1
|
Smith N, Dasgupta M, Wych DC, Dolamore C, Sierra RG, Lisova S, Marchany-Rivera D, Cohen AE, Boutet S, Hunter MS, Kupitz C, Poitevin F, Moss FR, Mittan-Moreau DW, Brewster AS, Sauter NK, Young ID, Wolff AM, Tiwari VK, Kumar N, Berkowitz DB, Hadt RG, Thompson MC, Follmer AH, Wall ME, Wilson MA. Changes in an enzyme ensemble during catalysis observed by high-resolution XFEL crystallography. SCIENCE ADVANCES 2024; 10:eadk7201. [PMID: 38536910 PMCID: PMC10971408 DOI: 10.1126/sciadv.adk7201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/21/2024] [Indexed: 04/01/2024]
Abstract
Enzymes populate ensembles of structures necessary for catalysis that are difficult to experimentally characterize. We use time-resolved mix-and-inject serial crystallography at an x-ray free electron laser to observe catalysis in a designed mutant isocyanide hydratase (ICH) enzyme that enhances sampling of important minor conformations. The active site exists in a mixture of conformations, and formation of the thioimidate intermediate selects for catalytically competent substates. The influence of cysteine ionization on the ICH ensemble is validated by determining structures of the enzyme at multiple pH values. Large molecular dynamics simulations in crystallo and time-resolved electron density maps show that Asp17 ionizes during catalysis and causes conformational changes that propagate across the dimer, permitting water to enter the active site for intermediate hydrolysis. ICH exhibits a tight coupling between ionization of active site residues and catalysis-activated protein motions, exemplifying a mechanism of electrostatic control of enzyme dynamics.
Collapse
Affiliation(s)
- Nathan Smith
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Medhanjali Dasgupta
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - David C. Wych
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 875405, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Cole Dolamore
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Raymond G. Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Stella Lisova
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Darya Marchany-Rivera
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Frédéric Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Frank R. Moss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - David W. Mittan-Moreau
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Aaron S. Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Iris D. Young
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alexander M. Wolff
- Department of Chemistry and Biochemistry, University of California, Merced, CA 95340, USA
| | - Virendra K. Tiwari
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Nivesh Kumar
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - David B. Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ryan G. Hadt
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael C. Thompson
- Department of Chemistry and Biochemistry, University of California, Merced, CA 95340, USA
| | - Alec H. Follmer
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697, USA
| | - Michael E. Wall
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 875405, USA
| | - Mark A. Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
2
|
Smith N, Dasgupta M, Wych DC, Dolamore C, Sierra RG, Lisova S, Marchany-Rivera D, Cohen AE, Boutet S, Hunter MS, Kupitz C, Poitevin F, Moss FR, Brewster AS, Sauter NK, Young ID, Wolff AM, Tiwari VK, Kumar N, Berkowitz DB, Hadt RG, Thompson MC, Follmer AH, Wall ME, Wilson MA. Changes in an Enzyme Ensemble During Catalysis Observed by High Resolution XFEL Crystallography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553460. [PMID: 37645800 PMCID: PMC10462001 DOI: 10.1101/2023.08.15.553460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Enzymes populate ensembles of structures with intrinsically different catalytic proficiencies that are difficult to experimentally characterize. We use time-resolved mix-and-inject serial crystallography (MISC) at an X-ray free electron laser (XFEL) to observe catalysis in a designed mutant (G150T) isocyanide hydratase (ICH) enzyme that enhances sampling of important minor conformations. The active site exists in a mixture of conformations and formation of the thioimidate catalytic intermediate selects for catalytically competent substates. A prior proposal for active site cysteine charge-coupled conformational changes in ICH is validated by determining structures of the enzyme over a range of pH values. A combination of large molecular dynamics simulations of the enzyme in crystallo and time-resolved electron density maps shows that ionization of the general acid Asp17 during catalysis causes additional conformational changes that propagate across the dimer interface, connecting the two active sites. These ionization-linked changes in the ICH conformational ensemble permit water to enter the active site in a location that is poised for intermediate hydrolysis. ICH exhibits a tight coupling between ionization of active site residues and catalysis-activated protein motions, exemplifying a mechanism of electrostatic control of enzyme dynamics.
Collapse
Affiliation(s)
- Nathan Smith
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588
| | - Medhanjali Dasgupta
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588
| | - David C. Wych
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 875405
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Cole Dolamore
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588
| | - Raymond G. Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Stella Lisova
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Darya Marchany-Rivera
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Frédéric Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Frank R. Moss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Aaron S. Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Iris D. Young
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Alexander M. Wolff
- Department of Chemistry and Biochemistry, University of California, Merced, CA, 93540
| | - Virendra K. Tiwari
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588
| | - Nivesh Kumar
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588
| | - David B. Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588
| | - Ryan G. Hadt
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA USA
| | - Michael C. Thompson
- Department of Chemistry and Biochemistry, University of California, Merced, CA, 93540
| | - Alec H. Follmer
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697
| | - Michael E. Wall
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 875405
| | - Mark A. Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588
| |
Collapse
|
3
|
Smith N, Wilson MA. Understanding Cysteine Chemistry Using Conventional and Serial X-Ray Protein Crystallography. CRYSTALS 2022; 12:1671. [PMID: 36685087 PMCID: PMC9850494 DOI: 10.3390/cryst12111671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Proteins that use cysteine residues for catalysis or regulation are widely distributed and intensively studied, with many biomedically important examples. Enzymes where cysteine is a catalytic nucleophile typically generate covalent catalytic intermediates whose structures are important for understanding mechanism and for designing targeted inhibitors. The formation of catalytic intermediates can change enzyme conformational dynamics, sometimes activating protein motions that are important for catalytic turnover. However, these transiently populated intermediate species have been challenging to structurally characterize using traditional crystallographic approaches. This review describes the use and promise of new time-resolved serial crystallographic methods to study cysteine-dependent enzymes, with a focus on the main (Mpro) and papain-like (PLpro) cysteine proteases of SARS-CoV-2 as well as other examples. We review features of cysteine chemistry that are relevant for the design and execution of time-resolved serial crystallography experiments. In addition, we discuss emerging X-ray techniques such as time-resolved sulfur X-ray spectroscopy that may be able to detect changes in sulfur charge state and covalency during catalysis or regulatory modification. In summary, cysteine-dependent enzymes have features that make them especially attractive targets for new time-resolved serial crystallography approaches, which can reveal both changes to enzyme structure and dynamics during catalysis in crystalline samples.
