1
|
Mukherjee S, Chakraborty P, Saha P. Phosphorylation of Ku70 subunit by cell cycle kinases modulates the replication related function of Ku heterodimer. Nucleic Acids Res 2016; 44:7755-65. [PMID: 27402161 PMCID: PMC5027504 DOI: 10.1093/nar/gkw622] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/29/2016] [Accepted: 07/01/2016] [Indexed: 12/18/2022] Open
Abstract
The Ku protein, a heterodimer of Ku70 and Ku80, binds to chromosomal replication origins maximally at G1-phase and plays an essential role in assembly of origin recognition complex. However, the mechanism regulating such a critical periodic activity of Ku remained unknown. Here, we establish human Ku70 as a novel target of cyclin B1-Cdk1, which phosphorylates it in a Cy-motif dependent manner. Interestingly, cyclin E1- and A2-Cdk2 also phosphorylate Ku70, and as a result, the protein remains in a phosphorylated state during S-M phases of cell cycle. Intriguingly, the phosphorylation of Ku70 by cyclin-Cdks abolishes the interaction of Ku protein with replication origin due to disruption of the dimer. Furthermore, Ku70 is dephosphorylated in G1-phase, when Ku interacts with replication origin maximally. Strikingly, the over-expression of Ku70 with non-phosphorylable Cdk targets enhances the episomal replication of Ors8 origin and induces rereplication in HeLa cells, substantiating a preventive role of Ku phosphorylation in premature and untimely licensing of replication origin. Therefore, periodic phosphorylation of Ku70 by cyclin-Cdks prevents the interaction of Ku with replication origin after initiation events in S-phase and the dephosphorylation at the end of mitosis facilitates its participation in pre-replication complex formation.
Collapse
Affiliation(s)
- Soumita Mukherjee
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
| | - Prabal Chakraborty
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
| | - Partha Saha
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata 700064, India Homi Bhaba National Institute, Mumbai 400094, India
| |
Collapse
|
2
|
Rizwani W, Chellappan SP. In vitro replication assay with mammalian cell extracts. Methods Mol Biol 2015; 1288:349-62. [PMID: 25827890 DOI: 10.1007/978-1-4939-2474-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Regulatory mechanisms are crucial to control DNA replication during cell cycle in eukaryotic cells. Cell-free in vitro replication assay (IVRA) is one of the widely used assays to understand the complex mammalian replication system. IVRA can provide a snapshot of the regulatory mechanisms controlling replication in higher eukaryotes by using a single plasmid, pEPI-1. This chapter outlines the general strategies and protocols used to perform IVRA to study the differential recruitment of replication factors either independently or in combination, based on the experience in studying the role of prohibitin in replication as well as other published protocols. This method can be employed to identify not only proteins that assist replication but also proteins that inhibit replication of mammalian genome.
Collapse
Affiliation(s)
- Wasia Rizwani
- Department of Biochemistry, Osmania University, Hyderabad, Telangana, 500 007, India,
| | | |
Collapse
|
3
|
Trapping DNA replication origins from the human genome. Genes (Basel) 2013; 4:198-225. [PMID: 24705160 PMCID: PMC3899975 DOI: 10.3390/genes4020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 11/17/2022] Open
Abstract
Synthesis of chromosomal DNA is initiated from multiple origins of replication in higher eukaryotes; however, little is known about these origins’ structures. We isolated the origin-derived nascent DNAs from a human repair-deficient cell line by blocking the replication forks near the origins using two different origin-trapping methods (i.e., UV- or chemical crosslinker-treatment and cell synchronization in early S phase using DNA replication inhibitors). Single-stranded DNAs (of 0.5–3 kb) that accumulated after such treatments were labeled with bromodeoxyuridine (BrdU). BrdU-labeled DNA was immunopurified after fractionation by alkaline sucrose density gradient centrifugation and cloned by complementary-strand synthesis and PCR amplification. Competitive PCR revealed an increased abundance of DNA derived from known replication origins (c-myc and lamin B2 genes) in the nascent DNA fractions from the UV-treated or crosslinked cells. Nucleotide sequences of 85 and 208 kb were obtained from the two libraries (I and II) prepared from the UV-treated log-phase cells and early S phase arrested cells, respectively. The libraries differed from each other in their G+C composition and replication-related motif contents, suggesting that differences existed between the origin fragments isolated by the two different origin-trapping methods. The replication activities for seven out of 12 putative origin loci from the early-S phase cells were shown by competitive PCR. We mapped 117 (library I) and 172 (library II) putative origin loci to the human genome; approximately 60% and 50% of these loci were assigned to the G-band and intragenic regions, respectively. Analyses of the flanking sequences of the mapped loci suggested that the putative origin loci tended to associate with genes (including conserved sites) and DNase I hypersensitive sites; however, poor correlations were found between such loci and the CpG islands, transcription start sites, and K27-acetylated histone H3 peaks.
