1
|
Vernon TN, Terrell JR, Albrecht AV, Germann MW, Wilson WD, Poon GMK. Dissection of integrated readout reveals the structural thermodynamics of DNA selection by transcription factors. Structure 2024; 32:83-96.e4. [PMID: 38042148 DOI: 10.1016/j.str.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/12/2023] [Accepted: 11/07/2023] [Indexed: 12/04/2023]
Abstract
Nucleobases such as inosine have been extensively utilized to map direct contacts by proteins in the DNA groove. Their deployment as targeted probes of dynamics and hydration, which are dominant thermodynamic drivers of affinity and specificity, has been limited by a paucity of suitable experimental models. We report a joint crystallographic, thermodynamic, and computational study of the bidentate complex of the arginine side chain with a Watson-Crick guanine (Arg×GC), a highly specific configuration adopted by major transcription factors throughout the eukaryotic branches in the Tree of Life. Using the ETS-family factor PU.1 as a high-resolution structural framework, inosine substitution for guanine resulted in a sharp dissection of conformational dynamics and hydration and elucidated their role in the DNA specificity of PU.1. Our work suggests an under-exploited utility of modified nucleobases in untangling the structural thermodynamics of interactions, such as the Arg×GC motif, where direct and indirect readout are tightly integrated.
Collapse
Affiliation(s)
- Tyler N Vernon
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| | - J Ross Terrell
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| | - Amanda V Albrecht
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| | - Markus W Germann
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA; Department of Biology, Georgia State University, Atlanta, GA 30302, USA.
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA.
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA.
| |
Collapse
|
2
|
Wisniewska A, Wons E, Potrykus K, Hinrichs R, Gucwa K, Graumann PL, Mruk I. Molecular basis for lethal cross-talk between two unrelated bacterial transcription factors - the regulatory protein of a restriction-modification system and the repressor of a defective prophage. Nucleic Acids Res 2022; 50:10964-10980. [PMID: 36271797 DOI: 10.1093/nar/gkac914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial gene expression depends on the efficient functioning of global transcriptional networks, however their interconnectivity and orchestration rely mainly on the action of individual DNA binding proteins called transcription factors (TFs). TFs interact not only with their specific target sites, but also with secondary (off-target) sites, and vary in their promiscuity. It is not clear yet what mechanisms govern the interactions with secondary sites, and how such rewiring affects the overall regulatory network, but this could clearly constrain horizontal gene transfer. Here, we show the molecular mechanism of one such off-target interaction between two unrelated TFs in Escherichia coli: the C regulatory protein of a Type II restriction-modification system, and the RacR repressor of a defective prophage. We reveal that the C protein interferes with RacR repressor expression, resulting in derepression of the toxic YdaT protein. These results also provide novel insights into regulation of the racR-ydaST operon. We mapped the C regulator interaction to a specific off-target site, and also visualized C protein dynamics, revealing intriguing differences in single molecule dynamics in different genetic contexts. Our results demonstrate an apparent example of horizontal gene transfer leading to adventitious TF cross-talk with negative effects on the recipient's viability. More broadly, this study represents an experimentally-accessible model of a regulatory constraint on horizontal gene transfer.
Collapse
Affiliation(s)
- Aleksandra Wisniewska
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Ewa Wons
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Katarzyna Potrykus
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Rebecca Hinrichs
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Philipps Universität Marburg, Germany.,Department of Chemistry, Philipps Universität Marburg, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
| | - Katarzyna Gucwa
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Peter L Graumann
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Philipps Universität Marburg, Germany.,Department of Chemistry, Philipps Universität Marburg, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
| | - Iwona Mruk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| |
Collapse
|
3
|
Naseer MM, Bauzá A, Alnasr H, Jurkschat K, Frontera A. Lone pair–π vs. σ-hole–π interactions in bromine head-containing oxacalix[2]arene[2]triazines. CrystEngComm 2018. [DOI: 10.1039/c8ce00666k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New bromine head-containing oxacalix[2]arene[2]triazines were synthesized. Owing to the bromine head and complementary V-shaped cavity, the solid state structure showed an intriguing and unique 1D-supramolecular chain-like self-assembly.
Collapse
Affiliation(s)
| | - Antonio Bauzá
- Departament de Quimica
- Universitat de les Illes Balears
- 07122 Palma
- Spain
| | - Hazem Alnasr
- Lehrstuhl für Anorganische Chemie II
- Technische Universität Dortmund
- D-44221 Dortmund
- Germany
| | - Klaus Jurkschat
- Lehrstuhl für Anorganische Chemie II
- Technische Universität Dortmund
- D-44221 Dortmund
- Germany
| | - Antonio Frontera
- Departament de Quimica
- Universitat de les Illes Balears
- 07122 Palma
- Spain
| |
Collapse
|
4
|
Hancock SP, Stella S, Cascio D, Johnson RC. DNA Sequence Determinants Controlling Affinity, Stability and Shape of DNA Complexes Bound by the Nucleoid Protein Fis. PLoS One 2016; 11:e0150189. [PMID: 26959646 PMCID: PMC4784862 DOI: 10.1371/journal.pone.0150189] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/28/2016] [Indexed: 11/18/2022] Open
Abstract
The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequences in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. The affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.