Collapse
|
4
|
Mazza MC, Shuck SC, Lin J, Moxley MA, Termini J, Cookson MR, Wilson MA. DJ-1 is not a deglycase and makes a modest contribution to cellular defense against methylglyoxal damage in neurons. J Neurochem 2022; 162:245-261. [PMID: 35713360 PMCID: PMC9539984 DOI: 10.1111/jnc.15656] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 11/27/2022]
Abstract
Human DJ‐1 is a cytoprotective protein whose absence causes Parkinson's disease and is also associated with other diseases. DJ‐1 has an established role as a redox‐regulated protein that defends against oxidative stress and mitochondrial dysfunction. Multiple studies have suggested that DJ‐1 is also a protein/nucleic acid deglycase that plays a key role in the repair of glycation damage caused by methylglyoxal (MG), a reactive α‐keto aldehyde formed by central metabolism. Contradictory reports suggest that DJ‐1 is a glyoxalase but not a deglycase and does not play a major role in glycation defense. Resolving this issue is important for understanding how DJ‐1 protects cells against insults that can cause disease. We find that DJ‐1 reduces levels of reversible adducts of MG with guanine and cysteine in vitro. The steady‐state kinetics of DJ‐1 acting on reversible hemithioacetal substrates are fitted adequately with a computational kinetic model that requires only a DJ‐1 glyoxalase activity, supporting the conclusion that deglycation is an apparent rather than a true activity of DJ‐1. Sensitive and quantitative isotope‐dilution mass spectrometry shows that DJ‐1 modestly reduces the levels of some irreversible guanine and lysine glycation products in primary and cultured neuronal cell lines and whole mouse brain, consistent with a small but measurable effect on total neuronal glycation burden. However, DJ‐1 does not improve cultured cell viability in exogenous MG. In total, our results suggest that DJ‐1 is not a deglycase and has only a minor role in protecting neurons against methylglyoxal toxicity.![]()
Collapse
Affiliation(s)
- Melissa Conti Mazza
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarah C Shuck
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, California, USA
| | - Jiusheng Lin
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, USA
| | - Michael A Moxley
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska, USA
| | - John Termini
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, California, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark A Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
5
|
Kupyaphores are zinc homeostatic metallophores required for colonization of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2022; 119:2110293119. [PMID: 35193957 PMCID: PMC8872721 DOI: 10.1073/pnas.2110293119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the etiological agent of human tuberculosis (TB). Mtb can persist inside host macrophages by successfully adapting to intracellular conditions. Acquisition of balanced amounts of essential micronutrients is one such important process. Our studies have identified a metallophore produced on demand to restore Mtb zinc metabolic imbalance. These diacyl-diisonitrile lipopeptides, named kupyaphores, are specifically induced during infection and move in and out of cells to protect bacteria from host-mediated nutritional deprivation and intoxication. Furthermore, we identify an Mtb isonitrile hydratase homolog, expressed in low-zinc conditions, which probably facilitates zinc release from kupyaphores. Identification of this zinc acquisition strategy could provide opportunities in future to understand systemic zinc dysbiosis and associated manifestations in TB patients. Mycobacterium tuberculosis (Mtb) endures a combination of metal scarcity and toxicity throughout the human infection cycle, contributing to complex clinical manifestations. Pathogens counteract this paradoxical dysmetallostasis by producing specialized metal trafficking systems. Capture of extracellular metal by siderophores is a widely accepted mode of iron acquisition, and Mtb iron-chelating siderophores, mycobactin, have been known since 1965. Currently, it is not known whether Mtb produces zinc scavenging molecules. Here, we characterize low-molecular-weight zinc-binding compounds secreted and imported by Mtb for zinc acquisition. These molecules, termed kupyaphores, are produced by a 10.8 kbp biosynthetic cluster and consists of a dipeptide core of ornithine and phenylalaninol, where amino groups are acylated with isonitrile-containing fatty acyl chains. Kupyaphores are stringently regulated and support Mtb survival under both nutritional deprivation and intoxication conditions. A kupyaphore-deficient Mtb strain is unable to mobilize sufficient zinc and shows reduced fitness upon infection. We observed early induction of kupyaphores in Mtb-infected mice lungs after infection, and these metabolites disappeared after 2 wk. Furthermore, we identify an Mtb-encoded isonitrile hydratase, which can possibly mediate intracellular zinc release through covalent modification of the isonitrile group of kupyaphores. Mtb clinical strains also produce kupyaphores during early passages. Our study thus uncovers a previously unknown zinc acquisition strategy of Mtb that could modulate host–pathogen interactions and disease outcome.