Collapse
|
4
|
Di Paola D, Rampakakis E, Chan MK, Zannis-Hadjopoulos M. Differential chromatin structure encompassing replication origins in transformed and normal cells. Genes Cancer 2012; 3:152-76. [PMID: 23050047 DOI: 10.1177/1947601912457026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/10/2012] [Indexed: 12/23/2022] Open
Abstract
This study examines the chromatin structure encompassing replication origins in transformed and normal cells. Analysis of the global levels of histone H3 acetylated at K9&14 (open chromatin) and histone H3 trimethylated at K9 (closed chromatin) revealed a higher ratio of open to closed chromatin in the transformed cells. Also, the trithorax and polycomb group proteins, Brg-1 and Bmi-1, respectively, were overexpressed and more abundantly bound to chromatin in the transformed cells. Quantitative comparative analyses of episomal and in situ chromosomal replication origin activity as well as chromatin immunoprecipitation (ChIP) assays, using specific antibodies targeting members of the pre-replication complex (pre-RC) as well as open/closed chromatin markers encompassing both episomal and chromosomal origins, revealed that episomal origins had similar levels of in vivo activity, nascent DNA abundance, pre-RC protein association, and elevated open chromatin structure at the origin in both cell types. In contrast, the chromosomal origins corresponding to 20mer1, 20mer2, and c-myc displayed a 2- to 3-fold higher activity and pre-RC protein abundance as well as higher ratios of open to closed chromatin and of Brg-1 to Bmi-1 in the transformed cells, whereas the origin associated with the housekeeping lamin B2 gene exhibited similar levels of activity, pre-RC protein abundance, and higher ratios of open to closed chromatin and of Brg-1 to Bmi-1 in both cell types. Nucleosomal positioning analysis, using an MNase-Southern blot assay, showed that all the origin regions examined were situated within regions of inconsistently positioned nucleosomes, with the nucleosomes being spaced farther apart from each other prior to the onset of S phase in both cell types. Overall, the results indicate that cellular transformation is associated with differential epigenetic regulation, whereby chromatin structure is more open, rendering replication origins more accessible to initiator proteins, thus allowing increased origin activity.
Collapse
Affiliation(s)
- Domenic Di Paola
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
5
|
Yamaki H, Nakajima M, Shimotohno KW, Tanaka N. Molecular basis for the actions of Hsp90 inhibitors and cancer therapy. J Antibiot (Tokyo) 2011; 64:635-44. [PMID: 21811259 DOI: 10.1038/ja.2011.60] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heat-shock protein 90 (Hsp90) inhibitor downregulates c-Myc expression and upregulates the expression of tumor repressor proteins such as p53 and pRB, inhibiting the G1/S transition and causing G2/M arrest during cell cycle progression. The cycle progression is extensively controlled by the pRB/E2F signaling pathway. E2F is released from the pRB/E2F complex with the phosphorylation of pRB by cyclin-cyclin-dependent kinase (CDK) complexes. The released E2F promotes the transcription of target genes involved in cell cycle progression. The pRB/E2F signaling pathway is controlled by DNA methyltransferase-1 (Dnmt-1). The elevated expression of Dnmt-1 has been reported in carcinomas of the colon, lung and prostate. A defect of pRB expression in Rb -/- cancer cells is caused by the aberrant methylation of CpG in the Rb promoter. The Hsp90 inhibitor disrupts the Dnmt-1/Hsp90 association and upregulates pRB expression. In this review, the Hsp90 inhibitors that show promise for cancer therapy are summarized.
