1
|
Wang Z, Kometani M, Zeitlin L, Wilnai Y, Kinoshita A, Yoshiura KI, Ninomiya H, Imamura T, Guo L, Xue J, Yan L, Ohashi H, Pretemer Y, Kawai S, Shiina M, Ogata K, Cohn DH, Matsumoto N, Nishimura G, Toguchida J, Miyake N, Ikegawa S. Heterozygous mutations in the straitjacket region of the latency-associated peptide domain of TGFB2 cause Camurati-Engelmann disease type II. J Hum Genet 2024; 69:599-605. [PMID: 39014191 DOI: 10.1038/s10038-024-01274-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Camurati-Engelmann disease (CED) is an autosomal dominant bone dysplasia characterized by progressive hyperostosis of the skull base and diaphyses of the long bones. CED is further divided into two subtypes, CED1 and CED2, according to the presence or absence of TGFB1 mutations, respectively. In this study, we used exome sequencing to investigate the genetic cause of CED2 in three pedigrees and identified two de novo heterozygous mutations in TGFB2 among the three patients. Both mutations were located in the region of the gene encoding the straitjacket subdomain of the latency-associated peptide (LAP) of pro-TGF-β2. Structural simulations of the mutant LAPs suggested that the mutations could cause significant conformational changes and lead to a reduction in TGF-β2 inactivation. An activity assay confirmed a significant increase in TGF-β2/SMAD signaling. In vitro osteogenic differentiation experiment using iPS cells from one of the CED2 patients showed significantly enhanced ossification, suggesting that the pathogenic mechanism of CED2 is increased activation of TGF-β2 by loss-of-function of the LAP. These results, in combination with the difference in hyperostosis patterns between CED1 and CED2, suggest distinct functions between TGFB1 and TGFB2 in human skeletal development and homeostasis.
Collapse
Affiliation(s)
- Zheng Wang
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Mitsuhiro Kometani
- Division of Endocrinology and Hypertension, Department of Cardiovascular and Internal Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Leonid Zeitlin
- Pediatric Bone Clinic, Orthopaedic Department, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Yael Wilnai
- Genetic Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Akira Kinoshita
- Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroko Ninomiya
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Toon, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Toon, Japan
| | - Long Guo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Jingyi Xue
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Li Yan
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Hirofumi Ohashi
- Division of Medical Genetics, Saitama Children's Medical Genetics, Saitama, Japan
| | - Yann Pretemer
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shunsuke Kawai
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masaaki Shiina
- Department of Biochemistry, Yokohama City University, Yokohama, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University, Yokohama, Japan
| | - Daniel H Cohn
- Department of Molecular, Cell, and Developmental Biology, Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Gen Nishimura
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Junya Toguchida
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University, Yokohama, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan.
| |
Collapse
|
2
|
Campos T, Uchoa E, Santos V, Zatarin R, Benício R, Gomes C, da Cruz A. Phenotypic Variability in Camurati-Engelmann Disease: A Case Report of a Family with the c.653G>A Pathogenic Variant in the TGFB1 Gene. Genes (Basel) 2024; 15:1354. [PMID: 39596554 PMCID: PMC11593567 DOI: 10.3390/genes15111354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Camurati-Engelmann Disease (CED), or Progressive Diaphyseal Dysplasia, is a rare autosomal dominant disorder caused by heterozygous mutations in the TGFB1 Gene, essential for bone regeneration. This study examines the genotype-phenotype relationship in a family diagnosed with CED, specifically focusing on a missense variant (c.653G>A, p.Arg218Cys). The family comprised a mother and her two children, all of whom were found to carry the same disease-causing variant. The second child exhibited severe symptoms by age six, including progressive weakness and joint pain, leading to wheelchair dependency. The mother displayed milder symptoms with preserved independence. The firstborn son, initially asymptomatic, developed gait abnormalities and pain during adolescence. Clinical evaluations revealed characteristic hyperostosis of long bones, with significant variability in symptom onset and severity among family members, potentially indicative of genetic anticipation. This case underscores the importance of genetic testing and interdisciplinary management in CED, as traditional treatments, including corticosteroids and NSAIDs, often yield limited efficacy and notable side effects. Our findings contribute to the understanding of CED's pathophysiology and highlight the necessity for tailored therapeutic approaches. The identification of the common TGFB1 variant in this family reinforces the critical role of TGFB1 in bone metabolism and suggests avenues for further research into targeted therapies. Such reports enhance awareness and provide valuable insights for healthcare professionals managing rare genetic disorders.
Collapse
Affiliation(s)
- Talyta Campos
- Replicon Research Nucleus, Graduate Program in Genetics, School of Medical and Life Sciences, Pontifical Catholic University of Goiás, Goiânia 74605-050, GO, Brazil; (T.C.)
- Clinical Genetics Service, Center for Rehabilitation and Readaptation Dr. Henrique Santillo, State Health Secretary of Goiás, Goiânia 74605-050, GO, Brazil
| | - Elza Uchoa
- Clinical Genetics Service, Center for Rehabilitation and Readaptation Dr. Henrique Santillo, State Health Secretary of Goiás, Goiânia 74605-050, GO, Brazil
- Graduate Program in Genetics and Molecular Biology, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Victor Santos
- Clinical Genetics Service, Center for Rehabilitation and Readaptation Dr. Henrique Santillo, State Health Secretary of Goiás, Goiânia 74605-050, GO, Brazil
- Graduate Program in Genetics and Molecular Biology, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Raffael Zatarin
- Clinical Genetics Service, Center for Rehabilitation and Readaptation Dr. Henrique Santillo, State Health Secretary of Goiás, Goiânia 74605-050, GO, Brazil
| | - Rosenelle Benício
- Clinical Genetics Service, Center for Rehabilitation and Readaptation Dr. Henrique Santillo, State Health Secretary of Goiás, Goiânia 74605-050, GO, Brazil
| | - Clayson Gomes
- Replicon Research Nucleus, Graduate Program in Genetics, School of Medical and Life Sciences, Pontifical Catholic University of Goiás, Goiânia 74605-050, GO, Brazil; (T.C.)
| | - Aparecido da Cruz
- Replicon Research Nucleus, Graduate Program in Genetics, School of Medical and Life Sciences, Pontifical Catholic University of Goiás, Goiânia 74605-050, GO, Brazil; (T.C.)
- Clinical Genetics Service, Center for Rehabilitation and Readaptation Dr. Henrique Santillo, State Health Secretary of Goiás, Goiânia 74605-050, GO, Brazil
- Graduate Program in Genetics and Molecular Biology, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| |
Collapse
|
3
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
4
|
Yapijakis C, Davaria S, Gintoni I, Chrousos GP. The Impact of Genetic Variability of TGF-Beta Signaling Biomarkers in Major Craniofacial Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1423:187-191. [PMID: 37525043 DOI: 10.1007/978-3-031-31978-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Craniofacial development is a complex process involving several signaling pathways, including the one regulated by the TGF-beta (TGF-β) superfamily of growth factors. Isoforms of TGF-β play a vital part in embryonic development, notably in craniofacial patterning. Consequently, pathogenic variants in their coding genes may result in a variety of orofacial and craniofacial malformations. Here, we review the impact of genetic variability of TGF-β signaling biomarkers in major disorders, including palatal and lip clefts, dental anomalies, and craniofacial syndromes, such as the Loeys-Dietz syndrome (LDS) and Camurati-Engelmann disease. Cleft lip and cleft palate are associated with missense mutations in the TGFB1 and TGFB3 genes, while mutations in the LTBP3 gene encoding TGF-β binding protein 3 may cause selective tooth agenesis. Oligodontia may also be caused by TGFB1-inactivating mutations and/or by variations in the GREM2 gene, which disrupt the activity of gremlin 2, a TGF-β/bone morphogenetic protein (BMP4) signaling antagonist. CED may be caused by mutations in the TGFB1 gene, while the TGF-β-related genetic background of LDS consists mostly of TGFBR1 and TGFBR2 mutations, which may also impact the above syndromes' vascular manifestations. The potential utility of the TGF-β signaling pathway factors as biomarkers that correlate genetics with clinical outcome of craniofacial malformations is discussed.
Collapse
Affiliation(s)
- Christos Yapijakis
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, "Hagia Sophia" Children's Hospital, Athens, Greece.
- Department of Molecular Genetics, Cephalogenetics Center, Athens, Greece.
- University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Choremion Laboratory, "Aghia Sophia" Children's Hospital, Athens, Greece.
| | - Sofianna Davaria
- Department of Molecular Genetics, Cephalogenetics Center, Athens, Greece
| | - Iphigenia Gintoni
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, "Hagia Sophia" Children's Hospital, Athens, Greece
- Department of Molecular Genetics, Cephalogenetics Center, Athens, Greece
- University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Choremion Laboratory, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - George P Chrousos
- University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Choremion Laboratory, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
5
|
Tan AQ, Zheng YF. The Roles of SNHG Family in Osteoblast Differentiation. Genes (Basel) 2022; 13:2268. [PMID: 36553535 PMCID: PMC9777675 DOI: 10.3390/genes13122268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Small nucleolar RNA host genes (SNHGs), members of long-chain noncoding RNAs (lncRNAs), have received increasing attention regarding their roles in multiple bone diseases. Studies have revealed that SNHGs display unique expression profile during osteoblast differentiation and that they could act as promising biomarkers of certain bone diseases, such as osteoporosis. Osteogenesis of mesenchymal stem cells (MSCs) is an important part of bone repair and reconstruction. Moreover, studies confirmed that the SNHG family participate in the regulation of osteogenic differentiation of MSCs in part by regulating important pathways of osteogenesis, such as Wnt/β-catenin signaling. Based on these observations, clarifying the SNHG family's roles in osteogenesis (especially in MSCs) and their related mechanisms would provide novel ideas for possible applications of lncRNAs in the diagnosis and treatment of bone diseases. After searching, screening, browsing and intensive reading, we uncovered more than 30 papers related to the SNHG family and osteoblast differentiation that were published in recent years. Here, our review aims to summarize these findings in order to provide a theoretical basis for further research.
Collapse
Affiliation(s)
| | - Yun-Fei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| |
Collapse
|
6
|
Wells KM, Baumel M, McCusker CD. The Regulation of Growth in Developing, Homeostatic, and Regenerating Tetrapod Limbs: A Minireview. Front Cell Dev Biol 2022; 9:768505. [PMID: 35047496 PMCID: PMC8763381 DOI: 10.3389/fcell.2021.768505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/19/2021] [Indexed: 01/29/2023] Open
Abstract
The size and shape of the tetrapod limb play central roles in their functionality and the overall physiology of the organism. In this minireview we will discuss observations on mutant animal models and humans, which show that the growth and final size of the limb is most impacted by factors that regulate either limb bud patterning or the elongation of the long bones. We will also apply the lessons that have been learned from embryos to how growth could be regulated in regenerating limb structures and outline the challenges that are unique to regenerating animals.