Collapse
|
6
|
Zhu M, Wang L, Zhang Q, Ali M, Zhu S, Yu P, Gu X, Zhang H, Zhu Y, He J. Tandem Hydration of Diisonitriles Triggered by Isonitrile Hydratase in Streptomyces thioluteus. Org Lett 2018; 20:3562-3565. [PMID: 29863887 DOI: 10.1021/acs.orglett.8b01341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mengyi Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijuan Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
| | - Qingbo Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
| | - Muhammad Ali
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Biotechnology Program, Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad campus, Abbottabad, Pakistan
| | - Siqi Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peiqing Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaofei Gu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haibo Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
| | - Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
| | - Jing He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
7
|
Yano T, Wasada-Tsutsui Y, Ikeda T, Shibayama T, Kajita Y, Inomata T, Funahashi Y, Ozawa T, Masuda H. Co(III) Complexes with N 2S 3-Type Ligands as Structural/Functional Models for the Isocyanide Hydrolysis Reaction Catalyzed by Nitrile Hydratase. Inorg Chem 2018; 57:4277-4290. [PMID: 29582997 DOI: 10.1021/acs.inorgchem.6b02324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has been before reported that, in addition to hydration of nitriles, the Fe-type nitrile hydratase (NHase) also catalyzes the hydrolysis of tert-butylisocyanide ( tBuNC). In order to investigate the unique isocyanide hydrolysis by NHase, we prepared three related Co(III) model complexes, PPh4[Co(L)] (1), PPh4[Co(L-O3)] (2), and PPh4[Co(L-O4)] (3), where L is bis( N-(2-mercapto-2-methylpropionyl)aminopropyl)sulfide. The suffixes L-O3 and L-O4 indicate ligands with a sulfenate and a sulfinate and with two sulfinates, respectively, instead of the two thiolates of L. The X-ray analyses of 1 and 3 reveal trigonal bipyramidal and square pyramidal structures, respectively. Complex 2, however, has five-coordinate trigonal-bipyramidal geometry with η2-type S-O coordination by a sulfenyl group. Addition of tBuNC to 1, 2, and 3 induces an absorption spectral change as a result of formation of an octahedral Co(III) complex. This interpretation is also supported by the crystal structures of PPh4[Co(L-O4)( tBuNC)] (4) and (PPh4)2[Co(L-O4)(CN)] (5). A water molecule interacts with 3 but cannot be activated as reported previously, as demonstrated by the lack of absorption spectral change in the pH range of 5.5-10.2. Interestingly, the coordinated tBuNC is hydrolyzed by 2 and 3 at pH 10.2 to produce tBuNH2 and CO molecule, but 1 does not react. These findings provide strong evidence that hydrolysis of tBuNC by NHase proceeds not by activation of the coordinated water molecule but by coordination of the substrate. The mechanism of the hydrolysis reaction of tBuNC is explained with support provided by DFT calculations; a positively polarized C atom of tBuNC on the Co(III) center is nucleophilically attacked by a hydroxide anion activated through an interaction of the sulfenyl/sulfinyl oxygen with the nucleophile.
Collapse
Affiliation(s)
- Takuma Yano
- Department of Frontier Materials, Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya 466-8555 , Japan
| | - Yuko Wasada-Tsutsui
- Department of Frontier Materials, Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya 466-8555 , Japan
| | - Tomohiro Ikeda
- Department of Frontier Materials, Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya 466-8555 , Japan
| | - Tomonori Shibayama
- Department of Frontier Materials, Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya 466-8555 , Japan
| | - Yuji Kajita
- Department of Applied Chemistry, Graduate School of Engineering , Aichi Institute of Technology , Yakusa, Toyota 470-0392 , Japan
| | - Tomohiko Inomata
- Department of Frontier Materials, Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya 466-8555 , Japan
| | - Yasuhiro Funahashi
- Department of Chemistry, Graduate School of Science , Osaka University , Machikaneyama , Toyonaka, Osaka 560-0043 , Japan
| | - Tomohiro Ozawa
- Department of Frontier Materials, Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya 466-8555 , Japan
| | - Hideki Masuda
- Department of Frontier Materials, Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya 466-8555 , Japan
| |
Collapse
|
8
|
Yamada M, Hashimoto Y, Kumano T, Tsujimura S, Kobayashi M. New function of aldoxime dehydratase: Redox catalysis and the formation of an unexpected product. PLoS One 2017; 12:e0175846. [PMID: 28410434 PMCID: PMC5391958 DOI: 10.1371/journal.pone.0175846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/31/2017] [Indexed: 11/21/2022] Open
Abstract
In general, hemoproteins are capable of catalyzing redox reactions. Aldoxime dehydratase (OxdA), which is a unique heme-containing enzyme, catalyzes the dehydration of aldoximes to the corresponding nitriles. Its reaction is a rare example of heme directly activating an organic substrate, unlike the utilization of H2O2 or O2 as a mediator of catalysis by other heme-containing enzymes. While it is unknown whether OxdA catalyzes redox reactions or not, we here for the first time detected catalase activity (which is one of the redox activities) of wild-type OxdA, OxdA(WT). Furthermore, we constructed a His320 → Asp mutant of OxdA [OxdA(H320D)], and found it exhibits catalase activity. Determination of the kinetic parameters of OxdA(WT) and OxdA(H320D) revealed that their Km values for H2O2 were similar to each other, but the kcat value of OxdA(H320D) was 30 times higher than that of OxdA(WT). Next, we examined another redox activity and found it was the peroxidase activity of OxdAs. While both OxdA(WT) and OxdA(H320D) showed the activity, the activity of OxdA(H320D) was dozens of times higher than that of OxdA(WT). These findings demonstrated that the H320D mutation enhances the peroxidase activity of OxdA. OxdAs (WT and H320D) were found to catalyze another redox reaction, a peroxygenase reaction. During this reaction of OxdA(H320D) with 1-methoxynaphthalene as a substrate, surprisingly, the reaction mixture changed to a color different from that with OxdA(WT), which was due to the known product, Russig’s blue. We purified and identified the new product as 1-methoxy-2-naphthalenol, which has never been reported as a product of the peroxygenase reaction, to the best of our knowledge. These findings indicated that the H320D mutation not only enhanced redox activities, but also significantly altered the hydroxylation site of the substrate.