Collapse
Affiliation(s)
- Hiroshi Yamaki
- Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, Japan.
| | | | | | | |
Collapse
|
6
|
Hagedorn C, Wong SP, Harbottle R, Lipps HJ. Scaffold/Matrix Attached Region-Based Nonviral Episomal Vectors. Hum Gene Ther 2011; 22:915-23. [DOI: 10.1089/hum.2011.084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Claudia Hagedorn
- Centre for Biomedical Education and Research, Institute of Cell Biology, University Witten/Herdecke, 58453 Witten, Germany
| | - Suet-Ping Wong
- Gene Therapy Research Group, Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Richard Harbottle
- Gene Therapy Research Group, Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Hans J. Lipps
- Centre for Biomedical Education and Research, Institute of Cell Biology, University Witten/Herdecke, 58453 Witten, Germany
| |
Collapse
|
7
|
Valenzuela MS, Chen Y, Davis S, Yang F, Walker RL, Bilke S, Lueders J, Martin MM, Aladjem MI, Massion PP, Meltzer PS. Preferential localization of human origins of DNA replication at the 5'-ends of expressed genes and at evolutionarily conserved DNA sequences. PLoS One 2011; 6:e17308. [PMID: 21602917 PMCID: PMC3094316 DOI: 10.1371/journal.pone.0017308] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 01/27/2011] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Replication of mammalian genomes requires the activation of thousands of origins which are both spatially and temporally regulated by as yet unknown mechanisms. At the most fundamental level, our knowledge about the distribution pattern of origins in each of the chromosomes, among different cell types, and whether the physiological state of the cells alters this distribution is at present very limited. METHODOLOGY/PRINCIPAL FINDINGS We have used standard λ-exonuclease resistant nascent DNA preparations in the size range of 0.7-1.5 kb obtained from the breast cancer cell line MCF-7 hybridized to a custom tiling array containing 50-60 nt probes evenly distributed among genic and non-genic regions covering about 1% of the human genome. A similar DNA preparation was used for high-throughput DNA sequencing. Array experiments were also performed with DNA obtained from BT-474 and H520 cell lines. By determining the sites showing nascent DNA enrichment, we have localized several thousand origins of DNA replication. Our major findings are: (a) both array and DNA sequencing assay methods produced essentially the same origin distribution profile; (b) origin distribution is largely conserved (>70%) in all cell lines tested; (c) origins are enriched at the 5'ends of expressed genes and at evolutionarily conserved intergenic sequences; and (d) ChIP on chip experiments in MCF-7 showed an enrichment of H3K4Me3 and RNA Polymerase II chromatin binding sites at origins of DNA replication. CONCLUSIONS/SIGNIFICANCE Our results suggest that the program for origin activation is largely conserved among different cell types. Also, our work supports recent studies connecting transcription initiation with replication, and in addition suggests that evolutionarily conserved intergenic sequences have the potential to participate in origin selection. Overall, our observations suggest that replication origin selection is a stochastic process significantly dependent upon local accessibility to replication factors.
Collapse
Affiliation(s)
- Manuel S. Valenzuela
- Genetics Branch, Center for Cancer Research,
National Cancer Institute, National Institutes of Health, Bethesda, Maryland,
United States of America
- Department of Biochemistry and Cancer Biology,
Meharry Medical College, Nashville, Tennessee, United States of
America
- * E-mail: (MSV); (PSM)
| | - Yidong Chen
- Genetics Branch, Center for Cancer Research,
National Cancer Institute, National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Sean Davis
- Genetics Branch, Center for Cancer Research,
National Cancer Institute, National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Fan Yang
- Genetics Branch, Center for Cancer Research,
National Cancer Institute, National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Robert L. Walker
- Genetics Branch, Center for Cancer Research,
National Cancer Institute, National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Sven Bilke
- Genetics Branch, Center for Cancer Research,
National Cancer Institute, National Institutes of Health, Bethesda, Maryland,
United States of America
| | - John Lueders
- Genetics Branch, Center for Cancer Research,
National Cancer Institute, National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Melvenia M. Martin
- Laboratory of Molecular Pharmacology, Center
for Cancer Research, National Cancer Institute, National Institutes of Health,
Bethesda, Maryland, United States of America
| | - Mirit I. Aladjem
- Laboratory of Molecular Pharmacology, Center
for Cancer Research, National Cancer Institute, National Institutes of Health,
Bethesda, Maryland, United States of America
| | - Pierre P. Massion
- Division of Allergy, Pulmonary and Critical
Care Medicine, Vanderbilt Ingram Cancer Center, Vanderbilt University,
Nashville, Tennessee, United States of America
| | - Paul S. Meltzer
- Genetics Branch, Center for Cancer Research,
National Cancer Institute, National Institutes of Health, Bethesda, Maryland,
United States of America
- * E-mail: (MSV); (PSM)
| |
Collapse
|
8
|
Di Paola D, Rampakakis E, Chan MK, Arvanitis DN, Zannis-Hadjopoulos M. Increased origin activity in transformed versus normal cells: identification of novel protein players involved in DNA replication and cellular transformation. Nucleic Acids Res 2010; 38:2314-31. [PMID: 20064876 PMCID: PMC2853114 DOI: 10.1093/nar/gkp1192] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 12/03/2009] [Accepted: 12/07/2009] [Indexed: 01/05/2023] Open
Abstract