Collapse
|
7
|
Chen Q, Yao Y, Chen K, Chen X, Li B, Li R, Mo L, Hu W, Zhang M, Wang Z, Wu Y, Wu Y, Liu F. Aberrant activation of TGF-β1 induces high bone turnover via Rho GTPases-mediated cytoskeletal remodeling in Camurati-Engelmann disease. Front Endocrinol (Lausanne) 2022; 13:913979. [PMID: 36325441 PMCID: PMC9621586 DOI: 10.3389/fendo.2022.913979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
In the adult skeleton, the bone remodeling process involves a dynamic coordination between osteoblasts and osteoclasts, which is disrupted in diseases with high bone turnover rates and dysregulated transforming growth factor beta 1 (TGF-β1). However, little is known about how TGF-β1 signaling mediates bone resorption. Here, we described a pedigree with a heterozygous variant in TGF-β1 (R218C) that resulted in aberrant activation of TGF-β1 through an activating mechanism that caused Camurati-Engelmann disease (CED). We showed that CED patients have high levels of active Rho GTPases and the migration-related proteins Integrin β1 and Integrin β3 in their peripheral blood. HEK293T cells transfected with a plasmid encoding this mutant expressed high levels of TGF-β1 and active Rho GTPases. Furthermore, activation of Rho by TGF-β1 increased osteoclast formation and bone resorption, with increased migration of pre-osteoclasts, as well as cytoskeletal remodeling of pre-osteoclasts and mature osteoclasts. Importantly, pharmacological inhibition of Rho GTPases effectively rescued hyperactive TGF-β1-induced osteoclastogenesis in vitro. Overall, we propose that Rho GTPases mediate TGF-β1-induced osteoclastogenesis and suggest that Rho-TGF-β1 crosstalk is associated with high bone turnover in CED.
Collapse
Affiliation(s)
- Qi Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi’an, China
| | - Yan Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi’an, China
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan’an, China
| | - Kun Chen
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, School of Basic Medicine, Air Force Medical University, Xi’an, China
| | - Xihui Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi’an, China
| | - Bowen Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi’an, China
| | - Rui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi’an, China
| | - Lidangzhi Mo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi’an, China
| | - Weihong Hu
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan’an, China
| | - Mengjie Zhang
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan’an, China
| | - Zhen Wang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Yaoping Wu
- Department of Orthopedics, The First Affiliated Hospital of Air Force Medical University, Xi’an, China
- *Correspondence: Fangfang Liu, ; Yuanming Wu, ; Yaoping Wu,
| | - Yuanming Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi’an, China
- *Correspondence: Fangfang Liu, ; Yuanming Wu, ; Yaoping Wu,
| | - Fangfang Liu
- Department of Neurobiology, School of Basic Medicine, Air Force Medical University, Xi’an, China
- *Correspondence: Fangfang Liu, ; Yuanming Wu, ; Yaoping Wu,
| |
Collapse
|
8
|
Liang H, Jiajue R, Qi W, Liu W, Chi Y, Jiang Y, Wang O, Li M, Xing X, Xia W. Clinical characteristics and the influence of rs1800470 in patients with Camurati-Engelmann disease. Front Endocrinol (Lausanne) 2022; 13:1041061. [PMID: 36339419 PMCID: PMC9631481 DOI: 10.3389/fendo.2022.1041061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Camurati-Engelmann disease (CED) is a sclerosing bone dysplasia caused by transforming growth factor β1 (TGFB1) gene variants. OBJECTIVE We aim to summarize the clinical characteristics and the efficacy of glucocorticoids in 14 individuals with CED, and explore the correlation between the phenotype and the SNP of rs1800470 (c.29C>T). METHODS Clinical, biochemical, radiological, and therapeutic data were collected from 14 patients. DNA was extracted for TGFB1 variants detection by Sanger sequencing. RESULTS The median onset and record age were 3.0 and 16.1 years, respectively. All patients manifested bone pain and decreased subcutaneous fat tissue. Inflammatory markers increased in over 60% of patients, and the median erythrocyte sedimentation rate (ESR) was 1.40 (0.50~3.67) of the upper limit of normal (ULN), and the median high sensitivity C reactive protein (hsCRP) was 1.71 (0.48~12.56) of ULN. There was a positive correlation between ESR and hsCRP (rs=0.806, p=0.003). Both ESR and hsCRP were negatively correlated with the levels of hemoglobin (HGB), calcium, and creatinine, but positively correlated with the level of alkaline phosphatase. Four known variants of TGFB1 were identified, including p.Tyr171Cys, p.Arg218Cys, p.Arg218His, and p.Cys225Arg. Moreover, 35.7% and 28.6% of them carried the heterozygous and homozygous SNP of c.29C>T, called C/T and T/T groups, respectively, but 35.7% of them were without c.29C>T (C/C group). The onset age, anthropometric data, percentages of different clinical manifestations, and biochemical parameters were comparable among the three groups. But there were increasing trends in levels of HGB and calcium and decreasing trends in ESR and hsCRP among C/C, C/T, and T/T groups in turn. Glucocorticoid improves the two inflammatory markers among CED patients. CONCLUSION The phenotype of CED is highly heterogeneous. There is no clear genotype-phenotype correlation, but it seems to have better trends of biochemical parameters in patients with CED carrying the T allele of rs1800470.
Collapse
|
9
|
Isojima T, Sims NA. Cortical bone development, maintenance and porosity: genetic alterations in humans and mice influencing chondrocytes, osteoclasts, osteoblasts and osteocytes. Cell Mol Life Sci 2021; 78:5755-5773. [PMID: 34196732 PMCID: PMC11073036 DOI: 10.1007/s00018-021-03884-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/06/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Cortical bone structure is a crucial determinant of bone strength, yet for many years studies of novel genes and cell signalling pathways regulating bone strength have focused on the control of trabecular bone mass. Here we focus on mechanisms responsible for cortical bone development, growth, and degeneration, and describe some recently described genetic-driven modifications in humans and mice that reveal how these processes may be controlled. We start with embryonic osteogenesis of preliminary bone structures preceding the cortex and describe how this structure consolidates then matures to a dense, vascularised cortex containing an increasing proportion of lamellar bone. These processes include modelling-induced, and load-dependent, asymmetric cortical expansion, which enables the cortex's transition from a highly porous woven structure to a consolidated and thickened highly mineralised lamellar bone structure, infiltrated by vascular channels. Sex-specific differences emerge during this process. With aging, the process of consolidation reverses: cortical pores enlarge, leading to greater cortical porosity, trabecularisation and loss of bone strength. Each process requires co-ordination between bone formation, bone mineralisation, vascularisation, and bone resorption, with a need for locational-, spatial- and cell-specific signalling pathways to mediate this co-ordination. We will discuss these processes, and a number of cell-signalling pathways identified in both murine and human genetic studies to regulate cortical bone mass, including signalling through gp130, STAT3, PTHR1, WNT16, NOTCH, NOTUM and sFRP4.
Collapse
Affiliation(s)
- Tsuyoshi Isojima
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, 3122, Australia
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, 3122, Australia.
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia.
| |
Collapse
|
10
|
Schurman CA, Verbruggen SW, Alliston T. Disrupted osteocyte connectivity and pericellular fluid flow in bone with aging and defective TGF-β signaling. Proc Natl Acad Sci U S A 2021; 118:e2023999118. [PMID: 34161267 PMCID: PMC8237574 DOI: 10.1073/pnas.2023999118] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Skeletal fragility in the elderly does not simply result from a loss of bone mass. However, the mechanisms underlying the concurrent decline in bone mass, quality, and mechanosensitivity with age remain unclear. The important role of osteocytes in these processes and the age-related degeneration of the intricate lacunocanalicular network (LCN) in which osteocytes reside point to a primary role for osteocytes in bone aging. Since LCN complexity severely limits experimental dissection of these mechanisms in vivo, we used two in silico approaches to test the hypothesis that LCN degeneration, due to aging or an osteocyte-intrinsic defect in transforming growth factor beta (TGF-β) signaling (TβRIIocy-/-), is sufficient to compromise essential osteocyte responsibilities of mass transport and exposure to mechanical stimuli. Using reconstructed confocal images of bone with fluorescently labeled osteocytes, we found that osteocytes from aged and TβRIIocy-/- mice had 33 to 45% fewer, and more tortuous, canaliculi. Connectomic network analysis revealed that diminished canalicular density is sufficient to impair diffusion even with intact osteocyte numbers and overall LCN architecture. Computational fluid dynamics predicts that the corresponding drop in shear stress experienced by aged or TβRIIocy-/- osteocytes is highly sensitive to canalicular surface area but not tortuosity. Simulated expansion of the osteocyte pericellular space to mimic osteocyte perilacunar/canalicular remodeling restored predicted shear stress for aged osteocytes to young levels. Overall, these models show how loss of LCN volume through LCN pruning may lead to impaired fluid dynamics and osteocyte exposure to mechanostimulation. Furthermore, osteocytes emerge as targets of age-related therapeutic efforts to restore bone health and function.
Collapse
Affiliation(s)
- Charles A Schurman
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94143
| | - Stefaan W Verbruggen
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom, E1 4NS
- Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom, S1 3JD
- The Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom, S1 3JD
- Department of Biomedical Engineering, Columbia University in the City of New York, New York, NY 10027
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143;
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94143
| |
Collapse
|
11
|
Taylor AJ, Runner RP, Longjohn DB, Najibi S. Anterior Total Hip Arthroplasty With Bulk Femoral Head Autograft in a Patient With Camurati-Engelmann Disease. Arthroplast Today 2021; 8:204-210. [PMID: 33937459 PMCID: PMC8076616 DOI: 10.1016/j.artd.2021.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/05/2022] Open
Abstract
Camurati-Engelmann disease (CED) is an extremely rare, sclerosing bone disorder of intramedullary ossification with only 300 reported cases worldwide. The pathogenesis is related to activating mutations in transforming growth factor beta 1, which results in bilateral, symmetric hyperostosis affecting primarily the diaphysis of long bones. Despite effective pharmacological treatment options, the diagnosis of CED is problematic owning to its rarity and variability of clinical presentation. We present a patient with known CED with advanced early hip osteoarthritis, secondary to underlying hip dysplasia, for which she underwent a successful total hip arthroplasty via a direct anterior approach with the use of bulk femoral head autograft to reconstruct her native acetabulum.
