycans and open new avenues to explore O-glycan function in this model organism.
Collapse
Affiliation(s)
- Tongzhong Ju
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
42
|
Wuhrer M, Koeleman CAM, Deelder AM, Hokke CH. Repeats of LacdiNAc and fucosylated LacdiNAc on N-glycans of the human parasite Schistosoma mansoni. FEBS J 2006; 273:347-61. [PMID: 16403022 DOI: 10.1111/j.1742-4658.2005.05068.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Glycans from glycoproteins of the worm stage of the human parasite Schistosoma mansoni were enzymatically released, fluorescently labelled and analysed using various mass spectrometric and chromatographic methods. A family of 28 mainly core-alpha1-6-fucosylated, diantennary N-glycans of composition Hex(3-4)HexNAc(6-12)Fuc(1-6) was found to carry dimers of N,N'-diacetyllactosediamine [LacdiNAc or LDN; GalNAc(beta1-4)GlcNAc(beta1-] with or without fucose alpha1-3-linked to the N-acetylglucosamine residues in the antennae {GalNAc(beta1-4)[+/-Fuc(alpha1-3)]GlcNAc(beta1-3)GalNAc(beta1-4)[+/-Fuc(alpha1-3)]GlcNAc(beta1-}. To date, oligomeric LDN and oligomeric fucosylated LDN (LDNF) have been found only on N-glycans from mammalian cells engineered to express Caenorhabditis elegansbeta4-GalNAc transferase and human alpha3-fucosyltransferase IX [Z. S. Kawar et al. (2005) J Biol Chem280, 12810-12819]. It now appears that LDN(F) repeats can also occur in a natural system such as the schistosome parasite. Like monomeric LDN and LDNF, the dimeric LDN(F) moieties found here are expected to be targets of humoral and cellular immune responses during schistosome infection.
Collapse
Affiliation(s)
- Manfred Wuhrer
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, The Netherlands.
| | | | | | | |
Collapse
|
43
|
Katic I, Vallier LG, Greenwald I. New positive regulators of lin-12 activity in Caenorhabditis elegans include the BRE-5/Brainiac glycosphingolipid biosynthesis enzyme. Genetics 2005; 171:1605-15. [PMID: 16157663 PMCID: PMC1389698 DOI: 10.1534/genetics.105.048041] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Screens for suppressors of lin-12 hypermorphic alleles in C. elegans have identified core components and modulators of the LIN-12/Notch signaling pathway. Here we describe the recovery of alleles of six new genes from a screen for suppressors of the egg-laying defect associated with elevated lin-12 activity. The molecular identification of one of the new suppressor genes revealed it as bre-5, which had previously been identified in screens for mutations that confer resistance to Bt toxin in C. elegans. bre-5 is the homolog of D. melanogaster brainiac. BRE-5/Brainiac catalyzes a step in the synthesis of glycosphingolipids, components of lipid rafts that are thought to act as platforms for association among certain kinds of membrane-bound proteins. Reducing the activity of several other genes involved in glycosphingolipid biosynthesis also suppresses the effects of constitutive lin-12 activity. Genetic analysis and cell ablation experiments suggest that bre-5 functions prior to ligand-induced ectodomain shedding that activates LIN-12 for signal transduction.
Collapse
Affiliation(s)
- Iskra Katic
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University College of Physicians and Surgeons, 701 W. 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
44
|
Cipollo JF, Awad AM, Costello CE, Hirschberg CB. N-Glycans of Caenorhabditis elegans Are Specific to Developmental Stages. J Biol Chem 2005; 280:26063-72. [PMID: 15899899 DOI: 10.1074/jbc.m503828200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have examined the N-glycans present during the developmental stages of Caenorhabditis elegans using two approaches, 1) a combination of permethylation followed by MALDI-TOF mass spectrometry (MS) and 2) derivatization with 2-aminobenzamide followed by separation by high-performance liquid chromatography and analyses by MALDI-TOF MS, post source decay (PSD) MS, and MALDI-QoTOF MS/MS. The N-glycan profile of each developmental stage (Larva 1, Larva 2, Larva 3, Larva 4, and Dauer and adult) appears to be unique. The pattern of complex N-glycans was stage-specific with the general trend of number and abundance of glycans being Dauer approximately = L1 > adult approximately = L4 > L3 approximately = L2. Dauer larvae contained complex N-glycans with higher molecular masses than those seen in other stages. MALDI-QoTOF MS/MS of Hex4HexNAc4 showed an N-acetyllac-tosamine substitution not previously observed in C. elegans. Phosphorylcholine (Pc)-substituted glycans were also found to be stage-specific. Higher molecular weight Pc-containing glycans, including fucose-containing ones such as difucosyl Pc-glycan (Pc1dHex2Hex5HexNAc6) seen in Dauer larvae, have not been observed in any organism. Pc2Hex4HexNAc3, from Dauer larvae, when subjected to PSD MS analyses, showed Pc may substitute both core and terminally linked GlcNAc; no such structure has previously been reported in any organism. C. elegans-specific fucosyl and native methylated glycans were found in all developmental stages. Taken together, the above results demonstrate that in-depth investigation of the role of the above N-glycans during C. elegans development should lead to a better understanding of their significance and the ways that they may govern interactions, both within the organism during development and between the mobile nematode and its pathogens.