Using libraries of replication origins generated previously, we identified three clones that supported the autonomous replication of their respective plasmids in transformed, but not in normal cells. Assessment of their in vivo replication activity by in situ chromosomal DNA replication assays revealed that the chromosomal loci corresponding to these clones coincided with chromosomal replication origins in all cell lines, which were more active by 2-3-fold in the transformed by comparison to the normal cells. Evaluation of pre-replication complex (pre-RC) protein abundance at these origins in transformed and normal cells by chromatin immunoprecipitation assays, using anti-ORC2, -cdc6 and -cdt1 antibodies, showed that they were bound by these pre-RC proteins in all cell lines, but a 2-3-fold higher abundance was observed in the transformed by comparison to the normal cells. Electrophoretic mobility shift assays (EMSAs) performed on the most efficiently replicating clone, using nuclear extracts from the transformed and normal cells, revealed the presence of a DNA replication complex in transformed cells, which was barely detectable in normal cells. Subsequent supershift EMSAs suggested the presence of transformation-specific complexes. Mass spectrometric analysis of these complexes revealed potential new protein players involved in DNA replication that appear to correlate with cellular transformation.
Collapse
Affiliation(s)
- Domenic Di Paola
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Emmanouil Rampakakis
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Man Kid Chan
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Dina N. Arvanitis
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Maria Zannis-Hadjopoulos
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| |
Collapse
|
9
|
Shepelev VA, Alexandrov AA, Yurov YB, Alexandrov IA. The evolutionary origin of man can be traced in the layers of defunct ancestral alpha satellites flanking the active centromeres of human chromosomes. PLoS Genet 2009; 5:e1000641. [PMID: 19749981 PMCID: PMC2729386 DOI: 10.1371/journal.pgen.1000641] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 08/11/2009] [Indexed: 02/01/2023] Open
Abstract
Alpha satellite domains that currently function as centromeres of human chromosomes are flanked by layers of older alpha satellite, thought to contain dead centromeres of primate progenitors, which lost their function and the ability to homogenize satellite repeats, upon appearance of a new centromere. Using cladistic analysis of alpha satellite monomers, we elucidated complete layer patterns on chromosomes 8, 17, and X and related them to each other and to primate alpha satellites. We show that discrete and chronologically ordered alpha satellite layers are partially symmetrical around an active centromere and their succession is partially shared in non-homologous chromosomes. The layer structure forms a visual representation of the human evolutionary lineage with layers corresponding to ancestors of living primates and to entirely fossil taxa. Surprisingly, phylogenetic comparisons suggest that alpha satellite arrays went through periods of unusual hypermutability after they became "dead" centromeres. The layer structure supports a model of centromere evolution where new variants of a satellite repeat expanded periodically in the genome by rounds of inter-chromosomal transfer/amplification. Each wave of expansion covered all or many chromosomes and corresponded to a new primate taxon. Complete elucidation of the alpha satellite phylogenetic record would give a unique opportunity to number and locate the positions of major extinct taxa in relation to human ancestors shared with extant primates. If applicable to other satellites in non-primate taxa, analysis of centromeric layers could become an invaluable tool for phylogenetic studies.
Collapse
Affiliation(s)
- Valery A. Shepelev
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | - Yuri B. Yurov
- Mental Health Research Centre, Russian Academy of Medical Sciences, Moscow, Russia
| | - Ivan A. Alexandrov
- Mental Health Research Centre, Russian Academy of Medical Sciences, Moscow, Russia
- * E-mail:
| |
Collapse
|
10
|
Rampakakis E, Arvanitis DN, Di Paola D, Zannis-Hadjopoulos M. Metazoan origins of DNA replication: regulation through dynamic chromatin structure. J Cell Biochem 2009; 106:512-20. [PMID: 19173303 DOI: 10.1002/jcb.22070] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA replication in eukaryotes is initiated at multiple replication origins distributed over the entire genome, which are normally activated once per cell cycle. Due to the complexity of the metazoan genome, the study of metazoan replication origins and their activity profiles has been less advanced than in simpler genome systems. DNA replication in eukaryotes involves many protein-protein and protein-DNA interactions, occurring in multiple stages. As in prokaryotes, control over the timing and frequency of initiation is exerted at the initiation site. A prerequisite for understanding the regulatory mechanisms of eukaryotic DNA replication is the identification and characterization of the cis-acting sequences that serve as replication origins and the trans-acting factors (proteins) that interact with them. Furthermore, in order to understand how DNA replication may become deregulated in malignant cells, the distinguishing features between normal and malignant origins of DNA replication as well as the proteins that interact with them must be determined. Based on advances that were made using simple genome model systems, several proteins involved in DNA replication have been identified. This review summarizes the current findings about metazoan origins of DNA replication and their interacting proteins as well as the role of chromatin structure in their regulation. Furthermore, progress in origin identification and isolation procedures as well as potential mechanisms to inhibit their activation in cancer development and progression are discussed.