Collapse
Affiliation(s)
- Stephen P. Hancock
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, United States of America
| | - Stefano Stella
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, United States of America
| | - Duilio Cascio
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, United States of America
- Department of Energy Institute of Genomics and Proteomics, University of California at Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Reid C. Johnson
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
5
|
Rezulak M, Borsuk I, Mruk I. Natural C-independent expression of restriction endonuclease in a C protein-associated restriction-modification system. Nucleic Acids Res 2015; 44:2646-60. [PMID: 26656489 PMCID: PMC4824078 DOI: 10.1093/nar/gkv1331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 11/13/2015] [Indexed: 12/24/2022] Open
Abstract
Restriction-modification (R-M) systems are highly prevalent among bacteria and archaea, and appear to play crucial roles in modulating horizontal gene transfer and protection against phage. There is much to learn about these diverse enzymes systems, especially their regulation. Type II R-M systems specify two independent enzymes: a restriction endonuclease (REase) and protective DNA methyltransferase (MTase). Their activities need to be finely balanced in vivo Some R-M systems rely on specialized transcription factors called C (controller) proteins. These proteins play a vital role in the temporal regulation of R-M gene expression, and function to indirectly modulate the horizontal transfer of their genes across the species. We report novel regulation of a C-responsive R-M system that involves a C protein of a poorly-studied structural class - C.Csp231I. Here, the C and REase genes share a bicistronic transcript, and some of the transcriptional auto-control features seen in other C-regulated R-M systems are conserved. However, separate tandem promoters drive most transcription of the REase gene, a distinctive property not seen in other tested C-linked R-M systems. Further, C protein only partially controls REase expression, yet plays a role in system stability and propagation. Consequently, high REase activity was observed after deletion of the entire C gene, and cells bearing the ΔC R-M system were outcompeted in mixed culture assays by those with the WT R-M system. Overall, our data reveal unexpected regulatory variation among R-M systems.
Collapse
Affiliation(s)
- Monika Rezulak
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Izabela Borsuk
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Iwona Mruk
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
6
|
Fortin CH, Schulze KV, Babbitt GA. TRX-LOGOS - a graphical tool to demonstrate DNA information content dependent upon backbone dynamics in addition to base sequence. SOURCE CODE FOR BIOLOGY AND MEDICINE 2015; 10:10. [PMID: 26413153 PMCID: PMC4583169 DOI: 10.1186/s13029-015-0040-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 09/11/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND It is now widely-accepted that DNA sequences defining DNA-protein interactions functionally depend upon local biophysical features of DNA backbone that are important in defining sites of binding interaction in the genome (e.g. DNA shape, charge and intrinsic dynamics). However, these physical features of DNA polymer are not directly apparent when analyzing and viewing Shannon information content calculated at single nucleobases in a traditional sequence logo plot. Thus, sequence logos plots are severely limited in that they convey no explicit information regarding the structural dynamics of DNA backbone, a feature often critical to binding specificity. SOFTWARE AND IMPLEMENTATION We present TRX-LOGOS, an R software package and Perl wrapper code that interfaces the JASPAR database for computational regulatory genomics. TRX-LOGOS extends the traditional sequence logo plot to include Shannon information content calculated with regard to the dinucleotide-based BI-BII conformation shifts in phosphate linkages on the DNA backbone, thereby adding a visual measure of intrinsic DNA flexibility that can be critical for many DNA-protein interactions. TRX-LOGOS is available as an R graphics module offered at both SourceForge and as a download supplement at this journal. RESULTS To demonstrate the general utility of TRX logo plots, we first calculated the information content for 416 Saccharomyces cerevisiae transcription factor binding sites functionally confirmed in the Yeastract database and matched to previously published yeast genomic alignments. We discovered that flanking regions contain significantly elevated information content at phosphate linkages than can be observed at nucleobases. We also examined broader transcription factor classifications defined by the JASPAR database, and discovered that many general signatures of transcription factor binding are locally more information rich at the level of DNA backbone dynamics than nucleobase sequence. We used TRX-logos in combination with MEGA 6.0 software for molecular evolutionary genetics analysis to visually compare the human Forkhead box/FOX protein evolution to its binding site evolution. We also compared the DNA binding signatures of human TP53 tumor suppressor determined by two different laboratory methods (SELEX and ChIP-seq). Further analysis of the entire yeast genome, center aligned at the start codon, also revealed a distinct sequence-independent 3 bp periodic pattern in information content, present only in coding region, and perhaps indicative of the non-random organization of the genetic code. CONCLUSION TRX-LOGOS is useful in any situation in which important information content in DNA can be better visualized at the positions of phosphate linkages (i.e. dinucleotides) where the dynamic properties of the DNA backbone functions to facilitate DNA-protein interaction.
Collapse
Affiliation(s)
- Connor H Fortin
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623 USA
| | - Katharina V Schulze
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Gregory A Babbitt
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623 USA
| |
Collapse
|
7
|
Wan H, Chang S, Hu JP, Tian YX, Tian XH. Molecular Dynamics Simulations of Ternary Complexes: Comparisons of LEAFY Protein Binding to Different DNA Motifs. J Chem Inf Model 2015; 55:784-94. [PMID: 25734970 DOI: 10.1021/ci500705j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
LEAFY (LFY) is a plant-specific transcription factor, with a variety of roles in different species. LFY contains a conserved DNA-binding domain (DBD) that determines its DNA-binding specificity. Recently, the structures of the dimeric LFY-DBD bound to different DNA motifs were successively solved by X-ray crystallography. In this article, molecular dynamics (MD) simulations are employed to study two crystal structures of DNA-bound LFY protein from angiosperms and the moss Physcomitrella patens, respectively. The comparison of stabilities of the two systems is consistent with the experimental data of binding affinities. The calculation of hydrogen bonds showed that position 312 in LFY determines the difference of DNA-binding specificity. By using principal component analysis (PCA) and free energy landscape (FEL) methods, the open-close conformational change of the dimerization interface was found to be important for the system stability. At the dimerization interface, the protein-protein interaction has multiple influences on the cooperative DNA binding of LFY. The following analysis of DNA structural parameters further revealed that the protein-protein interaction contributes varying roles according to the specific DNA-binding efficiency. We propose that the protein-protein interaction serves a dual function as a connector between LFY monomers and a regulator of DNA-binding specificity. It will improve the robustness and adaptivity of the LFY-DNA ternary structure. This study provides some new insights into the understanding of the dynamics and interaction mechanism of dimeric LFY-DBD bound to DNA at the atomic level.