Collapse
Affiliation(s)
- John F Cipollo
- Department of Molecular and Cell Biology, Boston University, Goldman School of Dental Medicine, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
45
|
Ramakrishnan B, Boeggeman E, Qasba PK. Mutation of arginine 228 to lysine enhances the glucosyltransferase activity of bovine beta-1,4-galactosyltransferase I. Biochemistry 2005; 44:3202-10. [PMID: 15736931 DOI: 10.1021/bi0479454] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Beta-1,4-galactosyltransferase I (beta4Gal-T1) normally transfers Gal from UDP-Gal to GlcNAc in the presence of Mn(2+) ion (Gal-T activity) and also transfers Glc from UDP-Glc to GlcNAc (Glc-T activity), albeit at only 0.3% efficiency. In addition, alpha-lactalbumin (LA) enhances this Glc-T activity more than 25 times. Comparison of the crystal structures of UDP-Gal- and UDP-Glc-bound beta4Gal-T1 reveals that the O4 hydroxyl group in both Gal and Glc moieties forms a hydrogen bond with the side chain carboxylate group of Glu317. The orientation of the O4 hydroxyl of glucose causes a steric hindrance to the side chain carboxylate group of Glu317, accounting for the enzyme's low Glc-T activity. In this study, we show that mutation of Arg228, a residue in the vicinity of Glu317, to lysine (R228K-Gal-T1) results in a 15-fold higher Glc-T activity, which is further enhanced by LA to nearly 25% of the Gal-T activity of the wild type. The kinetic parameters indicate that the main effect of the mutation of Arg228 to lysine is on the k(cat) of Glc-T, which increases 3-4-fold, both in the absence and in the presence of LA; simultaneously, the k(cat) for the Gal-T reaction is reduced 30-fold. The crystal structure of R228K-Gal-T1 complexed with LA, UDP-Gal, and Mn(2+) determined at 1.9 A resolution shows that the Asp318 side chain exhibits a minor alternate conformation, compared to that in the wild type. This alternate conformation now causes a steric hindrance to the O4 hydroxyl group of the Gal moiety of UDP-Gal, probably causing the dissociation of UDP-Gal and the reduced k(cat) of the Gal-T reaction.
Collapse
Affiliation(s)
- Boopathy Ramakrishnan
- Structural Glycobiology Section, Laboratory of Experimental and Computational Biology, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, Maryland 21702-1201, USA
| | | | | |
Collapse
|
46
|
Kawar ZS, Haslam SM, Morris HR, Dell A, Cummings RD. Novel Poly-GalNAcβ1–4GlcNAc (LacdiNAc) and Fucosylated Poly-LacdiNAc N-Glycans from Mammalian Cells Expressing β1,4-N-Acetylgalactosaminyltransferase and α1,3-Fucosyltransferase. J Biol Chem 2005; 280:12810-9. [PMID: 15653684 DOI: 10.1074/jbc.m414273200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycans containing the GalNAcbeta1-4GlcNAc (LacdiNAc or LDN) motif are expressed by many invertebrates, but this motif also occurs in vertebrates and is found on several mammalian glycoprotein hormones. This motif contrasts with the more commonly occurring Galbeta1-4GlcNAc (LacNAc or LN) motif. To better understand LDN biosynthesis and regulation, we stably expressed the cDNA encoding the Caenorhabditis elegans beta1,4-N-acetylgalactosaminyltransferase (GalNAcT), which generates LDN in vitro, in Chinese hamster ovary (CHO) Lec8 cells, to establish L8-GalNAcT CHO cells. The glycan structures from these cells were determined by mass spectrometry and linkage analysis. The L8-GalNAcT cell line produces complex-type N-glycans quantitatively bearing LDN structures on their antennae. Unexpectedly, most of these complex-type N-glycans contain novel "poly-LDN" structures consisting of repeating LDN motifs (-3GalNAcbeta1-4GlcNAcbeta1-)n. These novel structures are in contrast to the well known poly-LN structures consisting of repeating LN motifs (-3Galbeta1-4GlcNAcbeta1-)n. We also stably expressed human alpha1,3-fucosyltransferase IX in the L8-GalNAcT cells to establish a new cell line, L8-GalNAcT-FucT. These cells produce complex-type N-glycans with alpha1,3-fucosylated LDN (LDNF) GalNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-R as well as novel "poly-LDNF" structures (-3GalNAcbeta1-4(Fucalpha 1-3)GlcNAcbeta1-)n. The ability of these cell lines to generate glycoprotein hormones with LDN-containing N-glycans was studied by expressing a recombinant form of the common alpha-subunit in L8-GalNAcT cells. The alpha-subunit N-glycans carried LDN structures, which were further modified by co-expression of the human GalNAc 4-sulfotransferase I, which generates SO4-4GalNAcbeta1-4GlcNAc-R. Thus, the generation of these stable mammalian cells will facilitate future studies on the biological activities and properties of LDN-related structures in glycoproteins.