Collapse
Affiliation(s)
- E Rampakakis
- Department of Biochemistry, Goodman Cancer Centre, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
11
|
Abstract
Regulatory mechanisms for DNA replication are crucial to the control of the cell cycle in eukaryotic cells. One of the widely used assays to understand the complex mammalian replication system is the cell-free in vitro replication assay (IVRA). IVRA can provide a snapshot of the regulatory mechanisms controlling replication in higher eukaryotes by using a single plasmid, pEPI-1. This chapter outlines the general strategies and protocols used to perform IVRA to study the differential recruitment of replication factors either independently or in combination, based on the experience in studying the role of prohibitin in replication as well as other published protocols. This method can be employed to identify not only proteins that assist replication but also proteins that inhibit replication of mammalian genome.
Collapse
Affiliation(s)
- Wasia Rizwani
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | |
Collapse
|
12
|
Hashizume T, Shimizu N. Dissection of mammalian replicators by a novel plasmid stability assay. J Cell Biochem 2007; 101:552-65. [PMID: 17226771 DOI: 10.1002/jcb.21210] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A plasmid, bearing a mammalian replication initiation region (IR) and a matrix attachment region (MAR) was previously shown to be efficiently amplified to high copy number in mammalian cells and to generate chromosomal homogeneously staining regions (HSRs). The amplification mechanism was suggested to entail a head-on collision at the MAR between the transcription machinery and the hypothetical replication fork arriving from the IR, leading to double strand breakage (DSB) that triggered HSR formation. The experiments described here show that such plasmids are stabilized if collisions involving not only promoter-driven transcription but also promoter-independent transcription are avoided, and stable plasmids appeared to persist as submicroscopic episomes. These findings suggest that the IR sequence that promotes HSR generation may correspond to the sequence that supports replication initiation (replicator). Thus, we developed a "plasmid stability assay" that sensitively detects the activity of HSR generation in a test sequence. The assay was used to dissect two replicator regions, derived from the c-myc and DHFR ori-beta loci. Consequently, minimum sequences that efficiently promoted HSR generation were identified. They included several sequence elements, most of which coincided with reported replicator elements. These data and this assay will benefit studies of replication initiation and applications that depend on plasmid amplification.
Collapse
Affiliation(s)
- Toshihiko Hashizume
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | | |
Collapse
|
13
|
Callejo M, Sibani S, Di Paola D, Price GG, Zannis-Hadjopoulos M. Identification and functional analysis of a human homologue of the monkey replication origin ors8. J Cell Biochem 2007; 99:1606-15. [PMID: 16823771 DOI: 10.1002/jcb.20868] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We previously isolated from African green monkey (CV-1) cells a replication origin, ors8, that is active at the onset of S-phase. Here, its homologous sequence (hors8, accession number: DQ230978) was amplified from human cells, using the monkey-ors8-specific primers. Sequence alignment between the monkey and the human fragment revealed a 92% identity. Nascent DNA abundance analysis, involving quantification by real-time PCR, indicated that hors8 is an active replication origin, as the abundance of nascent DNA from a genomic region containing it was 97-fold higher relative to a non-origin region in the same locus. Furthermore, the data showed that the hors8 fragment is capable of supporting the episomal replication of its plasmid, when cloned into pBlueScript (pBS), as assayed by the DpnI resistance assay after transfection of HeLa cells. A quantitative chromatin immunoprecipitation (ChIP) assay, using antibodies against Ku, Orc2, and Cdc6, showed that these DNA replication initiator proteins were associated in vivo with the human ors8 (hors8). Finally, nascent DNA abundance experiments from human cells synchronized at different phases of the cell cycle revealed that hors8 is a late-firing origin of DNA replication, having the highest activity 8 h after release from late G(1).