Collapse
Affiliation(s)
- Adam J Taylor
- Department of Orthopaedic Surgery, Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA
| | - Robert P Runner
- Department of Orthopaedic Surgery, Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA
| | - Donald B Longjohn
- Department of Orthopaedic Surgery, Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA.,Department of Orthopaedic Surgery, Keck Medical School of University of Southern California, Los Angeles, CA, USA
| | - Soheil Najibi
- Department of Orthopaedic Surgery, Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA
| |
Collapse
|
12
|
Alcorta-Sevillano N, Macías I, Infante A, Rodríguez CI. Deciphering the Relevance of Bone ECM Signaling. Cells 2020; 9:E2630. [PMID: 33297501 PMCID: PMC7762413 DOI: 10.3390/cells9122630] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Bone mineral density, a bone matrix parameter frequently used to predict fracture risk, is not the only one to affect bone fragility. Other factors, including the extracellular matrix (ECM) composition and microarchitecture, are of paramount relevance in this process. The bone ECM is a noncellular three-dimensional structure secreted by cells into the extracellular space, which comprises inorganic and organic compounds. The main inorganic components of the ECM are calcium-deficient apatite and trace elements, while the organic ECM consists of collagen type I and noncollagenous proteins. Bone ECM dynamically interacts with osteoblasts and osteoclasts to regulate the formation of new bone during regeneration. Thus, the composition and structure of inorganic and organic bone matrix may directly affect bone quality. Moreover, proteins that compose ECM, beyond their structural role have other crucial biological functions, thanks to their ability to bind multiple interacting partners like other ECM proteins, growth factors, signal receptors and adhesion molecules. Thus, ECM proteins provide a complex network of biochemical and physiological signals. Herein, we summarize different ECM factors that are essential to bone strength besides, discussing how these parameters are altered in pathological conditions related with bone fragility.
Collapse
Affiliation(s)
| | | | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, Barakaldo, 48903 Bizkaia, Spain; (N.A.-S.); (I.M.)
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, Barakaldo, 48903 Bizkaia, Spain; (N.A.-S.); (I.M.)
| |
Collapse
|
13
|
Camurati-Engelmann disease: New clinical insights in an Egyptian case report. J Orthop Sci 2020; 25:529-532. [PMID: 28943142 DOI: 10.1016/j.jos.2017.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 01/15/2023]
|
14
|
Stachowski TR, Snell ME, Snell EH. Structural insights into conformational switching in latency-associated peptide between transforming growth factor β-1 bound and unbound states. IUCRJ 2020; 7:238-252. [PMID: 32148852 PMCID: PMC7055372 DOI: 10.1107/s205225251901707x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Transforming growth factor β-1 (TGFβ-1) is a secreted signalling protein that directs many cellular processes and is an attractive target for the treatment of several diseases. The primary endogenous activity regulatory mechanism for TGFβ-1 is sequestration by its pro-peptide, latency-associated peptide (LAP), which sterically prohibits receptor binding by caging TGFβ-1. As such, recombinant LAP is promising as a protein-based therapeutic for modulating TGFβ-1 activity; however, the mechanism of binding is incompletely understood. Comparison of the crystal structure of unbound LAP (solved here to 3.5 Å resolution) with that of the bound complex shows that LAP is in a more open and extended conformation when unbound to TGFβ-1. Analysis suggests a mechanism of binding TGFβ-1 through a large-scale conformational change that includes contraction of the inter-monomer interface and caging by the 'straight-jacket' domain that may occur in partnership through a loop-to-helix transition in the core jelly-roll fold. This conformational change does not appear to include a repositioning of the integrin-binding motif as previously proposed. X-ray scattering-based modelling supports this mechanism and reveals possible orientations and ensembles in solution. Although native LAP is heavily glycosylated, solution scattering experiments show that the overall folding and flexibility of unbound LAP are not influenced by glycan modification. The combination of crystallography, solution scattering and biochemical experiments reported here provide insight into the mechanism of LAP sequestration of TGFβ-1 that is of fundamental importance for therapeutic development.
Collapse
Affiliation(s)
- Timothy R. Stachowski
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
- Cell Stress Biology, Roswell Park Comprehensive Cancer Center, 665 Elm Street, Buffalo, NY 14203, USA
| | - Mary E. Snell
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Edward H. Snell
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
- Materials Design and Innovation, State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203, USA
| |
Collapse
|
15
|
Zhang P, Zhang H, Lin J, Xiao T, Xu R, Fu Y, Zhang Y, Du Y, Cheng J, Jiang H. Insulin impedes osteogenesis of BMSCs by inhibiting autophagy and promoting premature senescence via the TGF-β1 pathway. Aging (Albany NY) 2020; 12:2084-2100. [PMID: 32017705 PMCID: PMC7041775 DOI: 10.18632/aging.102723] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
The dysfunction of bone marrow stromal cells (BMSCs) may be a core factor in Type 2 diabetes mellitus (T2DM) associated osteoporosis. However, the underlying mechanism is not well understood. Here, we delineated the critical role of insulin impeding osteogenesis of BMSCs in T2DM. Compared with BMSCs from healthy people (H-BMSCs), BMSCs from T2DM patient (DM-BMSCs) showed decreased osteogenic differentiation and autophagy level, and increased senescent phenotype. H-BMSCs incubated in hyperglycemic and hyperinsulinemic conditions similarly showed these phenotypes of DM-BMSCs. Notably, enhanced TGF-β1 expression was detected not only in DM-BMSCs and high-glucose and insulin-treated H-BMSCs, but also in bone callus of streptozocin-induced diabetic rats. Moreover, inhibiting TGF-β1 signaling not only enhanced osteogenic differentiation and autophagy level of DM-BMSCs, but also delayed senescence of DM-BMSCs, as well as promoted mandible defect healing of diabetic rats. Finally, we further verified that it was TGF-β receptor II (TβRII), not TβRI, markedly increased in both DM-BMSCs and insulin-treated H-BMSCs. Our data revealed that insulin impeded osteogenesis of BMSCs by inhibiting autophagy and promoting premature senescence, which it should be responsible for T2DM-induced bone loss, at least in part. These findings suggest that inhibiting TGF-β1 pathway may be a potential therapeutic target for T2DM associated bone disorders.
Collapse
Affiliation(s)
- Ping Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hengguo Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Jialin Lin
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Tao Xiao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Rongyao Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yu Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yuchao Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yifei Du
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hongbing Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
16
|
Ge DH, Yu S, Ziegler JD, Schwarzkopf R. Total Hip Arthroplasty in a Patient with Camurati-Engelmann Disease: A Case Report. JBJS Case Connect 2019; 8:e45. [PMID: 29952779 DOI: 10.2106/jbjs.cc.17.00286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CASE We review the case of a 44-year-old man with Camurati-Engelmann disease, who presented with chronic right hip pain that did not improve following intra-articular hip injections. He was functionally debilitated because of the worsening pain. Routine radiographs demonstrated severe right hip osteoarthritis and severe diaphyseal sclerosis of the femur. To address the narrowed medullary cavity, appropriate reaming of the diaphysis and broaching to fill the metaphysis were performed. The patient underwent an uncemented total hip arthroplasty that resulted in an excellent recovery with no complications. CONCLUSION Uncemented total hip arthroplasty serves as a good option for patients with hip osteoarthritis secondary to Camurati-Engelmann disease. Anticipation of potential operative challenges is the key to avoiding complications and achieving an optimal, durable outcome.
Collapse
Affiliation(s)
- David H Ge
- Division of Adult Reconstruction, Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, New York, NY
| | - Stephen Yu
- Division of Adult Reconstruction, Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, New York, NY
| | - Jacob D Ziegler
- Department of Orthopaedic Surgery, Mayo Clinic Health System, Mankato, Minnesota
| | - Ran Schwarzkopf
- Division of Adult Reconstruction, Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, New York, NY
| |
Collapse
|
17
|
Van Hul W, Boudin E, Vanhoenacker FM, Mortier G. Camurati-Engelmann Disease. Calcif Tissue Int 2019; 104:554-560. [PMID: 30721323 DOI: 10.1007/s00223-019-00532-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Camurati-Engelmann disease or progressive diaphyseal dysplasia is a rare autosomal dominant sclerosing bone dysplasia. Mainly the skull and the diaphyses of the long tubular bones are affected. Clinically, the patients suffer from bone pain, easy fatigability, and decreased muscle mass and weakness in the proximal parts of the lower limbs resulting in gait disturbances. The disease-causing mutations are located within the TGFβ-1 gene and expected to or thought to disrupt the binding between TGFβ1 and its latency-associated peptide resulting in an increased signaling of the pathway and subsequently accelerated bone turnover. In preclinical studies, it was shown that targeting the type I receptor ameliorates the high bone turnover. In patients, treatment options are currently mostly limited to corticosteroids that may relieve the pain, and improve the muscle weakness and fatigue. In this review, the clinical and radiological characteristics as well as the molecular genetics of this condition are discussed.
Collapse
Affiliation(s)
- Wim Van Hul
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43, 2650, Edegem, Belgium.
| | - Eveline Boudin
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Filip M Vanhoenacker
- AZ Sint-Maarten, Antwerp University Hospital and Ghent University, Mechelen, Belgium
| | - Geert Mortier
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
18
|
Xu X, Zheng L, Yuan Q, Zhen G, Crane JL, Zhou X, Cao X. Transforming growth factor-β in stem cells and tissue homeostasis. Bone Res 2018; 6:2. [PMID: 29423331 PMCID: PMC5802812 DOI: 10.1038/s41413-017-0005-4] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/12/2017] [Accepted: 11/15/2017] [Indexed: 02/05/2023] Open
Abstract
TGF-β 1-3 are unique multi-functional growth factors that are only expressed in mammals, and mainly secreted and stored as a latent complex in the extracellular matrix (ECM). The biological functions of TGF-β in adults can only be delivered after ligand activation, mostly in response to environmental perturbations. Although involved in multiple biological and pathological processes of the human body, the exact roles of TGF-β in maintaining stem cells and tissue homeostasis have not been well-documented until recent advances, which delineate their functions in a given context. Our recent findings, along with data reported by others, have clearly shown that temporal and spatial activation of TGF-β is involved in the recruitment of stem/progenitor cell participation in tissue regeneration/remodeling process, whereas sustained abnormalities in TGF-β ligand activation, regardless of genetic or environmental origin, will inevitably disrupt the normal physiology and lead to pathobiology of major diseases. Modulation of TGF-β signaling with different approaches has proven effective pre-clinically in the treatment of multiple pathologies such as sclerosis/fibrosis, tumor metastasis, osteoarthritis, and immune disorders. Thus, further elucidation of the mechanisms by which TGF-β is activated in different tissues/organs and how targeted cells respond in a context-dependent way can likely be translated with clinical benefits in the management of a broad range of diseases with the involvement of TGF-β.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Gehua Zhen
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Janet L. Crane
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xu Cao
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
19
|
MacFarlane EG, Haupt J, Dietz HC, Shore EM. TGF-β Family Signaling in Connective Tissue and Skeletal Diseases. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022269. [PMID: 28246187 DOI: 10.1101/cshperspect.a022269] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transforming growth factor β (TGF-β) family of signaling molecules, which includes TGF-βs, activins, inhibins, and numerous bone morphogenetic proteins (BMPs) and growth and differentiation factors (GDFs), has important functions in all cells and tissues, including soft connective tissues and the skeleton. Specific TGF-β family members play different roles in these tissues, and their activities are often balanced with those of other TGF-β family members and by interactions with other signaling pathways. Perturbations in TGF-β family pathways are associated with numerous human diseases with prominent involvement of the skeletal and cardiovascular systems. This review focuses on the role of this family of signaling molecules in the pathologies of connective tissues that manifest in rare genetic syndromes (e.g., syndromic presentations of thoracic aortic aneurysm), as well as in more common disorders (e.g., osteoarthritis and osteoporosis). Many of these diseases are caused by or result in pathological alterations of the complex relationship between the TGF-β family of signaling mediators and the extracellular matrix in connective tissues.