Collapse
Affiliation(s)
- Masatoshi Yamada
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiteru Hashimoto
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takuto Kumano
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Seiya Tsujimura
- Division of Materials Science, Faculty of Pure and Applied Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Michihiko Kobayashi
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
9
|
Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. strain UW4 that converts indole-3-acetonitrile to indole-3-acetic acid. Appl Environ Microbiol 2015; 80:4640-9. [PMID: 24837382 DOI: 10.1128/aem.00649-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Indole-3-acetic acid (IAA) is a fundamental phytohormone with the ability to control many aspects of plant growth and development. Pseudomonas sp. strain UW4 is a rhizospheric plant growth-promoting bacterium that produces and secretes IAA. While several putative IAA biosynthetic genes have been reported in this bacterium, the pathways leading to the production of IAA in strain UW4 are unclear. Here, the presence of the indole-3-acetamide (IAM) and indole-3-acetaldoxime/indole-3-acetonitrile (IAOx/IAN) pathways of IAA biosynthesis is described, and the specific role of two of the enzymes (nitrilase and nitrile hydratase) that mediate these pathways is assessed. The genes encoding these two enzymes were expressed in Escherichia coli, and the enzymes were isolated and characterized. Substrate-feeding assays indicate that the nitrilase produces both IAM and IAA from the IAN substrate, while the nitrile hydratase only produces IAM. The two nitrile-hydrolyzing enzymes have very different temperature and pH optimums. Nitrilase prefers a temperature of 50°C and a pH of 6, while nitrile hydratase prefers 4°C and a pH of 7.5. Based on multiple sequence alignments and motif analyses, physicochemical properties and enzyme assays, it is concluded that the UW4 nitrilase has an aromatic substrate specificity. The nitrile hydratase is identified as an iron-type metalloenzyme that does not require the help of a P47K activator protein to be active. These data are interpreted in terms of a preliminary model for the biosynthesis of IAA in this bacterium.
Collapse
|
10
|
Fukatsu H, Goda M, Hashimoto Y, Higashibata H, Kobayashi M. Optimum Culture Conditions for the Production ofN-Substituted Formamide Deformylase byArthrobacter pascensF164. Biosci Biotechnol Biochem 2014; 69:228-30. [PMID: 15665493 DOI: 10.1271/bbb.69.228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the optimum culture conditions for the production of a novel enzyme, N-substituted formamide deformylase, which acts mainly on N-benzylformamide, in Arthrobacter pascens F164. The highest enzyme activity was obtained when this strain F164 was cultivated in a synthetic medium with N-benzylformamide as sole nitrogen source. This deformylase was found to be an inducible enzyme depending on N-benzylformamide.
Collapse
Affiliation(s)
- Hiroshi Fukatsu
- Institute of Applied Biochemistry, and Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
11
|
A new synthetic route to N-benzyl carboxamides through the reverse reaction of N-substituted formamide deformylase. Appl Environ Microbiol 2013; 80:61-9. [PMID: 24123742 DOI: 10.1128/aem.02429-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we isolated a new enzyme, N-substituted formamide deformylase, that catalyzes the hydrolysis of N-substituted formamide to the corresponding amine and formate (H. Fukatsu, Y. Hashimoto, M. Goda, H. Higashibata, and M. Kobayashi, Proc. Natl. Acad. Sci. U. S. A. 101:13726-13731, 2004, doi:10.1073/pnas.0405082101). Here, we discovered that this enzyme catalyzed the reverse reaction, synthesizing N-benzylformamide (NBFA) from benzylamine and formate. The reverse reaction proceeded only in the presence of high substrate concentrations. The effects of pH and inhibitors on the reverse reaction were almost the same as those on the forward reaction, suggesting that the forward and reverse reactions are both catalyzed at the same catalytic site. Bisubstrate kinetic analysis using formate and benzylamine and dead-end inhibition studies using a benzylamine analogue, aniline, revealed that the reverse reaction of this enzyme proceeds via an ordered two-substrate, two-product (bi-bi) mechanism in which formate binds first to the enzyme active site, followed by benzylamine binding and the subsequent release of NBFA. To our knowledge, this is the first report of the reverse reaction of an amine-forming deformylase. Surprisingly, analysis of the substrate specificity for acids demonstrated that not only formate, but also acetate and propionate (namely, acids with numbers of carbon atoms ranging from C1 to C3), were active as acid substrates for the reverse reaction. Through this reaction, N-substituted carboxamides, such as NBFA, N-benzylacetamide, and N-benzylpropionamide, were synthesized from benzylamine and the corresponding acid substrates.
Collapse
|
12
|
Crystal structure of aldoxime dehydratase and its catalytic mechanism involved in carbon-nitrogen triple-bond synthesis. Proc Natl Acad Sci U S A 2013; 110:2810-5. [PMID: 23382199 DOI: 10.1073/pnas.1200338110] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aldoxime dehydratase (OxdA), which is a unique heme protein, catalyzes the dehydration of an aldoxime to a nitrile even in the presence of water in the reaction mixture. Unlike the utilization of H(2)O(2) or O(2) as a mediator of catalysis by other heme-containing enzymes (e.g., P450), OxdA is notable for the direct binding of a substrate to the heme iron. Here, we determined the crystal structure of OxdA. We then constructed OxdA mutants in which each of the polar amino acids lying within ∼6 Å of the iron atom of the heme was converted to alanine. Among the purified mutant OxdAs, S219A had completely lost and R178A exhibited a reduction in the activity. Together with this finding, the crystal structural analysis of OxdA and spectroscopic and electrostatic potential analyses of the wild-type and mutant OxdAs suggest that S219 plays a key role in the catalysis, forming a hydrogen bond with the substrate. Based on the spatial arrangement of the OxdA active site and the results of a series of mutagenesis experiments, we propose the detailed catalytic mechanism of general aldoxime dehydratases: (i) S219 stabilizes the hydroxy group of the substrate to increase its basicity; (ii) H320 acts as an acid-base catalyst; and (iii) R178 stabilizes the heme, and would donate a proton to and accept one from H320.