Collapse
Affiliation(s)
- Mario Callejo
- McGill Cancer Centre, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | |
Collapse
|
14
|
Di Paola D, Price GB, Zannis-Hadjopoulos M. Differentially active origins of DNA replication in tumor versus normal cells. Cancer Res 2006; 66:5094-103. [PMID: 16707432 DOI: 10.1158/0008-5472.can-05-3951] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previously, a degenerate 36 bp human consensus sequence was identified as a determinant of autonomous replication in eukaryotic cells. Random mutagenesis analyses further identified an internal 20 bp of the 36 bp consensus sequence as sufficient for acting as a core origin element. Here, we have located six versions of the 20 bp consensus sequence (20mer) on human chromosome 19q13 over a region spanning approximately 211 kb and tested them for ectopic and in situ replication activity by transient episomal replication assays and nascent DNA strand abundance analyses, respectively. The six versions of the 20mer alone were capable of supporting autonomous replication of their respective plasmids, unlike random genomic sequence of the same length. Furthermore, comparative analyses of the endogenous replication activity of these 20mers at their respective chromosomal sites, in five tumor/transformed and two normal cell lines, done by in situ chromosomal DNA replication assays, involving preparation of nascent DNA by the lambda exonuclease method and quantification by real-time PCR, showed that these sites coincided with chromosomal origins of DNA replication in all cell lines. Moreover, a 2- to 3-fold higher origin activity in the tumor/transformed cells by comparison to the normal cells was observed, suggesting a higher activation of these origins in tumor/transformed cell lines.
Collapse
Affiliation(s)
- Domenic Di Paola
- McGill Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
15
|
Jackson DA, Juranek S, Lipps HJ. Designing nonviral vectors for efficient gene transfer and long-term gene expression. Mol Ther 2006; 14:613-26. [PMID: 16784894 DOI: 10.1016/j.ymthe.2006.03.026] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 03/20/2006] [Accepted: 03/20/2006] [Indexed: 01/20/2023] Open
Abstract
Although the genetic therapy of human diseases has been conceptually possible for many years we still lack a vector system that allows safe and reproducible genetic modification of eukaryotic cells and ensures faithful long-term expression of transgenes. There is increasing agreement that vectors that are based exclusively on chromosomal elements, which replicate autonomously in human cells, could fulfill these criteria. The rational construction of such vectors is still hindered by our limited knowledge of the factors that regulate chromatin function in eukaryotic cells. This review sets out to summarize how our current knowledge of nuclear organization can be applied to the design of extrachromosomal gene expression vectors that can be used for human gene therapy. Within the past years a number of episomal nonviral constructs have been designed and their replication strategies, expression of transgenes, mitotic stability, and delivery strategies and the mechanisms required for their stable establishment will be discussed. To date, these nonviral vectors have not been used in clinical trials. Even so, many compelling arguments can be developed to support the view that nonviral vector systems will play a major role in future gene therapy protocols.
Collapse
Affiliation(s)
- Dean A Jackson
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | | | | |
Collapse
|
16
|
Baltin J, Leist S, Odronitz F, Wollscheid HP, Baack M, Kapitza T, Schaarschmidt D, Knippers R. DNA replication in protein extracts from human cells requires ORC and Mcm proteins. J Biol Chem 2006; 281:12428-35. [PMID: 16537544 DOI: 10.1074/jbc.m510758200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used protein extracts from proliferating human HeLa cells to support plasmid DNA replication in vitro. An extract with soluble nuclear proteins contains the major replicative chain elongation functions, whereas a high salt extract from isolated nuclei contains the proteins for initiation. Among the initiator proteins active in vitro are the origin recognition complex (ORC) and Mcm proteins. Recombinant Orc1 protein stimulates in vitro replication presumably in place of endogenous Orc1 that is known to be present in suboptimal amounts in HeLa cell nuclei. Partially purified endogenous ORC, but not recombinant ORC, is able to rescue immunodepleted nuclear extracts. Plasmid replication in the in vitro replication system is slow and of limited efficiency but robust enough to serve as a basis to investigate the formation of functional pre-replication complexes under biochemically defined conditions.