Collapse
Affiliation(s)
- Ziad S Kawar
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
Eighteen years have passed after the first mammalian glycosyltransferase was cloned. At the beginning of April, 2001, 110 genes for human glycosyltransferases, including modifying enzymes for carbohydrate chains such as sulfotransferases, had been cloned and analyzed. We started the Glycogene Project (GG project) in April 2001, a comprehensive study on human glycogenes with the aid of bioinformatic technology. The term glycogene includes the genes for glycosyltransferases, sulfotransferases adding sulfate to carbohydrates and sugar-nucleotide transporters, etc. Firstly, as many novel genes, which are the candidates for glycogenes, as possible were searched using bioinformatic technology in databases. They were then cloned and expressed in various expression systems to detect the activity for carbohydrate synthesis. Their substrate specificity was determined using various acceptors.
Collapse
Affiliation(s)
- Hisashi Narimatsu
- Glycogene Function Team, Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), OSL C-2, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan.
| |
Collapse
|
48
|
Abstract
From observations on human diseases and mutant mice, it has become clear that glycosylation plays a major role in metazoan development. Caenorhabditis elegans provides powerful tools to study this problem that are not available in men or mice. The worm has many genes homologous to mammalian genes involved in glycosylation. Glycobiologists have, in recent years, cloned and expressed some of these genes and studied the effects of mutations on worm development. Recent studies have focused on N-glycosylation, lumenal nucleoside diphosphatases, the resistance of C. elegans to a bacterial toxin and infections, fucosylation and proteoglycans.
Collapse
Affiliation(s)
- Harry Schachter
- Program in Structural Biology and Biochemistry, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.
| |
Collapse
|
49
|
Mucha J, Domlatil J, Lochnit G, Rendić D, Paschinger K, HINTERKöRNER G, Hofinger A, Kosma P, Wilson I. The Drosophila melanogaster homologue of the human histo-blood group Pk gene encodes a glycolipid-modifying alpha1,4-N-acetylgalactosaminyltransferase. Biochem J 2005; 382:67-74. [PMID: 15130086 PMCID: PMC1133916 DOI: 10.1042/bj20040535] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 04/29/2004] [Accepted: 05/07/2004] [Indexed: 11/17/2022]
Abstract
Insects express arthro-series glycosphingolipids, which contain an alpha1,4-linked GalNAc residue. To determine the genetic basis for this linkage, we cloned a cDNA (CG17223) from Drosophila melanogaster encoding a protein with homology to mammalian alpha1,4-glycosyltransferases and expressed it in the yeast Pichia pastoris. Culture supernatants from the transformed yeast were found to display a novel UDP-GalNAc:GalNAcbeta1,4GlcNAcbeta1-R alpha-N-acetylgalactosaminyltransferase activity when using either a glycolipid, p-nitrophenylglycoside or an N-glycan carrying one or two terminal beta-N-acetylgalactosamine residues. NMR and MS in combination with glycosidase digestion and methylation analysis indicate that the cloned cDNA encodes an alpha1,4-N-acetylgalactosaminyltransferase. We hypothesize that this enzyme and its orthologues in other insects are required for the biosynthesis of the N5a and subsequent members of the arthro-series of glycolipids as well as of N-glycan receptors for Bacillus thuringiensis crystal toxin Cry1Ac.
Collapse
Affiliation(s)
- Ján Mucha
- *Chemický ústav, Slovenská akadémia vied, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Jiří Domlatil
- †Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Günter Lochnit
- ‡Institut für Biochemie, Justus-Liebig-Universität Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany
| | - Dubravko Rendić
- †Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Katharina Paschinger
- †Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Georg HINTERKöRNER
- †Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Andreas Hofinger
- †Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Paul Kosma
- †Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Iain B. H. Wilson
- †Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
- To whom correspondence should be addressed (email )
| |
Collapse
|
50
|
Griffitts JS, Haslam SM, Yang T, Garczynski SF, Mulloy B, Morris H, Cremer PS, Dell A, Adang MJ, Aroian RV. Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 2005; 307:922-5. [PMID: 15705852 DOI: 10.1126/science.1104444] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The development of pest resistance threatens the effectiveness of Bacillus thuringiensis (Bt) toxins used in transgenic and organic farming. Here, we demonstrate that (i) the major mechanism for Bt toxin resistance in Caenorhabditis elegans entails a loss of glycolipid carbohydrates; (ii) Bt toxin directly and specifically binds glycolipids; and (iii) this binding is carbohydrate-dependent and relevant for toxin action in vivo. These carbohydrates contain the arthroseries core conserved in insects and nematodes but lacking in vertebrates. We present evidence that insect glycolipids are also receptors for Bt toxin.
Collapse
Affiliation(s)
- Joel S Griffitts
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|