Collapse
Affiliation(s)
- Hua Wan
- †College of Informatics, South China Agricultural University, Guangzhou 510642, China
| | - Shan Chang
- ‡Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Jian-ping Hu
- §Faculty of Biotechnology Industry, Chengdu University, Chengdu 610106, China
| | - Yuan-xin Tian
- ∥School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xu-hong Tian
- †College of Informatics, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Harris LA, Williams LD, Koudelka GB. Specific minor groove solvation is a crucial determinant of DNA binding site recognition. Nucleic Acids Res 2014; 42:14053-9. [PMID: 25429976 PMCID: PMC4267663 DOI: 10.1093/nar/gku1259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The DNA sequence preferences of nearly all sequence specific DNA binding proteins are influenced by the identities of bases that are not directly contacted by protein. Discrimination between non-contacted base sequences is commonly based on the differential abilities of DNA sequences to allow narrowing of the DNA minor groove. However, the factors that govern the propensity of minor groove narrowing are not completely understood. Here we show that the differential abilities of various DNA sequences to support formation of a highly ordered and stable minor groove solvation network are a key determinant of non-contacted base recognition by a sequence-specific binding protein. In addition, disrupting the solvent network in the non-contacted region of the binding site alters the protein's ability to recognize contacted base sequences at positions 5–6 bases away. This observation suggests that DNA solvent interactions link contacted and non-contacted base recognition by the protein.
Collapse
Affiliation(s)
- Lydia-Ann Harris
- Department of Biological Sciences, 607 Cooke Hall, University at Buffalo, Buffalo, NY 14260, USA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Gerald B Koudelka
- Department of Biological Sciences, 607 Cooke Hall, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
9
|
Whitley DC, Runfola V, Cary P, Nazlamova L, Guille M, Scarlett G. APTE: identification of indirect read-out A-DNA promoter elements in genomes. BMC Bioinformatics 2014; 15:288. [PMID: 25158845 PMCID: PMC4159511 DOI: 10.1186/1471-2105-15-288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 08/20/2014] [Indexed: 11/25/2022] Open
Abstract
Background Transcriptional regulation is normally based on the recognition by a transcription factor of a defined base sequence in a process of direct read-out. However, the nucleic acid secondary and tertiary structure can also act as a recognition site for the transcription factor in a process known as indirect read-out, although this is much less understood. We have previously identified such a transcriptional control mechanism in early Xenopus development where the interaction of the transcription factor ilf3 and the gata2 promoter requires the presence of both an unusual A-form DNA structure and a CCAAT sequence. Rapid identification of such promoters elsewhere in the Xenopus and other genomes would provide insight into a less studied area of gene regulation, although currently there are few tools to analyse genomes in such ways. Results In this paper we report the implementation of a novel bioinformatics approach that has identified 86 such putative promoters in the Xenopus genome. We have shown that five of these sites are A-form in solution, bind to transcription factors and fully validated one of these newly identified promoters as interacting with the ilf3 containing complex CBTF. This interaction regulates the transcription of a previously uncharacterised downstream gene that is active in early development. Conclusions A Perl program (APTE) has located a number of potential A-form DNA promotor elements in the Xenopus genome, five of these putative targets have been experimentally validated as A-form and as targets for specific DNA binding proteins; one has also been shown to interact with the A-form binding transcription factor ilf3. APTE is available from http://www.port.ac.uk/research/cmd/software/ under the terms of the GNU General Public License.
Collapse
Affiliation(s)
| | | | | | | | | | - Garry Scarlett
- Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Science, University of Portsmouth, King Henry Building, King Henry I Street, Portsmouth PO1 2DY, UK.
| |
Collapse
|
10
|
Lindemose S, Nielsen PE, Valentin-Hansen P, Møllegaard NE. A novel indirect sequence readout component in the E. coli cyclic AMP receptor protein operator. ACS Chem Biol 2014; 9:752-60. [PMID: 24387622 DOI: 10.1021/cb4008309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The cyclic AMP receptor protein (CRP) from Escherichia coli has been extensively studied for several decades. In particular, a detailed characterization of CRP interaction with DNA has been obtained. The CRP dimer recognizes a consensus sequence AANTGTGANNNNNNTCACANTT through direct amino acid nucleobase interactions in the major groove of the two operator half-sites. Crystal structure analyses have revealed that the interaction results in two strong kinks at the TG/CA steps closest to the 6-base-pair spacer (N6). This spacer exhibits high sequence variability among the more than 100 natural binding sites in the E. coli genome, but the exact role of the N6 region in CRP interaction has not previously been systematic examined. Here we employ an in vitro selection system based on a randomized N6 spacer region to demonstrate that CRP binding to the lacP1 site may be enhanced up to 14-fold or abolished by varying the N6 spacer sequences. Furthermore, on the basis of sequence analysis and uranyl (UO2(2+)) probing data, we propose that the underlying mechanism relies on N6 deformability.
Collapse
Affiliation(s)
- Søren Lindemose
- Department
of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Peter Eigil Nielsen
- Department
of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Poul Valentin-Hansen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Niels Erik Møllegaard
- Department
of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
11
|
Hancock SP, Ghane T, Cascio D, Rohs R, Di Felice R, Johnson RC. Control of DNA minor groove width and Fis protein binding by the purine 2-amino group. Nucleic Acids Res 2013; 41:6750-60. [PMID: 23661683 PMCID: PMC3711457 DOI: 10.1093/nar/gkt357] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The width of the DNA minor groove varies with sequence and can be a major determinant of DNA shape recognition by proteins. For example, the minor groove within the center of the Fis–DNA complex narrows to about half the mean minor groove width of canonical B-form DNA to fit onto the protein surface. G/C base pairs within this segment, which is not contacted by the Fis protein, reduce binding affinities up to 2000-fold over A/T-rich sequences. We show here through multiple X-ray structures and binding properties of Fis–DNA complexes containing base analogs that the 2-amino group on guanine is the primary molecular determinant controlling minor groove widths. Molecular dynamics simulations of free-DNA targets with canonical and modified bases further demonstrate that sequence-dependent narrowing of minor groove widths is modulated almost entirely by the presence of purine 2-amino groups. We also provide evidence that protein-mediated phosphate neutralization facilitates minor groove compression and is particularly important for binding to non-optimally shaped DNA duplexes.