Collapse
Affiliation(s)
- Jens Baltin
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Sasaki T, Ramanathan S, Okuno Y, Kumagai C, Shaikh SS, Gilbert DM. The Chinese hamster dihydrofolate reductase replication origin decision point follows activation of transcription and suppresses initiation of replication within transcription units. Mol Cell Biol 2006; 26:1051-62. [PMID: 16428457 PMCID: PMC1347040 DOI: 10.1128/mcb.26.3.1051-1062.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chinese hamster ovary (CHO) cells select specific replication origin sites within the dihydrofolate reductase (DHFR) locus at a discrete point during G1 phase, the origin decision point (ODP). Origin selection is sensitive to transcription but not protein synthesis inhibitors, implicating a pretranslational role for transcription in origin specification. We have constructed a DNA array covering 121 kb surrounding the DHFR locus, to comprehensively investigate replication initiation and transcription in this region. When nuclei isolated within the first 3 h of G1 phase were stimulated to initiate replication in Xenopus egg extracts, replication initiated without any detectable preference for specific sites. At the ODP, initiation became suppressed from within the Msh3, DHFR, and 2BE2121 transcription units. Active transcription was mostly confined to these transcription units, and inhibition of transcription by alpha-amanitin resulted in the initiation of replication within transcription units, indicating that transcription is necessary to limit initiation events to the intergenic region. However, the resumption of DHFR transcription after mitosis took place prior to the ODP and so is not on its own sufficient to suppress initiation of replication. Together, these results demonstrate a remarkable flexibility in sequence selection for initiating replication and implicate transcription as one important component of origin specification at the ODP.
Collapse
Affiliation(s)
- Takayo Sasaki
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
There are clear theoretical reasons and many well-documented examples which show that repetitive, DNA is essential for genome function. Generic repeated signals in the DNA are necessary to format expression of unique coding sequence files and to organise additional functions essential for genome replication and accurate transmission to progeny cells. Repetitive DNA sequence elements are also fundamental to the cooperative molecular interactions forming nucleoprotein complexes. Here, we review the surprising abundance of repetitive DNA in many genomes, describe its structural diversity, and discuss dozens of cases where the functional importance of repetitive elements has been studied in molecular detail. In particular, the fact that repeat elements serve either as initiators or boundaries for heterochromatin domains and provide a significant fraction of scaffolding/matrix attachment regions (S/MARs) suggests that the repetitive component of the genome plays a major architectonic role in higher order physical structuring. Employing an information science model, the 'functionalist' perspective on repetitive DNA leads to new ways of thinking about the systemic organisation of cellular genomes and provides several novel possibilities involving repeat elements in evolutionarily significant genome reorganisation. These ideas may facilitate the interpretation of comparisons between sequenced genomes, where the repetitive DNA component is often greater than the coding sequence component.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, 920 E. 58th Street, Chicago, IL 60637, USA.
| | | |
Collapse
|
19
|
Sibani S, Price GB, Zannis-Hadjopoulos M. Decreased origin usage and initiation of DNA replication in haploinsufficient HCT116 Ku80+/- cells. J Cell Sci 2005; 118:3247-61. [PMID: 16014376 DOI: 10.1242/jcs.02427] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
One of the functions of the abundant heterodimeric nuclear protein, Ku (Ku70/Ku80), is its involvement in the initiation of DNA replication through its ability to bind to chromosomal replication origins in a sequence-specific and cell cycle dependent manner. Here, using HCT116 Ku80+/- cells, the effect of Ku80 deficiency on cell cycle progression and origin activation was examined. Western blot analyses revealed a 75% and 36% decrease in the nuclear expression of Ku80 and Ku70, respectively. This was concomitant with a 33% and 40% decrease in chromatin binding of both proteins, respectively. Cell cycle analysis of asynchronous and late G1 synchronized Ku80+/- cells revealed a prolonged G1 phase. Furthermore, these Ku-deficient cells had a 4.5-, 3.4- and 4.3-fold decrease in nascent strand DNA abundance at the lamin B2, beta-globin and c-myc replication origins, respectively. Chromatin immunoprecipitation (ChIP) assays showed that the association of Ku80 with the lamin B2, beta-globin and c-myc origins was decreased by 1.5-, 2.3- and 2.5-fold, respectively, whereas that of Ku70 was similarly decreased (by 2.1-, 1.5- and 1.7-fold, respectively) in Ku80+/- cells. The results indicate that a deficiency of Ku80 resulted in a prolonged G1 phase, as well as decreased Ku binding to and activation of origins of DNA replication.