Collapse
|
13
|
Lin J, Prahlad J, Wilson MA. Conservation of oxidative protein stabilization in an insect homologue of parkinsonism-associated protein DJ-1. Biochemistry 2012; 51:3799-807. [PMID: 22515803 DOI: 10.1021/bi3003296] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DJ-1 is a conserved, disease-associated protein that protects against oxidative stress and mitochondrial damage in multiple organisms. Human DJ-1 contains a functionally essential cysteine residue (Cys106) whose oxidation is important for regulating protein function by an unknown mechanism. This residue is well-conserved in other DJ-1 homologues, including two (DJ-1α and DJ-1β) in Drosophila melanogaster. Because D. melanogaster is a powerful model system for studying DJ-1 function, we have determined the crystal structure and impact of cysteine oxidation on Drosophila DJ-1β. The structure of D. melanogaster DJ-1β is similar to that of human DJ-1, although two important residues in the human protein, Met26 and His126, are not conserved in DJ-1β. His126 in human DJ-1 is substituted with a tyrosine in DJ-1β, and this residue is not able to compose a putative catalytic dyad with Cys106 that was proposed to be important in the human protein. The reactive cysteine in DJ-1 is oxidized readily to the cysteine-sulfinic acid in both flies and humans, and this may regulate the cytoprotective function of the protein. We show that the oxidation of this conserved cysteine residue to its sulfinate form (Cys-SO(2)(-)) results in considerable thermal stabilization of both Drosophila DJ-1β and human DJ-1. Therefore, protein stabilization is one potential mechanism by which cysteine oxidation may regulate DJ-1 function in vivo. More generally, most close DJ-1 homologues are likely stabilized by cysteine-sulfinic acid formation but destabilized by further oxidation, suggesting that they are biphasically regulated by oxidative modification.
Collapse
Affiliation(s)
- Jiusheng Lin
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588, USA
| | | | | |
Collapse
|
14
|
Sato H, Hashimoto Y, Fukatsu H, Kobayashi M. Novel isonitrile hydratase involved in isonitrile metabolism. J Biol Chem 2010; 285:34793-802. [PMID: 20826798 DOI: 10.1074/jbc.m110.150227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously discovered N-substituted formamide deformylase (NfdA) in Arthrobacter pascens F164, which degrades N-substituted formamide (Fukatsu, H., Hashimoto, Y., Goda, M., Higashibata, H., and Kobayashi, M. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 13726-13731). In this study, we found an enzyme involved in the first step of isonitrile metabolism, isonitrile hydratase, that hydrates isonitrile to the corresponding N-substituted formamide. First, we investigated the optimum culture conditions for the production of isonitrile hydratase. The highest enzyme activity was obtained when A. pascens F164 was cultured in a nutrient medium containing N-benzylformamide. This Arthrobacter isonitrile hydratase was purified, characterized, and compared with Pseudomonas putida N19-2 isonitrile hydratase (InhA), which is the sole one reported at present. Arthrobacter isonitrile hydratase was found to have a molecular mass of about 530 kDa and to consist of 12 identical subunits. The apparent K(m) value for cyclohexyl isocyanide was 0.95 ± 0.05 mm. A. pascens F164 grew and exhibited the isonitrile hydratase and N-substituted formamide deformylase activities when cultured in a medium containing an isonitrile as the sole carbon and nitrogen sources. However, both enzyme activities were not observed on culture in a medium containing glycerol and (NH(4))(2)SO(4) as the sole carbon and nitrogen sources, respectively. These findings suggested that the Arthrobacter enzyme is an inducible enzyme, possibly involved in assimilation and/or detoxification of isonitrile. Moreover, gene cloning of the Arthrobacter enzyme revealed no sequence similarity between this enzyme and InhA. Comparison of their properties and features demonstrated that the two enzymes are biochemically, immunologically, and structurally different from each other. Thus, we discovered a new isonitrile hydratase named InhB.
Collapse
Affiliation(s)
- Hiroyoshi Sato
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | |
Collapse
|
15
|
Velankar H, Clarke KG, Preez RD, Cowan DA, Burton SG. Developments in nitrile and amide biotransformation processes. Trends Biotechnol 2010; 28:561-9. [DOI: 10.1016/j.tibtech.2010.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/29/2010] [Accepted: 08/13/2010] [Indexed: 10/19/2022]
|
16
|
Lakshminarasimhan M, Madzelan P, Nan R, Milkovic NM, Wilson MA. Evolution of new enzymatic function by structural modulation of cysteine reactivity in Pseudomonas fluorescens isocyanide hydratase. J Biol Chem 2010; 285:29651-61. [PMID: 20630867 DOI: 10.1074/jbc.m110.147934] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Isocyanide (formerly isonitrile) hydratase (EC 4.2.1.103) is an enzyme of the DJ-1 superfamily that hydrates isocyanides to yield the corresponding N-formamide. In order to understand the structural basis for isocyanide hydratase (ICH) catalysis, we determined the crystal structures of wild-type and several site-directed mutants of Pseudomonas fluorescens ICH at resolutions ranging from 1.0 to 1.9 Å. We also developed a simple UV-visible spectrophotometric assay for ICH activity using 2-naphthyl isocyanide as a substrate. ICH contains a highly conserved cysteine residue (Cys(101)) that is required for catalysis and interacts with Asp(17), Thr(102), and an ordered water molecule in the active site. Asp(17) has carboxylic acid bond lengths that are consistent with protonation, and we propose that it activates the ordered water molecule to hydrate organic isocyanides. In contrast to Cys(101) and Asp(17), Thr(102) is tolerant of mutagenesis, and the T102V mutation results in a substrate-inhibited enzyme. Although ICH is similar to human DJ-1 (1.6 Å C-α root mean square deviation), structural differences in the vicinity of Cys(101) disfavor the facile oxidation of this residue that is functionally important in human DJ-1 but would be detrimental to ICH activity. The ICH active site region also exhibits surprising conformational plasticity and samples two distinct conformations in the crystal. ICH represents a previously uncharacterized clade of the DJ-1 superfamily that possesses a novel enzymatic activity, demonstrating that the DJ-1 core fold can evolve diverse functions by subtle modulation of the environment of a conserved, reactive cysteine residue.