Collapse
Affiliation(s)
- Stephen P Hancock
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA 90095-1737, USA
| | | | | | | | | | | |
Collapse
|
12
|
Bréchemier-Baey D, Domínguez-Ramírez L, Plumbridge J. The linker sequence, joining the DNA-binding domain of the homologous transcription factors, Mlc and NagC, to the rest of the protein, determines the specificity of their DNA target recognition inEscherichia coli. Mol Microbiol 2012; 85:1007-19. [DOI: 10.1111/j.1365-2958.2012.08158.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Functional specificity of a protein-DNA complex mediated by two arginines bound to the minor groove. J Bacteriol 2012; 194:4727-35. [PMID: 22753063 DOI: 10.1128/jb.00677-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A bacteriophage Ø29 transcriptional regulator, protein p4, interacts with its DNA target by employing two mechanisms: by direct readout of the chemical signatures of only one DNA base and by inducing local modification on the topology of short A tracts (indirect readout). p4 binds as a dimer to targets consisting of imperfect inverted repeats. Here we used molecular dynamic simulation to define interactions of a cluster of 12 positively charged amino acids of p4 with DNA and biochemical assays with modified DNA targets and mutated proteins to quantify the contribution of residues in the nucleoprotein complex. Our results show the implication of Arg54, with non-base-specific interaction in the central A tract, in p4 binding affinity. Despite being chemically equivalent and in identical protein monomers, the two Arg54 residues differed in their interactions with DNA. We discuss an indirect-readout mechanism for p4-DNA recognition mediated by dissimilar interaction of arginines penetrating the minor groove and the inherent properties of the A tract. Our findings extend the current understanding of protein-DNA recognition and contribute to the relevance of the sequence-dependent conformational malleability of the DNA, shedding light on the role of arginines in binding affinity. Characterization of mutant p4R54A shows that the residue is required for the activity of the protein as a transcriptional regulator.
Collapse
|
14
|
Camacho A, Salas M. DNA bending and looping in the transcriptional control of bacteriophage phi29. FEMS Microbiol Rev 2010; 34:828-41. [PMID: 20412311 DOI: 10.1111/j.1574-6976.2010.00219.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Recent studies on the regulation of phage phi29 gene expression reveal new ways to accomplish the processes required for the orderly gene expression in prokaryotic systems. These studies revealed a novel DNA-binding domain in the phage main transcriptional regulator and the nature and dynamics of the multimeric DNA-protein complex responsible for the switch from early to late gene expression. This review describes the features of the regulatory mechanism that leads to the simultaneous activation and repression of transcription, and discusses it in the context of the role of the topological modification of the DNA carried out by two phage-encoded proteins working synergistically with the DNA.
Collapse
Affiliation(s)
- Ana Camacho
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Instituto de Biología Molecular 'Eladio Viñuela' (CSIC), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | |
Collapse
|
15
|
Mruk I, Blumenthal RM. Tuning the relative affinities for activating and repressing operators of a temporally regulated restriction-modification system. Nucleic Acids Res 2009; 37:983-98. [PMID: 19126580 PMCID: PMC2647307 DOI: 10.1093/nar/gkn1010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Most type II restriction-modification (R-M) systems produce separate endonuclease (REase) and methyltransferase (MTase) proteins. After R-M genes enter a new cell, MTase activity must appear before REase or the host chromosome will be cleaved. Temporal control of these genes thus has life-or-death consequences. PvuII and some other R-M systems delay endonuclease expression by cotranscribing the REase gene with the upstream gene for an autogenous activator/repressor (C protein). C.PvuII was previously shown to have low levels early, but positive feedback later boosts transcription of the C and REase genes. The MTase is expressed without delay, and protects the host DNA. C.PvuII binds to two sites upstream of its gene: OL, associated with activation, and OR, associated with repression. Even when symmetry elements of each operator are made identical, C.PvuII binds preferentially to OL. In this study, the intra-operator spacers are shown to modulate relative C.PvuII affinity. In light of a recently reported C.Esp1396I-DNA co-crystal structure, in vitro and in vivo effects of altering OL and OR spacers were determined. The results suggest that the GACTnnnAGTC consensus is the primary determinant of C.PvuII binding affinity, with intra-operator spacers playing a fine-tuning role that affects mobility of this R-M system.
Collapse
Affiliation(s)
- Iwona Mruk
- Department of Medical Microbiology and Immunology, University of Toledo Health Sciences Campus, Toledo, OH 43614-2598, USA
| | | |
Collapse
|
16
|
Whiteson KL, Rice PA. Binding and catalytic contributions to site recognition by flp recombinase. J Biol Chem 2008; 283:11414-23. [PMID: 18276592 DOI: 10.1074/jbc.m800106200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flp catalyzes site-specific recombination in a highly sequence-specific manner despite making few direct contacts to the bases within its binding site. Sequence discrimination could take place in the binding and/or the catalytic steps. In this study, we independently measure the binding affinity and initial cleavage rate of Flp recombinase with approximately 20 designed alternate target DNA sequences. Our results show that Flp specificity is largely, although not entirely, imparted at the binding step and is the result of a combination of direct and indirect readout. The Flp binding site includes an A/T-rich region that displays a characteristically narrow minor groove. We find that many A --> T changes are tolerated at the binding step, whereas C or G substitutions tend to decrease binding affinity. The effects of the latter can be alleviated by replacing guanine with inosine, which removes the N2 amino group that protrudes into the minor groove. Some A --> T changes reduce binding affinity, due to clashing with nearby residues, reinforcing that specificity requires avoiding negative contacts as well as creating positive ones. A tracts, which can lead to unusually rigid DNA structure, are tolerated during the binding step when placed within the region where the minor groove is already narrow. However, most A tracts slow catalysis more than C or G substitutions. Understanding what kind of sequence variation is tolerated in the binding and catalytic steps helps us understand how the target DNA is recognized by Flp and will be useful in guiding the design of Flp variants with altered specificities.