Collapse
Affiliation(s)
- Sahar Sibani
- McGill Cancer Center, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|
20
|
Hu L, Xu X, Valenzuela MS. Initiation sites for human DNA replication at a putative ribulose-5-phosphate 3-epimerase gene. Biochem Biophys Res Commun 2004; 320:648-55. [PMID: 15240097 DOI: 10.1016/j.bbrc.2004.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2004] [Indexed: 11/23/2022]
Abstract
Replication of the human genome requires the activation of thousands of replicons distributed along each one of the chromosomes. Each replicon contains an initiation, or origin, site, at which DNA synthesis begins. However, very little information is known about the nature and positioning of these initiation sites along human chromosomes. We have recently focused our attention to a 1.1 kb region of human chromosome 2 which functioned as an episomal origin in the yeast Saccharomyces cerevisiae. This region corresponded to the largest exon of a putative ribulose-5-phosphate-3-epimerase gene (RPE). In the present study we have used a real-time PCR-based nascent strand DNA abundance assay to map initiation sites for DNA replication in in vivo human chromosomes around a 13.4 kb region encompassing the putative RPE gene. By applying this analysis to a 1-1.4 kb nascent strand DNA fraction isolated from both normal skin fibroblasts, and the breast cell line MCF10; we have identified five initiation sites within the 13.4 kb region of chromosome 2. The initiation sites appear to map to similar positions in both cell lines and occur outside the coding regions of the putative RPE gene.
Collapse
Affiliation(s)
- Lan Hu
- Department of Microbiology, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Boulevard, Nashville, TN 37208, USA
| | | | | |
Collapse
|
21
|
Jenke ACW, Stehle IM, Herrmann F, Eisenberger T, Baiker A, Bode J, Fackelmayer FO, Lipps HJ. Nuclear scaffold/matrix attached region modules linked to a transcription unit are sufficient for replication and maintenance of a mammalian episome. Proc Natl Acad Sci U S A 2004; 101:11322-7. [PMID: 15272077 PMCID: PMC509201 DOI: 10.1073/pnas.0401355101] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Indexed: 11/18/2022] Open
Abstract
The activation of mammalian origins of replication depends so far on ill understood epigenetic events, such as binding of transcription factors, chromatin structure, and nuclear localization. Understanding these mechanisms is not only a scientific challenge but also represents a prerequisite for the rational design of nonviral episomal vectors for mammalian cells. In this paper, we demonstrate that a tetramer of a 155-bp minimal nuclear scaffold/matrix attached region DNA module linked to an upstream transcription unit is sufficient for replication and mitotic stability of a mammalian episome in the absence of selection. Fluorescence in situ hybridization analyses, crosslinking with cis-diammineplatinum(II)-dichloride and chromatin immunoprecipitation demonstrate that this vector associates with the nuclear matrix or scaffold in vivo by means of specific interaction of the nuclear scaffold/matrix attached region with the nuclear matrix protein SAF-A. Results presented in this paper define the minimal requirements of an episomal vector for mammalian cells on the molecular level.
Collapse
Affiliation(s)
- Andreas C W Jenke
- Institute of Cell Biology, Witten/Herdecke University, 58448 Witten, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Schaarschmidt D, Baltin J, Stehle IM, Lipps HJ, Knippers R. An episomal mammalian replicon: sequence-independent binding of the origin recognition complex. EMBO J 2003; 23:191-201. [PMID: 14685267 PMCID: PMC1271667 DOI: 10.1038/sj.emboj.7600029] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 11/17/2003] [Indexed: 11/09/2022] Open
Abstract
An extrachromosomally replicating plasmid was used to investigate the specificity by which the origin recognition complex (ORC) interacts with DNA sequences in mammalian cells in vivo. We first showed that the plasmid pEPI-1 replicates semiconservatively in a once-per-cell-cycle manner and is stably transmitted over many cell generations in culture without selection. Chromatin immunoprecipitations and quantitative polymerase chain reaction analysis revealed that, in G1-phase cells, Orc1 and Orc2, as well as Mcm3, another component of the prereplication complex, are bound to multiple sites on the plasmid. These binding sites are functional because they show the S-phase-dependent dissociation of Orc1 and Mcm3 known to be characteristic for prereplication complexes in mammalian cells. In addition, we identified replicative nascent strands and showed that they correspond to many plasmid DNA regions. This work has implications for current models of replication origins in mammalian systems. It indicates that specific DNA sequences are not required for the chromatin binding of ORC in vivo. The conclusion is that epigenetic mechanisms determine the sites where mammalian DNA replication is initiated.
Collapse
|