Collapse
Affiliation(s)
- Elena Gallo MacFarlane
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Julia Haupt
- Department of Orthopedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,Howard Hughes Medical Institute, Bethesda, Maryland 21205
| | - Eileen M Shore
- Department of Orthopedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
20
|
Krela-Kaźmierczak I, Michalak M, Wawrzyniak A, Szymczak A, Eder P, Łykowska-Szuber L, Kaczmarek-Ryś M, Drwęska-Matelska N, Skrzypczak-Zielińska M, Linke K, Słomski R. The c.29T>C polymorphism of the transforming growth factor beta-1 (TGFB1) gene, bone mineral density and the occurrence of low-energy fractures in patients with inflammatory bowel disease. Mol Biol Rep 2017; 44:455-461. [PMID: 28993955 DOI: 10.1007/s11033-017-4131-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 09/19/2017] [Indexed: 01/12/2023]
Abstract
Gastrointestinal tract conditions are frequently associated with low bone mineral density and increased risk of fractures due to osteoporosis, the latter concerning particularly inflammatory bowel disease (IBD) patients. One of the candidate genes involved in osteoporosis is the transforming growth factor beta-1 (TGFB1) whose polymorphisms may be responsible for the development of this disease. The aim of this study was to analyse the frequency of TGFB1 polymorphic variants and determine the association between the c.29T>C TGFB1 polymorphism, and bone mineral density and fractures in IBD patients. The study subjects included 198 IBD patients [100 suffering from Crohn's disease (CD) and 98 from ulcerative colitis (UC)] and 41 healthy volunteers as a control group. Densitometric bone measurements were obtained using dual energy X-ray absorptiometry. The TGFB1 genotyping was conducted using restriction fragments length polymorphism. We conducted an analysis of genotype distribution's concordance with Hardy-Weinberg equilibrium. We found statistically significant differences in lumbar spine (L2-L4) and femoral neck BMD and T-scores between CD, UC and control subgroups. The distribution of TGFB1 polymorphic variants among CD and UC patients was concordant with Hardy-Weinberg equilibrium. There were no statistically significant differences in densitometric parameters (lumbar spine and femoral neck BMD, T-score, and Z-score) between carriers of different TGFB1 polymorphisms among IBD (CD and UC) patients nor among controls. We have found no statistically significant differences in the prevalence of low-energy fractures between groups of different TGFB1 polymorphic variant carriers. The allele dose effect, recessive effect and dominant effect analysis did not show an association between low-energy fractures and the TGFB1 polymorphisms among CD and UC patients. We have not observed an association between the c.29T>C TGFB1 polymorphic variant and the bone mineral density within the cancellous and cortical bones (L2-L4 and femoral neck, respectively), or the occurrence of fractures among the IBD patients and their family members.
Collapse
Affiliation(s)
- I Krela-Kaźmierczak
- Department of Gastroenterology, Human Nutrition and Internal Diseases, University of Medical Sciences, Przybyszewskiego Street 49, 60-355, Poznan, Poland.
| | - M Michalak
- Department of Computer Science and Statistics, University of Medical Sciences, Poznan, Poland
| | - A Wawrzyniak
- Department of Family Medicine, University of Medical Sciences, Poznan, Poland
| | - A Szymczak
- Department of Gastroenterology, Human Nutrition and Internal Diseases, University of Medical Sciences, Przybyszewskiego Street 49, 60-355, Poznan, Poland
| | - P Eder
- Department of Gastroenterology, Human Nutrition and Internal Diseases, University of Medical Sciences, Przybyszewskiego Street 49, 60-355, Poznan, Poland
| | - L Łykowska-Szuber
- Department of Gastroenterology, Human Nutrition and Internal Diseases, University of Medical Sciences, Przybyszewskiego Street 49, 60-355, Poznan, Poland
| | - M Kaczmarek-Ryś
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznan, Poland
| | | | - M Skrzypczak-Zielińska
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznan, Poland
| | - K Linke
- Department of Gastroenterology, Human Nutrition and Internal Diseases, University of Medical Sciences, Przybyszewskiego Street 49, 60-355, Poznan, Poland
| | - R Słomski
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
21
|
Baroncelli GI, Ferretti E, Pini CM, Toschi B, Consolini R, Bertelloni S. Significant Improvement of Clinical Symptoms, Bone Lesions, and Bone Turnover after Long-Term Zoledronic Acid Treatment in Patients with a Severe Form of Camurati-Engelmann Disease. Mol Syndromol 2017; 8:294-302. [PMID: 29230158 DOI: 10.1159/000479859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2017] [Indexed: 11/19/2022] Open
Abstract
Camurati-Engelmann disease (CED) is an ultrarare autosomal dominant bone dysplasia. Cortical thickening of the diaphyses of the long bones with narrowing of the medullary cavity are associated with bone pain, waddling gait, muscular weakness, easy fatigability, and a marfanoid body habitus. There is no specific treatment for CED. Nonsteroidal anti-inflammatory drugs or glucocorticoids are ineffective in improving bone lesions. A family with a mild to severe form of CED is described. Two patients received long-term bisphosphonate treatment: the 19-year-old female proband was treated with zoledronic acid for 2.2 years; the 4-year-old male proband was treated with neridronic acid for 16 months and with zoledronic acid for an additional 18 months. In both probands, zoledronic acid treatment significantly improved the clinical symptoms, bone lesions, ambulation, and body habitus. Before treatment, both probands showed a marked increase in serum levels of osteocalcin, procollagen type I N-terminal propeptide, and cross-linked carboxyterminal telopeptide of type I collagen, reflecting an increased bone turnover. Bone marker levels returned to their normal values during treatment. Zoledronic acid treatment may be an important therapeutic option in patients with severe CED. Biochemical markers of bone turnover could be considered as surrogate indexes of CED activity.
Collapse
Affiliation(s)
- Giampiero I Baroncelli
- Pediatric Unit, Department of Obstetrics, Gynecology and Pediatrics, University Hospital, Pisa, Italy
| | - Elena Ferretti
- Pediatric Unit, Department of Obstetrics, Gynecology and Pediatrics, University Hospital, Pisa, Italy
| | - Cecilia M Pini
- Pediatric Unit, Department of Obstetrics, Gynecology and Pediatrics, University Hospital, Pisa, Italy
| | - Benedetta Toschi
- Laboratory of Molecular Genetics, Department of Obstetrics, Gynecology and Pediatrics, University Hospital, Pisa, Italy
| | - Rita Consolini
- Pediatric Unit, Department of Obstetrics, Gynecology and Pediatrics, University Hospital, Pisa, Italy
| | - Silvano Bertelloni
- Pediatric Unit, Department of Obstetrics, Gynecology and Pediatrics, University Hospital, Pisa, Italy
| |
Collapse
|
22
|
Xie P, Huang JM, Li HL, Huang XJ, Wei LG. Camurati-Engelmann disease-a rare cause of tetany identified on bone scintigraphy: A case report. Medicine (Baltimore) 2017; 96:e7141. [PMID: 28682867 PMCID: PMC5502140 DOI: 10.1097/md.0000000000007141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Camurati-Engelmann disease (i.e., progressive diaphyseal dysplasia) is an extremely rare autosomal dominant bone disorder. The most common clinical manifestations were chronic skeletal pain, waddling gait, muscular weakness. PATIENT CONCERNS We described that a 27-year-old male with a 1-year history of intermittent tetany was referred for bone scintigraphy. The whole body bone scan images showed abnormal increased uptake of the tracer in the long bones of the upper and lower extremities as well as in the skull. DIAGNOSES Combined the family history, the findings of the images and the genetic study, the diagnosis of Camurati-Engelmann disease was confirmed. INTERVENTIONS AND OUTCOMES The patient responded well to the treatment of calcium gluconate. LESSONS Bone scintigraphy would be helpful in the diagnosis and assessing the severity of Camurati-Engelmann disease.
Collapse
Affiliation(s)
- Peng Xie
- Department of Nuclear Medicine, The Third Hospital, Hebei Medical University
| | - Jian-Min Huang
- Department of Nuclear Medicine, The Third Hospital, Hebei Medical University
| | - Huan-Li Li
- Department of Ophthalmology, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Xiao-Jie Huang
- Department of Nuclear Medicine, The Third Hospital, Hebei Medical University
| | - Ling-Ge Wei
- Department of Nuclear Medicine, The Third Hospital, Hebei Medical University
| |
Collapse
|
23
|
Ayerst BI, Merry CLR, Day AJ. The Good the Bad and the Ugly of Glycosaminoglycans in Tissue Engineering Applications. Pharmaceuticals (Basel) 2017; 10:E54. [PMID: 28608822 PMCID: PMC5490411 DOI: 10.3390/ph10020054] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022] Open
Abstract
High sulfation, low cost, and the status of heparin as an already FDA- and EMA- approved product, mean that its inclusion in tissue engineering (TE) strategies is becoming increasingly popular. However, the use of heparin may represent a naïve approach. This is because tissue formation is a highly orchestrated process, involving the temporal expression of numerous growth factors and complex signaling networks. While heparin may enhance the retention and activity of certain growth factors under particular conditions, its binding 'promiscuity' means that it may also inhibit other factors that, for example, play an important role in tissue maintenance and repair. Within this review we focus on articular cartilage, highlighting the complexities and highly regulated processes that are involved in its formation, and the challenges that exist in trying to effectively engineer this tissue. Here we discuss the opportunities that glycosaminoglycans (GAGs) may provide in advancing this important area of regenerative medicine, placing emphasis on the need to move away from the common use of heparin, and instead focus research towards the utility of specific GAG preparations that are able to modulate the activity of growth factors in a more controlled and defined manner, with less off-target effects.