Collapse
Affiliation(s)
- Katrine L Whiteson
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
17
|
Mendieta J, Pérez-Lago L, Salas M, Camacho A. DNA sequence-specific recognition by a transcriptional regulator requires indirect readout of A-tracts. Nucleic Acids Res 2007; 35:3252-61. [PMID: 17452358 PMCID: PMC1904284 DOI: 10.1093/nar/gkm180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The bacteriophage Ø29 transcriptional regulator p4 binds to promoters of different intrinsic activities. The p4–DNA complex contains two identical protomers that make similar interactions with the target sequence 5′-AACTTTTT-15 bp-AAAATGTT-3′. To define how the various elements in the target sequence contribute to p4's affinity, we studied p4 binding to a series of mutated binding sites. The binding specificity depends critically on base pairs of the target sequence through both direct as well as indirect readout. There is only one specific contact between a base and an amino acid residue; other contacts take place with the phosphate backbone. Alteration of direct amino acid–base contacts, or mutation of non-contacted A·T base pairs at A-tracts abolished binding. We generated three 5 ns molecular dynamics (MD) simulations to investigate the basis for the p4–DNA complex specificity. Recognition is controlled by the protein and depends on DNA dynamic properties. MD results on protein–DNA contacts and the divergence of p4 affinity to modified binding sites reveal an inherent asymmetry, which is required for p4-specific binding and may be crucial for transcription regulation.
Collapse
Affiliation(s)
| | | | | | - Ana Camacho
- *To whom correspondence should be addressed. Tel: 34-91 497 8435; Fax: 34-91 497 8490;
| |
Collapse
|
18
|
Shkilnyj P, Koudelka GB. Effect of salt shock on stability of lambdaimm434 lysogens. J Bacteriol 2007; 189:3115-23. [PMID: 17307857 PMCID: PMC1855845 DOI: 10.1128/jb.01857-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 02/04/2007] [Indexed: 11/20/2022] Open
Abstract
The affinities of the bacteriophage 434 repressor for its various binding sites depend on the type and/or concentration of monovalent cations. The ability of bacteriophage 434 repressor to govern the lysis-lysogeny decision depends on the DNA binding activities of the phage's cI repressor protein. We wished to determine whether changes in the intracellular ionic environment influence the lysis-lysogeny decision of the bacteriophage lambda(imm434). Our findings show that the ionic composition within bacterial cells varies with the cation concentration in the growth media. When lambda(imm434) lysogens were grown to mid-log or stationary phase and subsequently incubated in media with increasing monovalent salt concentrations, we observed a salt concentration-dependent increase in the frequency of bacteriophage spontaneous induction. We also found that the frequency of spontaneous induction varied with the type of monovalent cation in the medium. The salt-dependent increase in phage production was unaffected by a recA mutation. These findings indicate that the salt-dependent increase in phage production is not caused by activation of the SOS pathway. Instead, our evidence suggests that salt stress induces this lysogenic bacteriophage by interfering with 434 repressor-DNA interactions. We speculate that the salt-dependent increase in spontaneous induction is due to a direct effect on the repressor's affinity for DNA. Regardless of the precise mechanism, our findings demonstrate that salt stress can regulate the phage lysis-lysogeny switch.
Collapse
Affiliation(s)
- Paul Shkilnyj
- Department of Biological Sciences, University at Buffalo, Cooke Hall, North Campus, Buffalo, NY, USA.
| | | |
Collapse
|
19
|
Mouw KW, Rice PA. Shaping the Borrelia burgdorferi genome: crystal structure and binding properties of the DNA-bending protein Hbb. Mol Microbiol 2007; 63:1319-30. [PMID: 17244195 DOI: 10.1111/j.1365-2958.2007.05586.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The genome of the Lyme disease-causing spirochete Borrelia burgdorferi encodes only a single polypeptide from the integration host factor (IHF)/HU or 'DNABII' family of nucleoid-associated proteins - Hbb. DNABII proteins induce large bends in DNA and serve as architectural factors in a variety of prokaryotic cellular processes. We have solved the crystal structure of an Hbb-DNA complex in which the DNA is bent by over 180 degrees . We find that like IHF, Hbb relies exclusively on indirect readout to recognize its cognate site. Additional binding studies show that the sequence preferences of Hbb are related to, yet distinct from those of IHF. Defining these binding characteristics may help to uncover additional roles for Hbb in Borrelia DNA metabolism as well as further our understanding of the mechanism of indirect readout.