Collapse
Affiliation(s)
- Mahadevan Lakshminarasimhan
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | | | | | | | |
Collapse
|
17
|
Transcriptional regulation of the nitrile hydratase gene cluster in Pseudomonas chlororaphis B23. J Bacteriol 2008; 190:4210-7. [PMID: 18408036 DOI: 10.1128/jb.00061-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An enormous amount of nitrile hydratase (NHase) is inducibly produced by Pseudomonas chlororaphis B23 after addition of methacrylamide as the sole nitrogen source to a medium. The expression pattern of the P. chlororaphis B23 NHase gene cluster in response to addition of methacrylamide to the medium was investigated. Recently, we reported that the NHase gene cluster comprises seven genes (oxdA, amiA, nhpA, nhpB, nhpC, nhpS, and acsA). Sequence analysis of the 1.5-kb region upstream of the oxdA gene revealed the presence of a 936-bp open reading frame (designated nhpR), which should encode a protein with a molecular mass of 35,098. The deduced amino acid sequence of the nhpR product showed similarity to the sequences of transcriptional regulators belonging to the XylS/AraC family. Although the transcription of the eight genes (nhpR, oxdA, amiA, nhpABC, nhpS, and acsA) in the NHase gene cluster was induced significantly in the P. chlororaphis B23 wild-type strain after addition of methacrylamide to the medium, transcription of these genes in the nhpR disruptant was not induced, demonstrating that nhpR codes for a positive transcriptional regulator in the NHase gene cluster. A reverse transcription-PCR experiment revealed that five genes (oxdA, amiA, nhpA, nhpB, and nhpC) are cotranscribed, as are two other genes (nhpS and acsA). The transcription start sites for nhpR, oxdA, nhpA, and nhpS were mapped by primer extension analysis, and putative -12 and -24 sigma(54)-type promoter binding sites were identified. NhpR was found to be the first transcriptional regulator of NHase belonging to the XylS/AraC family.
Collapse
|
18
|
Efficient expression in E. coli of an enantioselective nitrile hydratase from Rhodococcus erythropolis. Biotechnol Lett 2007; 30:755-62. [PMID: 18043868 DOI: 10.1007/s10529-007-9611-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 11/07/2007] [Accepted: 11/09/2007] [Indexed: 10/22/2022]
Abstract
The genes encoding an enantioselective nitrile hydratase (NHase) from Rhodococcus erythropolis AJ270 have been cloned and an active NHase has been produced in Escherichia coli. Maximal activity was found when the genes encoding the alpha- and beta-subunits were transcribed as one unit and the gene encoding the P44k activator protein as a separate ORF on a single replicon. Addition of n-butyric acid and FeSO(4 )could improve NHase activity. Coexpression of the GroEL-GroES chaperone proteins increased activity in the absence of P44k protein but had no effect in the presence of P44k. The recombinant enzyme was highly enantioselective in the synthesis of S-(+)-3-benzoyloxy- 4-cyanobutyramide from the prochiral substrate 3-benzoyloxyglutaronitrile.
Collapse
|
19
|
|
20
|
Masdeu C, Gómez E, Williams N, Lavilla R. Hydro-, Halo- and Seleno-Carbamoylation of Cyclic Enol Ethers and Dihydropyridines: New Mechanistic Pathways for Passerini- and Ugi-type Multicomponent Reactions. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/qsar.200540193] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Konishi K, Ohta T, Oinuma KI, Hashimoto Y, Kitagawa T, Kobayashi M. Discovery of a reaction intermediate of aliphatic aldoxime dehydratase involving heme as an active center. Proc Natl Acad Sci U S A 2006; 103:564-8. [PMID: 16407114 PMCID: PMC1334632 DOI: 10.1073/pnas.0505412103] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recently, we discovered an intriguing hemoprotein [aliphatic aldoxime dehydratase (OxdA)] that catalyzes the dehydration of aliphatic aldoximes [R-CH=N-OH] to the corresponding nitriles [R-C identical withN] in the industrial Pseudomonas chlororaphis B23 strain. Unlike the utilization of H(2)O(2) or O(2) as a mediator of the catalysis by other heme-containing enzymes (e.g., P450), OxdA is notable for the direct binding of a substrate to the heme iron, experimental evidence of which was obtained here by means of resonance Raman (RR) analysis with an isotope technique. We found that the addition of a large amount of butyraldoxime (final concentration, 200 mM) to ferrous OxdA with a low enzyme concentration (final concentration, 5 muM) yields a long-lived OxdA-substrate complex (named OS-II), whose UV-vis spectrum is different from the corresponding spectra of the OxdA-substrate complex I and CO-bound, ferrous, and ferric forms of OxdA. Intriguingly, the RR analysis demonstrated that OS-II includes a highly oxidized heme with strong bonding between a substrate and the heme iron, as judged from the heme oxidation state marker nu(4) band at 1,379 cm(-1) and the (15)N-isotope-substituted butyraldoxime sensitive band at 857 cm(-1) in the RR spectra. It is noteworthy that OS-II has a highly oxidized heme like the ferryl-oxo heme species (e.g., compound II) formed by some general hemoproteins, although the function of OxdA is different from those (transport of electrons, transport of oxygen, sensing of oxygen or carbon monoxide, and catalysis of redox reactions) of general hemoproteins.
Collapse
Affiliation(s)
- Kazunobu Konishi
- Institute of Applied Biochemistry, and Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Fukatsu H, Herai S, Hashimoto Y, Maseda H, Higashibata H, Kobayashi M. High-level expression of a novel amine-synthesizing enzyme, N-substituted formamide deformylase, in Streptomyces with a strong protein expression system. Protein Expr Purif 2005; 40:212-9. [PMID: 15721791 DOI: 10.1016/j.pep.2004.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 11/19/2004] [Indexed: 11/22/2022]
Abstract
N-substituted formamide deformylase (NfdA) from Arthrobacter pascens F164 is a novel deformylase involved in the metabolism of isonitriles. The enzyme catalyzes the deformylation of an N-substituted formamide, which is produced from the corresponding isonitrile, to yield the corresponding amine and formate. The nfdA gene from A. pascens F164 was cloned into different types of expression vectors for Escherichia coli and Streptomyces strains. Expression in E. coli resulted in the accumulation of an insoluble protein. However, Streptomyces strains transformed with a P(nitA)-NitR system, which we very recently developed as a regulatory gene expression system for streptomycetes, allowed the heterologous overproduction of NfdA in an active form. When Streptomyces lividans TK24 transformed with pSH19-nfdA was cultured under the optimum conditions, the NfdA activity of the cell-free extract amounted to 8.5 U/mg, which was 29-fold higher than that of A. pascens F164. The enzyme also comprised approximately 20% of the total extractable cellular protein. The recombinant enzyme was purified to homogeneity and characterized. The expression system established here will allow structural analysis and mutagenesis studies of NfdA.