Collapse
Affiliation(s)
- Bethanie I Ayerst
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| | - Catherine L R Merry
- Stem Cell Glycobiology Group, Wolfson Centre for Stem Cells, Tissue Engineering & Modelling (STEM), Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| |
Collapse
|
24
|
Ichimura S, Sasaki S, Murata T, Fukumura R, Gondo Y, Ikegawa S, Furuichi T. An ENU-induced p.C225S missense mutation in the mouse Tgfb1 gene does not cause Camurati-Engelmann disease-like skeletal phenotypes. Exp Anim 2016; 66:137-144. [PMID: 27928112 PMCID: PMC5411300 DOI: 10.1538/expanim.16-0085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Camurati-Engelmann disease (CED) is a rare sclerosing bone disorder in humans with
autosomal dominant inheritance. Mutations in the gene (TGFB1) that
encodes transforming growth factor-β1 (TGF-β1) are causative for CED. TGF-β1 signaling is
enhanced by the CED-causing mutations. In this study, we performed Tgfb1
mutation screening in an ENU-mutagenized mouse genomic DNA library. We identified a
missense mutation in which cysteine was substituted by serine at position 225 (p.C225S),
that corresponded to the CED-causing mutation (p.C225R). TGF-β1 mutant protein carrying
p.C225S was secreted normally into the extracellular space. Reporter gene assays showed
that the p.C225S mutants enhanced TGF-β signaling at the same level as p.C225R mutants. We
generated p.C225S homozygous mice and confirmed that the mature TGF-β1 levels in the
culture supernatants of the calvarial cells from the homozygotes were significantly higher
than those from wild-type mice. Although the skull and femur are sclerotic in CED, these
phenotypes were not observed in p.C225S homozygous mice. These results suggest that human
and mouse bone tissue react differently to TGF-β1. These findings are useful to
pharmacological studies using mouse models in developing drugs that will target TGF-β
signaling.
Collapse
Affiliation(s)
- Satoki Ichimura
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Shun Sasaki
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Takuya Murata
- Mutagenesis and Genomics Team, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Ryutaro Fukumura
- Mutagenesis and Genomics Team, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Yoichi Gondo
- Mutagenesis and Genomics Team, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tatsuya Furuichi
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
25
|
Jiajue R, Wu B, Jiang Y, Wang O, Li M, Xing X, Xia W. Mild Camurati‑Engelamann disease presenting with exophthalmos as the first and only manifestation: A case report. Mol Med Rep 2016; 14:2710-6. [PMID: 27484238 DOI: 10.3892/mmr.2016.5548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 04/07/2016] [Indexed: 11/06/2022] Open
Abstract
Camurati-Engelmann disease (CED; MIM 131300), or progressive diaphyseal dysplasia, is a rare autosomal dominant bone disease, which is caused by mutations in the transforming growth factor‑β1 (TGFβ1) gene on chromosome 19q13.1‑13.3. Extremely variable penetrance has been reported to be associated with CED, the most common features of which are limb pain, waddling gait and muscle weakness. The present study reported on a consanguineous Chinese family with one affected individual that initially presented with exophthalmos, which has not previously been reported as an initial manifestation of CED. The proband was a 22-year-old woman that presented with progressive proptosis. Except for increased serum levels of alkaline phosphatase and C‑terminal telopeptide of type I collagen, no other biochemical abnormalities were detected. Whole‑body radiological and bone scintigraphic investigations revealed that hyperostosis and sclerosis predominantly affected the cranial bones, including the skull base, and only mildly affected the long bones. A heterozygous mutation involving a G to A transition at the cDNA position +653 of TGFβ1 was detected in the patient only, but not in her family members, by automated DNA sequencing using an ABI DNA sequencer (Model 377). Based on the clinical, biochemical, radiological and genetic findings, a diagnosis of CED was confirmed. Considering the phenotypic variability associated with CED and the unique manifestations of the patient described in the present study, CED should be taken into account regarding the differential diagnosis of exophthalmos.
Collapse
Affiliation(s)
- Ruizhi Jiajue
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Bo Wu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| |
Collapse
|
26
|
Robertson IB, Rifkin DB. Regulation of the Bioavailability of TGF-β and TGF-β-Related Proteins. Cold Spring Harb Perspect Biol 2016; 8:8/6/a021907. [PMID: 27252363 DOI: 10.1101/cshperspect.a021907] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The bioavailability of members of the transforming growth factor β (TGF-β) family is controlled by a number of mechanisms. Bona fide TGF-β is sequestered into the matrix in a latent state and must be activated before it can bind to its receptors. Here, we review the molecules and mechanisms that regulate the bioavailability of TGF-β and compare these mechanisms with those used to regulate other TGF-β family members. We also assess the physiological significance of various latent TGF-β activators, as well as other extracellular modulators of TGF-β family signaling, by examining the available in vivo data from knockout mouse models and other biological systems.
Collapse
Affiliation(s)
- Ian B Robertson
- Departments of Cell Biology, New York University School of Medicine, New York, New York 10016
| | - Daniel B Rifkin
- Departments of Cell Biology, New York University School of Medicine, New York, New York 10016 Departments of Medicine, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
27
|
Flanagan-Steet H, Aarnio M, Kwan B, Guihard P, Petrey A, Haskins M, Blanchard F, Steet R. Cathepsin-Mediated Alterations in TGFß-Related Signaling Underlie Disrupted Cartilage and Bone Maturation Associated With Impaired Lysosomal Targeting. J Bone Miner Res 2016; 31:535-48. [PMID: 26404503 PMCID: PMC4808492 DOI: 10.1002/jbmr.2722] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 11/11/2022]
Abstract
Hypersecretion of acid hydrolases is a hallmark feature of mucolipidosis II (MLII), a lysosomal storage disease caused by loss of carbohydrate-dependent lysosomal targeting. Inappropriate extracellular action of these hydrolases is proposed to contribute to skeletal pathogenesis, but the mechanisms that connect hydrolase activity to the onset of disease phenotypes remain poorly understood. Here we link extracellular cathepsin K activity to abnormal bone and cartilage development in MLII animals by demonstrating that it disrupts the balance of TGFß-related signaling during chondrogenesis. TGFß-like Smad2,3 signals are elevated and BMP-like Smad1,5,8 signals reduced in both feline and zebrafish MLII chondrocytes and osteoblasts, maintaining these cells in an immature state. Reducing either cathepsin K activity or expression of the transcriptional regulator Sox9a in MLII zebrafish significantly improved phenotypes. We further identify components of the large latent TGFß complex as novel targets of cathepsin K at neutral pH, providing a possible mechanism for enhanced Smad2,3 activation in vivo. These findings highlight the complexity of the skeletal disease associated with MLII and bring new insight to the role of secreted cathepsin proteases in cartilage development and growth factor regulation.
Collapse
Affiliation(s)
| | - Megan Aarnio
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Brian Kwan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | | | - Aaron Petrey
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Mark Haskins
- Departments of Pathology and Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | | | - Richard Steet
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
28
|
Mechanobiology of TGFβ signaling in the skeleton. Matrix Biol 2016; 52-54:413-425. [PMID: 26877077 DOI: 10.1016/j.matbio.2016.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/12/2022]
Abstract
Physical and biochemical cues play fundamental roles in the skeleton at both the tissue and cellular levels. The precise coordination of these cues is essential for skeletal development and homeostasis, and disruption of this coordination can drive disease progression. The growth factor TGFβ is involved in both the regulation of and cellular response to the physical microenvironment. It is essential to summarize the current findings regarding the mechanisms by which skeletal cells integrate physical and biochemical cues so that we can identify and address remaining gaps that could ultimately improve skeletal health. In this review, we describe the role of TGFβ in mechanobiological signaling in bone and cartilage at the tissue and cellular levels. We provide detail on how static and dynamic physical cues at the macro-level are transmitted to the micro-level, ultimately leading to regulation at each level of the TGFβ pathway and to cell differentiation. The continued integration of engineering and biological approaches is needed to answer many remaining questions, such as the mechanisms by which cells generate a coordinated response to physical and biochemical cues. We propose one such mechanism, through which the combination of TGFβ and an optimal physical microenvironment leads to synergistic induction of downstream TGFβ signaling.
Collapse
|
29
|
Waning DL, Mohammad KS, Reiken S, Xie W, Andersson DC, John S, Chiechi A, Wright LE, Umanskaya A, Niewolna M, Trivedi T, Charkhzarrin S, Khatiwada P, Wronska A, Haynes A, Benassi MS, Witzmann FA, Zhen G, Wang X, Cao X, Roodman GD, Marks AR, Guise TA. Excess TGF-β mediates muscle weakness associated with bone metastases in mice. Nat Med 2015; 21:1262-1271. [PMID: 26457758 PMCID: PMC4636436 DOI: 10.1038/nm.3961] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 09/02/2015] [Indexed: 12/12/2022]
Abstract
Cancer-associated muscle weakness is a poorly understood phenomenon, and there is no effective treatment. Here we find that seven different mouse models of human osteolytic bone metastases-representing breast, lung and prostate cancers, as well as multiple myeloma-exhibited impaired muscle function, implicating a role for the tumor-bone microenvironment in cancer-associated muscle weakness. We found that transforming growth factor (TGF)-β, released from the bone surface as a result of metastasis-induced bone destruction, upregulated NADPH oxidase 4 (Nox4), resulting in elevated oxidization of skeletal muscle proteins, including the ryanodine receptor and calcium (Ca(2+)) release channel (RyR1). The oxidized RyR1 channels leaked Ca(2+), resulting in lower intracellular signaling, which is required for proper muscle contraction. We found that inhibiting RyR1 leakage, TGF-β signaling, TGF-β release from bone or Nox4 activity improved muscle function in mice with MDA-MB-231 bone metastases. Humans with breast- or lung cancer-associated bone metastases also had oxidized skeletal muscle RyR1 that is not seen in normal muscle. Similarly, skeletal muscle weakness, increased Nox4 binding to RyR1 and oxidation of RyR1 were present in a mouse model of Camurati-Engelmann disease, a nonmalignant metabolic bone disorder associated with increased TGF-β activity. Thus, pathological TGF-β release from bone contributes to muscle weakness by decreasing Ca(2+)-induced muscle force production.