Collapse
Affiliation(s)
- Kent W Mouw
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
20
|
Koudelka GB, Mauro SA, Ciubotaru M. Indirect readout of DNA sequence by proteins: the roles of DNA sequence-dependent intrinsic and extrinsic forces. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2007; 81:143-77. [PMID: 16891171 DOI: 10.1016/s0079-6603(06)81004-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Gerald B Koudelka
- Department of Biological Sciences, University at Buffalo, Cooke Hall, North Campus, Buffalo, New York 14260, USA
| | | | | |
Collapse
|
21
|
Groban ES, Johnson MB, Banky P, Burnett PGG, Calderon GL, Dwyer EC, Fuller SN, Gebre B, King LM, Sheren IN, Von Mutius LD, O'Gara TM, Lovett CM. Binding of the Bacillus subtilis LexA protein to the SOS operator. Nucleic Acids Res 2005; 33:6287-95. [PMID: 16269821 PMCID: PMC1277809 DOI: 10.1093/nar/gki939] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 10/16/2005] [Accepted: 10/16/2005] [Indexed: 11/17/2022] Open
Abstract
The Bacillus subtilis LexA protein represses the SOS response to DNA damage by binding as a dimer to the consensus operator sequence 5'-CGAACN(4)GTTCG-3'. To characterize the requirements for LexA binding to SOS operators, we determined the operator bases needed for site-specific binding as well as the LexA amino acids required for operator recognition. Using mobility shift assays to determine equilibrium constants for B.subtilis LexA binding to recA operator mutants, we found that several single base substitutions within the 14 bp recA operator sequence destabilized binding enough to abolish site-specific binding. Our results show that the AT base pairs at the third and fourth positions from the 5' end of a 7 bp half-site are essential and that the preferred binding site for a LexA dimer is 5'-CGAACATATGTTCG-3'. Binding studies with LexA mutants, in which the solvent accessible amino acid residues in the putative DNA binding domain were mutated, indicate that Arg-49 and His-46 are essential for binding and that Lys-53 and Ala-48 are also involved in operator recognition. Guided by our mutational analyses as well as hydroxyl radical footprinting studies of the dinC and recA operators we docked a computer model of B.subtilis LexA on the preferred operator sequence in silico. Our model suggests that binding by a LexA dimer involves bending of the DNA helix within the internal 4 bp of the operator.
Collapse
Affiliation(s)
- Eli S. Groban
- Department of Chemistry, Williams CollegeWilliamstown, MA 01267, USA
| | - Martha B. Johnson
- Department of Chemistry, Williams CollegeWilliamstown, MA 01267, USA
| | - Poopak Banky
- Department of Chemistry, Williams CollegeWilliamstown, MA 01267, USA
| | | | | | - Erica C. Dwyer
- Department of Chemistry, Williams CollegeWilliamstown, MA 01267, USA
| | | | - Biniam Gebre
- Department of Chemistry, Williams CollegeWilliamstown, MA 01267, USA
| | - Leah M. King
- Department of Chemistry, Williams CollegeWilliamstown, MA 01267, USA
| | - Ila N. Sheren
- Department of Chemistry, Williams CollegeWilliamstown, MA 01267, USA
| | | | - Thomas M. O'Gara
- Department of Chemistry, Williams CollegeWilliamstown, MA 01267, USA
| | - Charles M. Lovett
- Department of Chemistry, Williams CollegeWilliamstown, MA 01267, USA
| |
Collapse
|
22
|
McCabe BC, Pawlowski DR, Koudelka GB. The bacteriophage 434 repressor dimer preferentially undergoes autoproteolysis by an intramolecular mechanism. J Bacteriol 2005; 187:5624-30. [PMID: 16077107 PMCID: PMC1196080 DOI: 10.1128/jb.187.16.5624-5630.2005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inactivation of the lambdoid phage repressor protein is necessary to induce lytic growth of a lambdoid prophage. Activated RecA, the mediator of the host SOS response to DNA damage, causes inactivation of the repressor by stimulating the repressor's nascent autocleavage activity. The repressor of bacteriophage lambda and its homolog, LexA, preferentially undergo RecA-stimulated autocleavage as free monomers, which requires that each monomer mediates its own (intramolecular) cleavage. The cI repressor of bacteriophage 434 preferentially undergoes autocleavage as a dimer specifically bound to DNA, opening the possibility that one 434 repressor subunit may catalyze proteolysis of its partner subunit (intermolecular cleavage) in the DNA-bound dimer. Here, we first identified and mutagenized the residues at the cleavage and active sites of 434 repressor. We utilized the mutant repressors to show that the DNA-bound 434 repressor dimer overwhelmingly prefers to use an intramolecular mechanism of autocleavage. Our data suggest that the 434 repressor cannot be forced to use an intermolecular cleavage mechanism. Based on these data, we propose a model in which the cleavage-competent conformation of the repressor is stabilized by operator binding.
Collapse
Affiliation(s)
- Barbara C McCabe
- Department of Biological Sciences, University at Buffalo, Cooke Hall, North Campus, Buffalo, NY 14260, USA
| | | | | |
Collapse
|
23
|
Su TJ, Tock MR, Egelhaaf SU, Poon WCK, Dryden DTF. DNA bending by M.EcoKI methyltransferase is coupled to nucleotide flipping. Nucleic Acids Res 2005; 33:3235-44. [PMID: 15942026 PMCID: PMC1143692 DOI: 10.1093/nar/gki618] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The maintenance methyltransferase M.EcoKI recognizes the bipartite DNA sequence 5′-AACNNNNNNGTGC-3′, where N is any nucleotide. M.EcoKI preferentially methylates a sequence already containing a methylated adenine at or complementary to the underlined bases in the sequence. We find that the introduction of a single-stranded gap in the middle of the non-specific spacer, of up to 4 nt in length, does not reduce the binding affinity of M.EcoKI despite the removal of non-sequence-specific contacts between the protein and the DNA phosphate backbone. Surprisingly, binding affinity is enhanced in a manner predicted by simple polymer models of DNA flexibility. However, the activity of the enzyme declines to zero once the single-stranded region reaches 4 nt in length. This indicates that the recognition of methylation of the DNA is communicated between the two methylation targets not only through the protein structure but also through the DNA structure. Furthermore, methylation recognition requires base flipping in which the bases targeted for methylation are swung out of the DNA helix into the enzyme. By using 2-aminopurine fluorescence as the base flipping probe we find that, although flipping occurs for the intact duplex, no flipping is observed upon introduction of a gap. Our data and polymer model indicate that M.EcoKI bends the non-specific spacer and that the energy stored in a double-stranded bend is utilized to force or flip out the bases. This energy is not stored in gapped duplexes. In this way, M.EcoKI can determine the methylation status of two adenine bases separated by a considerable distance in double-stranded DNA and select the required enzymatic response.