Collapse
Affiliation(s)
- Hiroshi Fukatsu
- Institute of Applied Biochemistry, and Graduate School of Life and Environmental Sciences, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Oinuma KI, Kumita H, Ohta T, Konishi K, Hashimoto Y, Higashibata H, Kitagawa T, Shiro Y, Kobayashi M. Stopped-flow spectrophotometric and resonance Raman analyses of aldoxime dehydratase involved in carbon-nitrogen triple bond synthesis. FEBS Lett 2005; 579:1394-8. [PMID: 15733847 DOI: 10.1016/j.febslet.2005.01.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 12/28/2004] [Accepted: 01/17/2005] [Indexed: 10/25/2022]
Abstract
On stopped-flow analysis of aliphatic aldoxime dehydratase (OxdA), a novel hemoprotein, a spectrum derived from a reaction intermediate was detected on mixing ferrous OxdA with butyraldoxime; it gradually changed into that of ferrous OxdA with an isosbestic point at 421 nm. The spectral change on the addition of butyraldoxime to the ferrous H320A mutant showed the formation of a substrate-coordinated mutant, the absorption spectrum of which closely resembled that of the above intermediate. These observations and the resonance Raman investigation revealed that the substrate actually binds to the heme in OxdA, forming a hexa-coordinate low-spin heme.
Collapse
Affiliation(s)
- Ken-Ichi Oinuma
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hashimoto Y, Hosaka H, Oinuma KI, Goda M, Higashibata H, Kobayashi M. Nitrile pathway involving acyl-CoA synthetase: overall metabolic gene organization and purification and characterization of the enzyme. J Biol Chem 2005; 280:8660-7. [PMID: 15632196 DOI: 10.1074/jbc.m405686200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two open reading frames (nhpS and acsA) were identified immediately downstream of the previously described Pseudomonas chlororaphis B23 nitrile hydratase (NHase) gene cluster (encoding aldoxime dehydratase, amidase, the two NHase subunits, and an uncharacterized protein). The amino acid sequence deduced from acsA shows similarity to that of acyl-CoA synthetase (AcsA). The acsA gene product expressed in Escherichia coli showed acyl-CoA synthetase activity toward butyric acid and CoA as substrates, with butyryl-CoA being synthesized. From the E. coli transformant, AcsA was purified to homogeneity and characterized. The quality of the recombinant protein was verified by the NH2-terminal amino acid sequence and the results of matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The apparent Km values for butyric acid, CoA, and ATP were 0.32 +/- 0.04, 0.37 +/- 0.02, and 0.22 +/- 0.02 mm, respectively. AcsA was shown to be a short-chain acyl-CoA synthetase, according to the catalytic efficiencies (kcat/Km) for various acids. The substrate specificity of AcsA was similar to those of aldoxime dehydratase, NHase, and amidase, the genes of which coexist in the same orientation in the gene cluster. P. chlororaphis B23 grew when cultured in a medium containing butyraldoxime as the sole carbon and nitrogen source. The activities of aldoxime dehydratase, NHase, and amidase were detected together with that of acyl-CoA synthetase under the culture conditions used. Moreover, on culture in a medium containing butyric acid as the sole carbon source, acyl-CoA synthetase activity was also detected. Together with the adjacent locations of the aldoxime dehydratase, NHase, amidase, and acyl-CoA synthetase genes, these findings suggest that the four enzymes are sequentially correlated with one another in vivo to utilize butyraldoxime as a carbon and nitrogen source. This is the first report of an overall "nitrile pathway" (aldoxime-->nitrile-->amide-->acid-->acyl-CoA) comprising these enzymes.
Collapse
Affiliation(s)
- Yoshiteru Hashimoto
- Institute of Applied Biochemistry, and Graduate School of Life and Environmental Sciences, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Konishi K, Ishida K, Oinuma KI, Ohta T, Hashimoto Y, Higashibata H, Kitagawa T, Kobayashi M. Identification of Crucial Histidines Involved in Carbon-Nitrogen Triple Bond Synthesis by Aldoxime Dehydratase. J Biol Chem 2004; 279:47619-25. [PMID: 15339918 DOI: 10.1074/jbc.m407223200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldoxime dehydratase (OxdA), which is a novel heme protein, catalyzes the dehydration of an aldoxime to a nitrile even in the presence of water in the reaction mixture. The combination of site-directed mutagenesis of OxdA (mutation of all conserved histidines in the aldoxime dehydratase superfamily), estimation of the heme contents and specific activities of the mutants, and CD and resonance Raman spectroscopic analyses led to the identification of the proximal and distal histidines in this unique enzyme. The heme contents and CD spectra in the far-UV region of all mutants except for the H299A one were almost identical to those of the wild-type OxdA, whereas the H299A mutant lost the ability of binding heme, demonstrating that His(299) is the proximal histidine. On the other hand, substitution of alanine for His(320) did not affect the overall structure of OxdA but caused loss of its ability of carbon-nitrogen triple bond synthesis and a lower shift of the Fe-C stretching band in the resonance Raman spectrum for the CO-bound form. Furthermore, the pH dependence of the wild-type OxdA closely followed the His protonation curves observed for other proteins. These findings suggest that His(320) is located in the distal heme pocket of OxdA and would donate a proton to the substrate in the aldoxime dehydration mechanism.