Collapse
Affiliation(s)
- David L Waning
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Khalid S Mohammad
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Helen and Clyde Wu Center for Molecular Cardiology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Wenjun Xie
- Department of Physiology and Cellular Biophysics, Helen and Clyde Wu Center for Molecular Cardiology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Daniel C Andersson
- Department of Physiology and Cellular Biophysics, Helen and Clyde Wu Center for Molecular Cardiology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Sutha John
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Antonella Chiechi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Laura E Wright
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Alisa Umanskaya
- Department of Physiology and Cellular Biophysics, Helen and Clyde Wu Center for Molecular Cardiology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Maria Niewolna
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Trupti Trivedi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sahba Charkhzarrin
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Pooja Khatiwada
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Anetta Wronska
- Department of Physiology and Cellular Biophysics, Helen and Clyde Wu Center for Molecular Cardiology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Ashley Haynes
- Department of Physiology and Cellular Biophysics, Helen and Clyde Wu Center for Molecular Cardiology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Maria Serena Benassi
- Laboratory of Experimental Oncology, Instituto Ortopedico Rizzoli, Bologna, Italy
| | - Frank A Witzmann
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gehua Zhen
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xiao Wang
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - G David Roodman
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Helen and Clyde Wu Center for Molecular Cardiology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Theresa A Guise
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
30
|
Gullard A, Croney CM, Wu X, Mamaeva O, Sohn P, Cao X, MacDougall M. Reduced Dentin Matrix Protein Expression in Camurati-Engelmann Disease Transgenic Mouse Model. J Cell Physiol 2015; 231:1106-13. [PMID: 26427011 DOI: 10.1002/jcp.25207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 11/11/2022]
Abstract
UNLABELLED Overexpression of transforming growth factor-β1 (TGF-β1) has been shown to lead to mineralization defects in both the enamel and dentin layers of teeth. A TGFB1 point mutation (H222D), derived from published cases of Camurati-Engelmann disease (CED), has been shown to constitutively activate TGF-β1, leading to excess bone matrix production. Although CED has been well documented in clinical case reports, there are no published studies on the effect of CED on the dentition. The objective of this study was to determine the dental manifestations of hyperactivated TGF-β1 signaling using an established mouse model of CED-derived TGF-β1 mutation. Murine dental tissues were studied via radiography, micro-CT, immunohistochemistry, and qRT-PCR. Results showed that initial decreased dental mineralized tissue density is resolved. Proliferation assays of incisor pulp and alveolar bone cell cultures revealed that cells from transgenic animals displayed a reduced rate of growth compared to alveolar bone cultures from wild-type mice. TGF-β family gene expression analysis indicated significant fold changes in the expression of Alpl, Bmp2-5, Col-1, -2, -4, and -6, Fgf, Mmp, Runx2, Tgfb3, Tfgbr3, and Vdr genes. Assessment of SIBLINGs revealed downregulation of Ibsp, Dmp1, Dspp, Mepe, and Spp1, as well as reduced staining for BMP-2 and VDR in mesenchymal-derived pulp tissue in CED animals. Treatment of dental pulp cells with recombinant human TGF-β1 resulted in increased SIBLING gene expression. CONCLUSIONS Our results provide in vivo evidence suggesting that TFG-β1 mediates expression of important dentin extracellular matrix components secreted by dental pulp, and when unbalanced, may contribute to abnormal dentin disorders.
Collapse
Affiliation(s)
- Angela Gullard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.,Institute of Oral Health Research, University of Alabama at Birmingham, Birmingham, Alabama
| | - Christina M Croney
- Institute of Oral Health Research, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xiangwei Wu
- Department of Surgery, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Olga Mamaeva
- Institute of Oral Health Research, University of Alabama at Birmingham, Birmingham, Alabama
| | - Philip Sohn
- Institute of Oral Health Research, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Mary MacDougall
- Institute of Oral Health Research, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
31
|
Transforming growth factor Beta family: insight into the role of growth factors in regulation of fracture healing biology and potential clinical applications. Mediators Inflamm 2015; 2015:137823. [PMID: 25709154 PMCID: PMC4325469 DOI: 10.1155/2015/137823] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/09/2014] [Indexed: 01/15/2023] Open
Abstract
The transforming growth factor beta (TGF-β) family forms a group of three isoforms, TGF-β1, TGF-β2, and TGF-β3, with their structure formed by interrelated dimeric polypeptide chains. Pleiotropic and redundant functions of the TGF-β family concern control of numerous aspects and effects of cell functions, including proliferation, differentiation, and migration, in all tissues of the human body. Amongst many cytokines and growth factors, the TGF-β family is considered a group playing one of numerous key roles in control of physiological phenomena concerning maintenance of metabolic homeostasis in the bone tissue. By breaking the continuity of bone tissue, a spread-over-time and complex bone healing process is initiated, considered a recapitulation of embryonic intracartilaginous ossification. This process is a cascade of local and systemic phenomena spread over time, involving whole cell lineages and various cytokines and growth factors. Numerous in vivo and in vitro studies in various models analysing cytokines and growth factors' involvement have shown that TGF-β has a leading role in the fracture healing process. This paper sums up current knowledge on the basis of available literature concerning the role of the TGF-β family in the fracture healing process.
Collapse
|
32
|
Simsek-Kiper PO, Dikoglu E, Campos-Xavier B, Utine GE, Bonafe L, Unger S, Boduroglu K, Superti-Furga A. Positive effects of an angiotensin II type 1 receptor antagonist in Camurati-Engelmann disease: A single case observation. Am J Med Genet A 2014; 164A:2667-71. [DOI: 10.1002/ajmg.a.36692] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/20/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Pelin Ozlem Simsek-Kiper
- Unit of Pediatric Genetics Department of Pediatrics; Hacettepe University Medical Faculty; Ankara Turkey
- Division of Molecular Pediatrics Department of Pediatrics; University of Lausanne, Centre Hospitalier Universitaire Vaudois; Lausanne Switzerland
| | - Esra Dikoglu
- Division of Molecular Pediatrics Department of Pediatrics; University of Lausanne, Centre Hospitalier Universitaire Vaudois; Lausanne Switzerland
| | - Belinda Campos-Xavier
- Division of Molecular Pediatrics Department of Pediatrics; University of Lausanne, Centre Hospitalier Universitaire Vaudois; Lausanne Switzerland
| | - Gulen Eda Utine
- Unit of Pediatric Genetics Department of Pediatrics; Hacettepe University Medical Faculty; Ankara Turkey
| | - Luisa Bonafe
- Division of Molecular Pediatrics Department of Pediatrics; University of Lausanne, Centre Hospitalier Universitaire Vaudois; Lausanne Switzerland
| | - Sheila Unger
- Service of Medical Genetics University of Lausanne; Centre Hospitalier Universitaire Vaudois; Lausanne Switzerland
| | - Koray Boduroglu
- Unit of Pediatric Genetics Department of Pediatrics; Hacettepe University Medical Faculty; Ankara Turkey
| | - Andrea Superti-Furga
- Division of Molecular Pediatrics Department of Pediatrics; University of Lausanne, Centre Hospitalier Universitaire Vaudois; Lausanne Switzerland
| |
Collapse
|
33
|
Waterval JJ, Borra VM, Van Hul W, Stokroos RJ, Manni JJ. Sclerosing bone dysplasias with involvement of the craniofacial skeleton. Bone 2014; 60:48-67. [PMID: 24325978 DOI: 10.1016/j.bone.2013.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 01/13/2023]
Abstract
In this review we provide a complete overview of the existing sclerosing bone dysplasias with craniofacial involvement. Clinical presentation, disease course, the craniofacial symptoms, genetic transmission pattern and pathophysiology are discussed. There is an emphasis on radiologic features with a large collection of CT and MRI images. In previous reviews the craniofacial area of the sclerosing bone dysplasias was underexposed. However, craniofacial symptoms are often the first symptoms to address a physician. The embryology of the skull and skull base is explained and illustrated for a better understanding of the affected areas.
Collapse
Affiliation(s)
- J J Waterval
- Department of Otorhinolaryngology-Head & Neck Surgery, Maastricht University Medical Center, P.O. 5800, 6202AZ Maastricht, The Netherlands.
| | - V M Borra
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43, B-2650 Edegem, Belgium.
| | - W Van Hul
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43, B-2650 Edegem, Belgium.
| | - R J Stokroos
- Department of Otorhinolaryngology-Head & Neck Surgery, Maastricht University Medical Center, P.O. 5800, 6202AZ Maastricht, The Netherlands.
| | - J J Manni
- Department of Otorhinolaryngology-Head & Neck Surgery, Maastricht University Medical Center, P.O. 5800, 6202AZ Maastricht, The Netherlands.
| |
Collapse
|
34
|
Crane JL, Cao X. Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling. J Clin Invest 2014; 124:466-72. [PMID: 24487640 DOI: 10.1172/jci70050] [Citation(s) in RCA: 313] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During bone resorption, abundant factors previously buried in the bone matrix are released into the bone marrow microenvironment, which results in recruitment and differentiation of bone marrow mesenchymal stem cells (MSCs) for subsequent bone formation, temporally and spatially coupling bone remodeling. Parathyroid hormone (PTH) orchestrates the signaling of many pathways that direct MSC fate. The spatiotemporal release and activation of matrix TGF-β during osteoclast bone resorption recruits MSCs to bone-resorptive sites. Dysregulation of TGF-β alters MSC fate, uncoupling bone remodeling and causing skeletal disorders. Modulation of TGF-β or PTH signaling may reestablish coupled bone remodeling and be a potential therapy.
Collapse
|
35
|
Bhadada SK, Sridhar S, Steenackers E, Dhiman V, Mortier G, Bhansali A, Van Hul W. Camurati-Engelmann disease (progressive diaphyseal dysplasia): reports of an Indian kindred. Calcif Tissue Int 2014; 94:240-7. [PMID: 24154985 DOI: 10.1007/s00223-013-9804-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
Camurati-Engelmann disease (CED, OMIM 131300), or progressive diaphyseal dysplasia, is a rare autosomal dominant skeletal dysplasia, caused by mutations in the transforming growth factor-β1 (TGFβ1) gene. We describe the first Indian CED family with genetic confirmation and presenting manifestations. The proband is a 17-year-old woman who presented with lower limb pain and proximal muscle weakness. Skeletal radiographs of the long bones revealed cortical, periosteal, and endosteal thickenings, predominantly affecting the diaphyses of the long bones. On detailed evaluation, there was a strong family history of bone disorder with similar symptoms of pain and radiological findings in several family members. Exon sequencing of the TGFβ1 gene was performed in available family members. Based on clinical and radiographic studies and its familial nature, a diagnosis of CED was made and confirmed by mutation analysis. A heterozygous G to A transition in exon 4 of the TGFβ1 gene (R218H) was detected in 5 out of 10 available family members, including 4 affecteds and 1 asymptomatic individual. Many of our affected individuals responded to glucocorticoids and cortical windowing. CED is a rare genetic disease with variable clinical manifestations and incomplete penetrance. CED needs to be considered in the differential diagnosis of nonspecific limb pain and waddling gait in all young individuals.