Collapse
Affiliation(s)
- Tsueu-Ju Su
- School of ChemistryThe King's BuildingsThe University of EdinburghEdinburgh EH9 3JJ, UK
| | - Mark R. Tock
- School of ChemistryThe King's BuildingsThe University of EdinburghEdinburgh EH9 3JJ, UK
| | - Stefan U. Egelhaaf
- School of ChemistryThe King's BuildingsThe University of EdinburghEdinburgh EH9 3JJ, UK
- School of PhysicsThe King's BuildingsThe University of EdinburghMayfield Road, Edinburgh EH9 3JZ, UK
| | - Wilson C. K. Poon
- School of PhysicsThe King's BuildingsThe University of EdinburghMayfield Road, Edinburgh EH9 3JZ, UK
| | - David T. F. Dryden
- School of ChemistryThe King's BuildingsThe University of EdinburghEdinburgh EH9 3JJ, UK
- To whom correspondence should be addressed. Tel: +44 131 650 4735; Fax: +44 131 650 6453;
| |
Collapse
|
24
|
Koudelka AP, Hufnagel LA, Koudelka GB. Purification and characterization of the repressor of the shiga toxin-encoding bacteriophage 933W: DNA binding, gene regulation, and autocleavage. J Bacteriol 2004; 186:7659-69. [PMID: 15516580 PMCID: PMC524892 DOI: 10.1128/jb.186.22.7659-7669.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Accepted: 08/11/2004] [Indexed: 11/20/2022] Open
Abstract
The genes encoding Shiga toxin (stx), the major virulence factor of Shiga toxin-encoding Escherichia coli (STEC) strains, are carried on lambdoid prophages resident in all known STEC strains. The stx genes are expressed only during lytic growth of these temperate bacteriophages. We cloned the gene encoding the repressor of the Shiga toxin-encoding bacteriophage 933W and examined the DNA binding and transcriptional regulatory activities of the overexpressed, purified protein. Typical of nearly all lambdoid phage repressors, 933W repressor binds to three sites in 933W right operator (OR). Also typical, when bound at OR, 933W repressor functions as an activator at the PRM promoter and a repressor at the PR promoter. In contrast to other lambdoid bacteriophages, 933W left operator (OL) contains only two repressor binding sites, but the OL-bound repressor still efficiently represses PL transcription. Lambdoid prophage induction requires inactivation of the repressor's DNA binding activity. In all phages examined thus far, this inactivation requires a RecA-stimulated repressor autoproteolysis event, with cleavage occurring precisely in an Ala-Gly dipeptide sequence that is found within a "linker " region that joins the two domains of these proteins. However, 933W repressor protein contains neither an Ala-Gly nor an alternative Cys-Gly dipeptide cleavage site anywhere in its linker sequence. We show here that the autocleavage occurs at a Leu-Gly dipeptide. Thus, the specificity of the repressor autocleavage site is more variable than thought previously.
Collapse
Affiliation(s)
- Astrid P Koudelka
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | | | | |
Collapse
|
25
|
Sponer J, Jurecka P, Hobza P. Accurate interaction energies of hydrogen-bonded nucleic acid base pairs. J Am Chem Soc 2004; 126:10142-51. [PMID: 15303890 DOI: 10.1021/ja048436s] [Citation(s) in RCA: 374] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hydrogen-bonded nucleic acids base pairs substantially contribute to the structure and stability of nucleic acids. The study presents reference ab initio structures and interaction energies of selected base pairs with binding energies ranging from -5 to -47 kcal/mol. The molecular structures are obtained using the RI-MP2 (resolution of identity MP2) method with extended cc-pVTZ basis set of atomic orbitals. The RI-MP2 method provides results essentially identical with the standard MP2 method. The interaction energies are calculated using the Complete Basis Set (CBS) extrapolation at the RI-MP2 level. For some base pairs, Coupled-Cluster corrections with inclusion of noniterative triple contributions (CCSD(T)) are given. The calculations are compared with selected medium quality methods. The PW91 DFT functional with the 6-31G basis set matches well the RI-MP2/CBS absolute interaction energies and reproduces the relative values of base pairing energies with a maximum relative error of 2.6 kcal/mol when applied with Becke3LYP-optimized geometries. The Becke3LYP DFT functional underestimates the interaction energies by few kcal/mol with relative error of 2.2 kcal/mol. Very good performance of nonpolarizable Cornell et al. force field is confirmed and this indirectly supports the view that H-bonded base pairs are primarily stabilized by electrostatic interactions.
Collapse
Affiliation(s)
- Jirí Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic.
| | | | | |
Collapse
|
26
|
Palangat M, Hittinger CT, Landick R. Downstream DNA selectively affects a paused conformation of human RNA polymerase II. J Mol Biol 2004; 341:429-42. [PMID: 15276834 DOI: 10.1016/j.jmb.2004.06.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 05/25/2004] [Accepted: 06/03/2004] [Indexed: 11/17/2022]
Abstract
Transcriptional pausing by human RNA polymerase II (RNAPII) in the HIV-1 LTR is caused principally by a weak RNA:DNA hybrid that allows rearrangement of reactive or catalytic groups in the enzyme's active site. This rearrangement creates a transiently paused state called the unactivated intermediate that can backtrack into a more long-lived paused species. We report that three different regions of the not-yet-transcribed DNA just downstream of the pause site affect the duration of the HIV-1 pause, and also can influence pause formation. Downstream DNA in at least one region, a T-tract from +5 to +8, increases pause duration by specifically affecting the unactivated intermediate, without corresponding effects on the active or backtracked states. We suggest this effect depends on RNAPII-modulated DNA plasticity and speculate it is mediated by the "trigger loop" thought to participate in RNAP's catalytic cycle. These findings provide a new framework for understanding downstream DNA effects on RNAP.