Collapse
Affiliation(s)
- Kazunobu Konishi
- Institute of Applied Biochemistry, and Graduate School of Life and Environmental Sciences, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Herai S, Hashimoto Y, Higashibata H, Maseda H, Ikeda H, Omura S, Kobayashi M. Hyper-inducible expression system for streptomycetes. Proc Natl Acad Sci U S A 2004; 101:14031-5. [PMID: 15377796 PMCID: PMC521115 DOI: 10.1073/pnas.0406058101] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptomycetes produce useful enzymes and a wide variety of secondary metabolites with potent biological activities (e.g., antibiotics, immunosuppressors, pesticides, etc.). Despite their importance in the pharmaceutical and agrochemical fields, there have been no reports for practical expression systems in streptomycetes. Here, we developed a "P(nitA)-NitR" system for regulatory gene expression in streptomycetes based on the expression mechanism of Rhodococcus rhodochrous J1 nitrilase, which is highly induced by an inexpensive and safe inducer, epsilon-caprolactam. Heterologous protein expression experiments demonstrated that the system allowed suppressed basal expression and hyper-inducible expression, yielding target protein levels of as high as approximately 40% of all soluble protein. Furthermore, the system functioned in important streptomycete strains. Thus, the P(nitA)-NitR system should be a powerful tool for improving the productivity of various useful products in streptomycetes.
Collapse
Affiliation(s)
- Sachio Herai
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Fukatsu H, Hashimoto Y, Goda M, Higashibata H, Kobayashi M. Amine-synthesizing enzyme N-substituted formamide deformylase: screening, purification, characterization, and gene cloning. Proc Natl Acad Sci U S A 2004; 101:13726-31. [PMID: 15358859 PMCID: PMC518824 DOI: 10.1073/pnas.0405082101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
N-substituted formamide was produced through the hydration of an isonitrile by isonitrile hydratase in the isonitrile metabolism. The former compound was further degraded by a microorganism, strain F164, which was isolated from soil through an acclimatization culture. The N-substituted formamide-degrading microorganism was identified as Arthrobacter pascens. The microbial degradation was found to proceed through an enzymatic reaction, the N-substituted formamide being hydrolyzed to yield the corresponding amine and formate. The enzyme, designated as N-substituted formamide deformylase (NfdA), was purified and characterized. The native enzyme had a molecular mass of approximately 61 kDa and consisted of two identical subunits. It stoichiometrically catalyzed the hydrolysis of N-benzylformamide (an N-substituted formamide) to benzylamine and formate. Of all of the N-substituted formamides tested, N-benzylformamide was the most suitable substrate for the enzyme. However, no amides were accepted as substrates. The gene (nfdA) encoding this enzyme was also cloned. The deduced amino acid sequence of nfdA exhibited the highest overall sequence identity (28%) with those of regulatory proteins among known proteins. Only the N-terminal region (residues 58-72) of NfdA also showed significant sequence identity (27-73%) to that of each member of the amidohydrolase superfamily, although there was no similarity in the overall sequence except in the above limited region.
Collapse
Affiliation(s)
- Hiroshi Fukatsu
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | |
Collapse
|
28
|
Oinuma KI, Ohta T, Konishi K, Hashimoto Y, Higashibata H, Kitagawa T, Kobayashi M. Heme environment in aldoxime dehydratase involved in carbon-nitrogen triple bond synthesis. FEBS Lett 2004; 568:44-8. [PMID: 15196918 DOI: 10.1016/j.febslet.2004.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 03/27/2004] [Accepted: 05/05/2004] [Indexed: 11/30/2022]
Abstract
Resonance Raman spectra have been measured to characterize the heme environment in aldoxime dehydratase (OxdA), a novel hemoprotein, which catalyzes the dehydration of aldoxime into nitrile. The spectra showed that the ferric heme in the enzyme is six-coordinate low spin, whereas the ferrous heme is five-coordinate high spin. We assign a prominent vibration that occurs at 226 cm(-1) in the ferrous enzyme to the Fe-proximal histidine stretching vibration. In the CO-bound form of OxdA, the correlation between the Fe-CO stretching (512 cm(-1)) and C-O stretching (1950 cm(-1)) frequencies also supports our assignment of proximal histidine coordination.
Collapse
Affiliation(s)
- Ken-Ichi Oinuma
- Institute of Applied Biochemistry, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Oinuma KI, Hashimoto Y, Konishi K, Goda M, Noguchi T, Higashibata H, Kobayashi M. Novel aldoxime dehydratase involved in carbon-nitrogen triple bond synthesis of Pseudomonas chlororaphis B23. Sequencing, gene expression, purification, and characterization. J Biol Chem 2003; 278:29600-8. [PMID: 12773527 DOI: 10.1074/jbc.m211832200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Analysis of the nitrile hydratase gene cluster involved in nitrile metabolism of Pseudomonas chlororaphis B23 revealed that it contains one open reading frame encoding aldoxime dehydratase upstream of the amidase gene. The amino acid sequence deduced from this open reading frame shows similarity (32% identity) with that of Bacillus phenylacetaldoxime dehydratase (Kato, Y., Nakamura, K., Sakiyama, H., Mayhew, S. G., and Asano, Y. (2000) Biochemistry 39, 800-809). The gene product expressed in Escherichia coli catalyzed the dehydration of aldoxime into nitrile. The Pseudomonas aldoxime dehydratase (OxdA) was purified from the E. coli transformant and characterized. OxdA shows an absorption spectrum with a Soret peak that is characteristic of heme, demonstrating that it is a hemoprotein. For its activity, this enzyme required a reducing reagent, Na2S2O4, but did not require FMN, which is crucial for the Bacillus enzyme. The enzymatic reaction was found to be catalyzed when the heme iron of the enzyme was in the ferrous state. Calcium as well as iron was included in the enzyme. OxdA reduced by Na2S2O4 had a molecular mass of 76.2 kDa and consisted of two identical subunits. The kinetic parameters of OxdA indicated that aliphatic aldoximes are more effective substrates than aromatic aldoximes. A variety of spectral shifts in the absorption spectra of OxdA were observed upon the addition of each of various compounds (i.e. redox reagents and heme ligands). Moreover, the addition of the substrate to OxdA gave a peak that would be derived from the intermediate in the nitrile synthetic reaction. P. chlororaphis B23 grew and showed the OxdA activity when cultured in a medium containing aldoxime as the sole carbon and nitrogen source. Together with these findings, Western blotting analysis of the extracts using anti-OxdA antiserum revealed that OxdA is responsible for the metabolism of aldoxime in vivo in this strain.
Collapse
Affiliation(s)
- Ken-Ichi Oinuma
- Institute of Applied Biochemistry, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | |
Collapse
|