Collapse
Affiliation(s)
- Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India,
| | | | | | | | | | | | | |
Collapse
|
36
|
Collet C, Laplanche JL, de Vernejoul MC. Camurati-engelmann disease with obesity in a newly identified family carrying a missense p.Arg156Cys mutation in theTGFB1gene. Am J Med Genet A 2013; 161A:2074-7. [DOI: 10.1002/ajmg.a.36022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 04/01/2013] [Indexed: 11/06/2022]
Affiliation(s)
| | - Jean-Louis Laplanche
- UF de Génétique Moléculaire, Service de Biochimie et de Biologie Moléculaire, pôle B2P, GH Saint-Louis Lariboisière Fernand Widal Inserm U606; Paris; France
| | - Marie-Christine de Vernejoul
- Service de Rhumatologie, GH Saint-Louis Lariboisière Fernand Widal, Paris Diderot Université/Inserm U606; Paris; France
| |
Collapse
|
37
|
Meczekalski B, Czyzyk A, Podfigurna-Stopa A, Rydzewski B, Sroczynski J, Lipinska M, Sokalski J, Krawczynski M, Jamsheer A, Katulski K, Genazzani A. Hypothalamic amenorrhea in a Camurati-Engelmann disease--a case report. Gynecol Endocrinol 2013; 29:511-4. [PMID: 23368730 DOI: 10.3109/09513590.2012.760196] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE A case report of a patient diagnosed with Camurati-Engelmann Disease (CED) in association with the functional hypothalamic amenorrhea disturbances. CED is a very rare genetically determined disorder classified as a type of bone dysplasia. DESIGN Case report. SETTING Department of Gynecological Endocrinology, 3rd grade Medical University Hospital. PATIENT Twenty-one years old female patient with CED admitted to the hospital because of primary amenorrhea. Her history revealed skeletal deformities and hearing impairment. METHODS Clinical examination, ultrasound, laboratory evaluations (including serum gonadotropins (FSH, LH) at basal state and after stimulation with gonadotropin-releasing hormone, serum basal estradiol) radiological studies (X-ray of the head, the lumbar spine and lower extremities; a computed tomography of the head), G-banding karyotype, polymerase chain reaction and DNA sequencing. Hormonal serum evaluations were made using an enzyme-linked immunosorbent assay. The exon 4 of the transforming growth factor beta 1 gene was amplified by a polymerase chain reaction and the product was directly sequenced. RESULTS The hormonal analysis was characteristic for the hypogonadotropic hypogonadism. Radiological and molecular analyses confirmed CED diagnosis. CONCLUSIONS The hypothalamic amenorrhea in a patient with CED may be explained as a consequence of fat hypotrophy and very low body mass index. Therefore, impairment within hypothalamic-pituitary axis in patients with CED should be treated with special attention.
Collapse
Affiliation(s)
- Blazej Meczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wan M, Li C, Zhen G, Jiao K, He W, Jia X, Wang W, Shi C, Xing Q, Chen YF, Jan De Beur S, Yu B, Cao X. Injury-activated transforming growth factor β controls mobilization of mesenchymal stem cells for tissue remodeling. Stem Cells 2013; 30:2498-511. [PMID: 22911900 DOI: 10.1002/stem.1208] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Upon secretion, transforming growth factor β (TGFβ) is maintained in a sequestered state in extracellular matrix as a latent form. The latent TGFβ is considered as a molecular sensor that releases active TGFβ in response to the perturbations of the extracellular matrix at the situations of mechanical stress, wound repair, tissue injury, and inflammation. The biological implication of the temporal discontinuity of TGFβ storage in the matrix and its activation is obscure. Here, using several animal models in which latent TGFβ is activated in vascular matrix in response to injury of arteries, we show that active TGFβ controls the mobilization and recruitment of mesenchymal stem cells (MSCs) to participate in tissue repair and remodeling. MSCs were mobilized into the peripheral blood in response to vascular injury and recruited to the injured sites where they gave rise to both endothelial cells for re-endothelialization and myofibroblastic cells to form thick neointima. TGFβs were activated in the vascular matrix in both rat and mouse models of mechanical injury of arteries. Importantly, the active TGFβ released from the injured vessels is essential to induce the migration of MSCs, and cascade expression of monocyte chemotactic protein-1 stimulated by TGFβ amplifies the signal for migration. Moreover, sustained high levels of active TGFβ were observed in peripheral blood, and at the same time points following injury, Sca1+ CD29+ CD11b- CD45- MSCs, in which 91% are nestin+ cells, were mobilized to peripheral blood and recruited to the remodeling arteries. Intravenously injection of recombinant active TGFβ1 in uninjured mice rapidly mobilized MSCs into circulation. Furthermore, inhibitor of TGFβ type I receptor blocked the mobilization and recruitment of MSCs to the injured arteries. Thus, TGFβ is an injury-activated messenger essential for the mobilization and recruitment of MSCs to participate in tissue repair/remodeling.
Collapse
Affiliation(s)
- Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang C, Zhang BH, Liu YJ, Hu YQ, He JW, Zhang ZL. Transforming growth factor-β1 gene mutations and phenotypes in pediatric patients with Camurati‑Engelmann disease. Mol Med Rep 2013; 7:1695-9. [PMID: 23503840 DOI: 10.3892/mmr.2013.1367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/06/2013] [Indexed: 01/04/2023] Open
Abstract
The aim of the present study was to investigate the clinical characteristics and major causative gene in pediatric patients with Camurati‑Engelmann disease (CED). Biochemical and radiographic examinations, bone scintigraphy and genetic analyses were performed in two affected males and their parents. The two patients experienced waddling gait, muscular weakness and growth developmental delay. X-ray radiography revealed typical fusiform thickening of the diaphyseal portions of the long bones. The abnormal uptake of tracer Tc-99m was visualized in the skull and both sides of the upper humeri, ulnas, radii, femurs and tibias using bone scintigraphy. Serum levels of the bone formation marker procollagen type I N-terminal propeptide (PINP) and the bone resorption marker β‑isomerized C-terminal cross-linked telopeptide of type I collagen (β-CTX) in the 6-year-old patient were significantly increased compared with the normal value range, while only the β-CTX levels were elevated in the 16-year-old patient. A heterozygous missense mutation p.Arg218Cys in exon 4 of the transforming growth factor β1 (TGFβ1) gene was detected in the two patients, while their parents had normal wild‑type genotypes. In conclusion, the p.Arg218Cys mutation was shown to contribute to the clinical phenotypes in two pediatric patients with CED. The results of this study suggest that abnormal bone turnover marker levels, typical radiological findings and mutations in the TGFβ1 gene are three important factors in the diagnosis of sporadic CED cases.
Collapse
Affiliation(s)
- Chun Wang
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetics Research Unit, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | | | | | | | | | | |
Collapse
|
40
|
Tang SY, Alliston T. Regulation of postnatal bone homeostasis by TGFβ. BONEKEY REPORTS 2013; 2:255. [PMID: 24404376 DOI: 10.1038/bonekey.2012.255] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/22/2012] [Indexed: 12/30/2022]
Abstract
Perhaps more so than any other tissue, bone has pivotal mechanical and biological functions. Underlying the ability of bone to execute these functions, whether providing structural support or preserving mineral homeostasis, is the dynamic remodeling of bone matrix. Cells within bone integrate multiple stimuli to balance the deposition and resorption of bone matrix. Transforming growth factor-β (TGFβ) uniquely coordinates bone cell activity to maintain bone homeostasis. TGFβ regulates the differentiation and function of both osteoblasts and osteoclasts, from lineage recruitment to terminal differentiation, to balance bone formation and resorption. TGFβ calibrates the synthesis and material quality of bone matrix and bone's responsiveness to applied mechanical loads. Therefore, by coupling the activity of bone forming and resorbing cells, and by sensing, responding to and defining physical cues, TGFβ integrates physical and biochemical stimuli to maintain bone homeostasis. Disruption of TGFβ signaling has significant consequences on bone mass and quality. Alternatively, TGFβ is a powerful lever that has the potential to yield therapeutic benefit in cases where bone homeostasis needs to be recalibrated.
Collapse
Affiliation(s)
- Simon Y Tang
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St Louis , St Louis, MO, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, School of Medicine, University of California, San Francisco , San Francisco, CA, USA
| |
Collapse
|
41
|
Ihde LL, Forrester DM, Gottsegen CJ, Masih S, Patel DB, Vachon LA, White EA, Matcuk GR. Sclerosing bone dysplasias: review and differentiation from other causes of osteosclerosis. Radiographics 2012; 31:1865-82. [PMID: 22084176 DOI: 10.1148/rg.317115093] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sclerosing bone dysplasias are skeletal abnormalities of varying severity with a wide range of radiologic, clinical, and genetic features. Hereditary sclerosing bone dysplasias result from some disturbance in the pathways involved in osteoblast or osteoclast regulation, leading to abnormal accumulation of bone. Several genes have been discovered that, when disrupted, result in specific types of hereditary sclerosing bone dysplasia (osteopetrosis, pyknodysostosis, osteopoikilosis, osteopathia striata, progressive diaphyseal dysplasia, hereditary multiple diaphyseal sclerosis, hyperostosis corticalis generalisata), many of which exhibit similar pathologic mechanisms involving endochondral or intramembranous ossification and some of which share similar underlying genetic defects. Nonhereditary dysplasias include intramedullary osteosclerosis, melorheostosis, and overlap syndromes, whereas acquired syndromes with increased bone density, which may simulate sclerosing bone dysplasias, include osteoblastic metastases, Paget disease of bone, Erdheim-Chester disease, myelofibrosis, and sickle cell disease. Knowledge of the radiologic appearances, distribution, and associated clinical findings of hereditary and nonhereditary sclerosing bone dysplasias and acquired syndromes with increased bone density is crucial for accurate diagnosis.
Collapse
Affiliation(s)
- Lauren L Ihde
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo St, 2nd Floor Imaging, Los Angeles, CA 90033-5313, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Makanji Y, Walton KL, Chan KL, Gregorevic P, Robertson DM, Harrison CA. Generation of a specific activin antagonist by modification of the activin A propeptide. Endocrinology 2011; 152:3758-68. [PMID: 21750050 DOI: 10.1210/en.2011-1052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Elevated activin A levels in inhibin-deficient mice promote the development of gonadal tumors and induce cachexia by reducing muscle, liver, stomach, and fat mass. Because activin A is an important regulator of tissue growth, inhibiting the actions of this TGFβ family ligand may halt or reverse pathology in diseased tissues. In this study, we modified the activin A propeptide to generate a specific activin antagonist. Propeptides mediate the synthesis and secretion of all TGFβ ligands and, for some family members (e.g. TGFβ1), bind the mature growth factor with high enough affinity to confer latency. By linking the C-terminal region of the TGFβ1 propeptide to the N-terminal region of the activin A propeptide, we generated a chimeric molecule [activin/TGFβ1 propeptide (AT propeptide)] with increased affinity for activin A. The AT propeptide was 30-fold more potent than the activin A propeptide at suppressing activin-induced FSH release by LβT2 pituitary gonadotrope cells. Binding of the AT propeptide to activin A shields the type II receptor binding site, thereby reducing Smad2 phosphorylation and downstream signaling. In comparison with the commonly used activin antagonists, follistatin (IC(50) 0.42 nM), soluble activin type II receptor A-Fc (IC(50) 0.47 nM), and soluble activin type II receptor B-Fc (IC(50) 0.91 nM), the AT propeptide (IC(50) 2.6 nM) was slightly less potent. However, it was more specific, inhibiting activin A and activin B (IC(50) 10.26 nM) but not the closely related ligands, myostatin and growth differentiation factor-11. As such, the AT propeptide represents the first specific activin antagonist, and it should be an effective reagent for blocking activin actions in vivo.