Collapse
Affiliation(s)
- Murali Palangat
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
27
|
Mauro SA, Koudelka GB. Monovalent Cations Regulate DNA Sequence Recognition by 434 Repressor. J Mol Biol 2004; 340:445-57. [PMID: 15210346 DOI: 10.1016/j.jmb.2004.04.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Revised: 04/30/2004] [Accepted: 04/30/2004] [Indexed: 11/30/2022]
Abstract
The bacteriophage 434 repressor distinguishes between its six naturally occurring binding sites using indirect readout. In indirect readout, sequence-dependent differences in the structure and flexibility of non-contacted bases in a protein's DNA-binding site modulate the affinity of DNA for protein. The conformation and flexibility of a DNA sequence can be influenced by the interaction of the DNA bases or backbone with solution components. We examined the effect of changing the cation-type present in solution on the stability and structure of 434 repressor complexes with wild-type and mutant OR1 and OR3, binding sites that differ in their contacted and non-contacted base sequences. We find that the affinity of repressor for OR1, but not for OR3, depends remarkably on the type and concentration of monovalent cation. Moreover, the formation of a stable, specific repressor-OR1 complex requires the presence of monovalent cations; however, repressor-OR3 complex formation has no such requirement. Changing monovalent cation type alters the ability of repressor to protect OR1, but not OR3, from *OH radical cleavage. Altering the relative length of the poly(dA) x poly(dT) tract in the non-contacted regions of the OR1 and OR3 can reverse the cation sensitivity of repressor's affinities for these two sites. Taken together these findings show that cation-dependent alterations in DNA structure underlies indirect readout of DNA sequence by 434 repressor and perhaps other proteins.
Collapse
Affiliation(s)
- Steven A Mauro
- Department of Biological Sciences, State University of New York at Buffalo, 607 Cooke Hall, North Campus, Box 601300, Buffalo, NY 14260-1300, USA
| | | |
Collapse
|
28
|
Pawlowski DR, Koudelka GB. The preferred substrate for RecA-mediated cleavage of bacteriophage 434 repressor is the DNA-bound dimer. J Bacteriol 2004; 186:1-7. [PMID: 14679217 PMCID: PMC303438 DOI: 10.1128/jb.186.1.1-7.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Induction of a lysogen of a lambdoid bacteriophage usually involves RecA-stimulated autoproteolysis of the bacteriophage repressor protein. Previous work on the phage repressors showed that the monomeric form of the protein is the target of RecA. Our previous work indicated that in the case of bacteriophage 434, virtually none of the repressor is present as a monomer in vivo. Hence, if the repressor in a lysogen is present as a dimer, how can RecA-stimulated autoproteolysis play a role in bacteriophage induction? We examined this question by determining the rate of RecA-stimulated 434 repressor cleavage as a function of repressor concentration and added DNA. Our results show that binding of 434 repressor to a specific DNA binding site dramatically increases the velocity of repressor autocleavage compared to the velocity of cleavage of the monomer and concentration-induced dimer. DNA binding-deficient hemidimers formed between the intact repressor and its C-terminal domain fragment have a lower rate of cleavage than DNA-bound dimers. These results show that the DNA-bound 434 repressor dimer, which is the form of the repressor that is required for its transcriptional regulatory functions, is the preferred form for RecA-stimulated autocleavage. We also show that the rate of repressor autocleavage is influenced by the sequence of the bound DNA. Kinetic analysis of the autocleavage reaction indicated that the DNA sequence influences the velocity of 434 repressor autocleavage by affecting the affinity of the repressor-DNA complex for RecA, not the chemical cleavage step. Regardless of the mechanism, the finding that the presence and precise sequence of DNA modulate the autocleavage reaction shows that DNA allosterically affects the function of 434 repressor.
Collapse
Affiliation(s)
- David R Pawlowski
- Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260-1300, USA
| | | |
Collapse
|
29
|
Yakovleva L, Tian L, Sayer JM, Kalena GP, Kroth H, Jerina DM, Shuman S. Site-specific DNA transesterification by vaccinia topoisomerase: effects of benzo[alpha]pyrene-dA, 8-oxoguanine, 8-oxoadenine and 2-aminopurine modifications. J Biol Chem 2003; 278:42170-7. [PMID: 12909623 DOI: 10.1074/jbc.m308079200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Vaccinia DNA topoisomerase forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at a specific target site 5'-C+5C+4C+3T+2T+1p downward arrow N-1 in duplex DNA. Here we study the effects of base modifications on the rate and extent of single-turnover DNA transesterification. Chiral trans opened C-10 R and S adducts of benzo[a]pyrene (BP) 7,8-diol 9,10-epoxide were introduced at single N6-deoxyadenosine (dA) positions within the 3'-G+5G+4G+3A+2A+1T-1A-2 sequence of the nonscissile DNA strand. The R and S BPdA adducts intercalate from the major groove on the 5' and 3' sides of the modified base, respectively, and perturb local base stacking. We found that R and S BPdA modifications at +1A reduced the transesterification rate by a factor of 700-1000 without affecting the yield of the covalent topoisomerase-DNA complex. BPdA modifications at +2A reduced the extent of transesterification and elicited rate decrements of 200- and 7000-fold for the S and R diastereomers, respectively. In contrast, BPdA adducts at the -2 position had no effect on the extent of the reaction and relatively little impact on the rate of cleavage. A more subtle probe of major groove contacts entailed substituting each of the purines of the nonscissile strand with its 8-oxo analog. The +3 oxoG modification slowed transesterification 35-fold, whereas other 8-oxo modifications were benign. 8-Oxo substitutions at the -1 position in the scissile strand slowed single-turnover cleavage by a factor of six but had an even greater slowing effect on religation, which resulted in an increase in the cleavage equilibrium constant. 2-Aminopurine at positions +3, +4, or +5 in the nonscissile strand had no effect on transesterification per se but had synergistic effects when combined with 8-oxoA at position -1 in the scissile strand. These findings illuminate the functional interface of vaccinia topoisomerase with the DNA major groove.
Collapse
Affiliation(s)
- Lyudmila Yakovleva
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|