Collapse
Affiliation(s)
- Yogeshwar Makanji
- Prince Henry's Institute of Medical Research, 246 Clayton Road, Clayton VIC 3168, Australia
| | | | | | | | | | | |
Collapse
|
43
|
Whyte MP, Totty WG, Novack DV, Zhang X, Wenkert D, Mumm S. Camurati-Engelmann disease: unique variant featuring a novel mutation in TGFβ1 encoding transforming growth factor beta 1 and a missense change in TNFSF11 encoding RANK ligand. J Bone Miner Res 2011; 26:920-33. [PMID: 21541994 PMCID: PMC3179308 DOI: 10.1002/jbmr.283] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a 32-year-old man and his 59-year-old mother with a unique and extensive variant of Camurati-Engelmann disease (CED) featuring histopathological changes of osteomalacia and alterations within TGFβ1 and TNFSF11 encoding TGFβ1 and RANKL, respectively. He suffered leg pain and weakness since childhood and reportedly grew until his late 20s, reaching 7 feet in height. He had deafness, perforated nasal septum, torus palatinus, disproportionately long limbs with knock-knees, low muscle mass, and pseudoclubbing. Radiographs revealed generalized skeletal abnormalities, including wide bones and cortical and trabecular bone thickening in keeping with CED, except that long bone ends were also affected. Lumbar spine and hip BMD Z-scores were + 7.7 and + 4.4, respectively. Biochemical markers of bone turnover were elevated. Hypocalciuria accompanied low serum 25-hydroxyvitamin D (25[OH]D) levels. Pituitary hypogonadism and low serum insulin-like growth factor (IGF)-1 were present. Karyotype was normal. Despite vitamin D repletion, iliac crest histology revealed severe osteomalacia. Exon 1 of TNFRSF11A (RANK), exons 2, 3, and 4 of LRP5, and all coding exons and adjacent mRNA splice junctions of TNFRSF11B (OPG), SQSTM1 (sequestosome 1), and TNSALP (tissue nonspecific alkaline phosphatase) were intact. His asymptomatic and less dysmorphic 5'11″ mother, also with low serum 25(OH)D, had milder clinical, radiological, biochemical, and histopathological findings. Both individuals were heterozygous for a novel 12-bp duplication (c.27_38dup, p.L10_L13dup) in exon 1 of TGFβ1, predicting four additional leucine residues in the latency-associated-peptide segment of TGFβ1, consistent with CED. The son was also homozygous for a single base transversion in TNFSF11, predicting a nonconservative amino acid change (c.107C > G, p.Pro36Arg) in the intracellular domain of RANKL that was heterozygous in his nonconsanguineous parents. This TNFSF11 variant was not found in the SNP Database, nor in published TNFSF11 association studies, but it occurred in four of the 134 TNFSF11 alleles (3.0%) we tested randomly among individuals without CED. Perhaps the unique phenotype of this CED family is conditioned by altered RANKL activity.
Collapse
Affiliation(s)
- Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO 63131, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Van Hul W. Identification of genetic modifiers of monogenic (bone) diseases: new tools available, but with limitations. J Bone Miner Res 2011; 26:918-9. [PMID: 21541993 DOI: 10.1002/jbmr.391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
45
|
TGFβ: a sleeping giant awoken by integrins. Trends Biochem Sci 2010; 36:47-54. [PMID: 20870411 DOI: 10.1016/j.tibs.2010.08.002] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/19/2010] [Accepted: 08/20/2010] [Indexed: 11/23/2022]
Abstract
Transforming growth factor beta (TGFβ) controls numerous cellular responses, including proliferation, differentiation, apoptosis and migration. This cytokine is produced by many different cell types and has been implicated in the pathogenesis of many diseases, ranging from autoimmune disorders and infectious diseases to fibrosis and cancer. However, TGFβ is always produced as an inactive complex that must be activated to enable binding to its receptor and subsequent function. Recent evidence highlights a crucial role for members of the integrin receptor family in controlling the activation of TGFβ. These pathways are important in human health and disease, and new insights into the biochemical mechanisms that allow integrins to control TGFβ activation could prove useful in the design of therapeutics.
Collapse
|
46
|
Abstract
Osteoporosis is a common disease with a strong genetic component characterized by reduced bone mass, defects in the microarchitecture of bone tissue, and an increased risk of fragility fractures. Twin and family studies have shown high heritability of bone mineral density (BMD) and other determinants of fracture risk such as ultrasound properties of bone, skeletal geometry, and bone turnover. Osteoporotic fractures also have a heritable component, but this reduces with age as environmental factors such as risk of falling come into play. Susceptibility to osteoporosis is governed by many different genetic variants and their interaction with environmental factors such as diet and exercise. Notable successes in identification of genes that regulate BMD have come from the study of rare Mendelian bone diseases characterized by major abnormalities of bone mass where variants of large effect size are operative. Genome-wide association studies have also identified common genetic variants of small effect size that contribute to regulation of BMD and fracture risk in the general population. In many cases, the loci and genes identified by these studies had not previously been suspected to play a role in bone metabolism. Although there has been extensive progress in identifying the genes and loci that contribute to the regulation of BMD and fracture over the past 15 yr, most of the genetic variants that regulate these phenotypes remain to be discovered.
Collapse
Affiliation(s)
- Stuart H Ralston
- Rheumatic Diseases Unit, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom.
| | | |
Collapse
|
47
|
de Vernejoul MC, Kornak U. Heritable sclerosing bone disorders: presentation and new molecular mechanisms. Ann N Y Acad Sci 2010; 1192:269-77. [PMID: 20392246 DOI: 10.1111/j.1749-6632.2009.05244.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sclerosing bone disorders can be subdivided according to their clinical presentation, the primarily affected cell type, and the cellular pathways. Osteoclast-rich osteopetrosis and related disorders have been related in most cases to mutations in genes required for osteoclast function. More recently, osteoclast-poor forms of osteopetrosis have been described as being connected to factors that govern osteoclast differentiation. However, increased bone formation can also cause osteosclerosis. Camurati-Engelman disease and osteopoikilosis are both related transforming growth factor-beta signaling. Rare recessive or dominant sclerosing disorders, such as endosteal hyperostosis, sclerosteosis, van Buchem disease, high bone-mass syndrome, and osteopathia striata, are caused by mutations in genes involved in the Wnt pathway, which regulates osteoblast differentiation. Finally, a third entity, including Ghosal syndrome and pachydermoperiostosis, is related to mutations in genes of the eicosanoid pathway. Clinical aspects and the consequences for our understanding of bone biology are discussed.
Collapse
|
48
|
Walton KL, Makanji Y, Chen J, Wilce MC, Chan KL, Robertson DM, Harrison CA. Two distinct regions of latency-associated peptide coordinate stability of the latent transforming growth factor-beta1 complex. J Biol Chem 2010; 285:17029-37. [PMID: 20308061 DOI: 10.1074/jbc.m110.110288] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-beta1 (TGF-beta1) is secreted as part of an inactive complex consisting of the mature dimer, the TGF-beta1 propeptide (latency-associated peptide (LAP)), and latent TGF-beta-binding proteins. Using in vitro mutagenesis, we identified the regions of LAP that govern the cooperative assembly and stability of the latent TGF-beta1 complex. Initially, hydrophobic LAP residues (Ile(53), Leu(54), Leu(57), and Leu(59)), which form a contiguous epitope on one surface of an amphipathic alpha-helix, interact with mature TGF-beta1 to form the small latent complex. TGF-beta1 binding is predicted to alter LAP conformation, exposing ionic residues (Arg(45), Arg(50), Lys(56), and Arg(58)) on the other side of the alpha-helix, which form the binding site for latent TGF-beta-binding proteins. The stability of the resultant large latent complex is dependent upon covalent dimerization of LAP, which is facilitated by key residues (Phe(198), Asp(199), Val(200), Leu(208), Phe(217), and Leu(219)) at the dimer interface. Significantly, genetic mutations in LAP (e.g. R218H) that cause the rare bone disorder Camurati-Engelmann disease disrupted dimerization and reduced the stability of the latent TGF-beta1 complex.
Collapse
Affiliation(s)
- Kelly L Walton
- Prince Henry's Institute of Medical Research, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Ribeiro SLE, Guedes EL, Prazeres VMG, de Freitas EJG, da Rocha Corrêa Fernandes A. Painful lower extremities related to diaphyseal dysplasia: genetic diagnosis and treatment. J Rheumatol 2009; 36:1848-1851. [PMID: 19671831 DOI: 10.3899/jrheum.090087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
50
|
Park SJ, Yoon CS, Park HW, Choi JR, Chung JS, Lee KA. The first Korean case of Camurati-Engelmann disease (progressive diaphyseal dysplasia) confirmed by TGFB1 gene mutation analysis. J Korean Med Sci 2009; 24:737-40. [PMID: 19654961 PMCID: PMC2719210 DOI: 10.3346/jkms.2009.24.4.737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 04/19/2008] [Indexed: 12/05/2022] Open
Abstract
Camurati-Engelmann disease (CED) is an autosomal dominant progressive diaphyseal dysplasia caused by mutations in the transforming growth factor-beta1 (TGFB1) gene. We report the first Korean family with an affected mother and son who were diagnosed with CED. The proband is a 19-yr-old male with a history of abnormal gait since the age of 2. He also suffered from proximal muscle weakness, pain in the extremities, and easy fatigability. Skeletal radiographs of the long bones revealed cortical, periosteal, and endosteal thickenings, predominantly affecting the diaphyses of the upper and lower extremities. No other bony abnormalities were noted in the skull and spine and no remarkable findings were seen on laboratory tests. The patient's mother had a long-standing history of mild limb pain. Under the impression of CED on radiographic studies, we performed mutation analysis. A heterozygous G to A transition at cDNA position +653 in exon 4 of the TGFB1 gene (R218H) was detected in the patient and his mother.
Collapse
Affiliation(s)
- Seo-Jin Park
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Choon Sik Yoon
- Department of Radiology, Yonsei University College of Medicine, Seoul, Korea
| | - Hui-Wan Park
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Shin Chung
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung-A Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|