1
|
Fischer U, Bartuli J, Grimm C. Structure and function of the poxvirus transcription machinery. Enzymes 2021; 50:1-20. [PMID: 34861934 DOI: 10.1016/bs.enz.2021.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Members of the Poxviridae family are large double-stranded DNA viruses that replicate exclusively in the cytoplasm of their hosts. This goes in hand with a high level of independence from the host cell, which supports transcription and replication events only in the nucleus or in DNA-containing organelles. Consequently, virus specific, rather than cellular enzymes mediate most processes involving DNA replication and mRNA synthesis. Recent technological advances allowed a detailed functional and structural investigation of the transcription machinery of the prototypic poxvirus vaccinia. The DNA-dependent RNA polymerase (RNAP) at its core displays distinct similarities to eukaryotic RNAPs. Strong idiosyncrasies, however, are apparent for viral factors that are associated with the viral RNAP during mRNA production. We expect that future studies will unravel more key aspects of poxvirus gene expression, helping also the understanding of nuclear transcription mechanisms.
Collapse
Affiliation(s)
- Utz Fischer
- Department of Biochemistry and Cancer Therapy Research Center (CTRC), Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Julia Bartuli
- Department of Biochemistry and Cancer Therapy Research Center (CTRC), Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Clemens Grimm
- Department of Biochemistry and Cancer Therapy Research Center (CTRC), Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
2
|
Hindman R, Gollnick P. Nucleoside Triphosphate Phosphohydrolase I (NPH I) Functions as a 5' to 3' Translocase in Transcription Termination of Vaccinia Early Genes. J Biol Chem 2016; 291:14826-38. [PMID: 27189950 DOI: 10.1074/jbc.m116.730135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Indexed: 12/21/2022] Open
Abstract
Vaccinia virus early genes are transcribed immediately upon infection. Nucleoside triphosphate phosphohydrolase I (NPH I) is an essential component of the early gene transcription complex. NPH I hydrolyzes ATP to release transcripts during transcription termination. The ATPase activity of NPH I requires single-stranded (ss) DNA as a cofactor; however, the source of this cofactor within the transcription complex is not known. Based on available structures of transcription complexes it has been hypothesized that the ssDNA cofactor is obtained from the unpaired non-template strand within the transcription bubble. In vitro transcription on templates that lack portions of the non-template strand within the transcription bubble showed that the upstream portion of the transcription bubble is required for efficient NPH I-mediated transcript release. Complementarity between the template and non-template strands in this region is also required for NPH I-mediated transcript release. This observation complicates locating the source of the ssDNA cofactor within the transcription complex because removal of the non-template strand also disrupts transcription bubble reannealing. Prior studies have shown that ssRNA binds to NPH I, but it does not activate ATPase activity. Chimeric transcription templates with RNA in the non-template strand confirm that the source of the ssDNA cofactor for NPH I is the upstream portion of the non-template strand in the transcription bubble. Consistent with this conclusion we also show that isolated NPH I acts as a 5' to 3' translocase on single-stranded DNA.
Collapse
Affiliation(s)
- Ryan Hindman
- From the Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260-4610
| | - Paul Gollnick
- From the Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260-4610
| |
Collapse
|
3
|
Protective Efficacy of the Conserved NP, PB1, and M1 Proteins as Immunogens in DNA- and Vaccinia Virus-Based Universal Influenza A Virus Vaccines in Mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:618-30. [PMID: 25834017 DOI: 10.1128/cvi.00091-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/27/2015] [Indexed: 11/20/2022]
Abstract
The conventional hemagglutinin (HA)- and neuraminidase (NA)-based influenza vaccines need to be updated most years and are ineffective if the glycoprotein HA of the vaccine strains is a mismatch with that of the epidemic strain. Universal vaccines targeting conserved viral components might provide cross-protection and thus complement and improve conventional vaccines. In this study, we generated DNA plasmids and recombinant vaccinia viruses expressing the conserved proteins nucleoprotein (NP), polymerase basic 1 (PB1), and matrix 1 (M1) from influenza virus strain A/Beijing/30/95 (H3N2). BALB/c mice were immunized intramuscularly with a single vaccine based on NP, PB1, or M1 alone or a combination vaccine based on all three antigens and were then challenged with lethal doses of the heterologous influenza virus strain A/PR/8/34 (H1N1). Vaccines based on NP, PB1, and M1 provided complete or partial protection against challenge with 1.7 50% lethal dose (LD50) of PR8 in mice. Of the three antigens, NP-based vaccines induced protection against 5 LD50 and 10 LD50 and thus exhibited the greatest protective effect. Universal influenza vaccines based on the combination of NP, PB1, and M1 induced a strong immune response and thus might be an alternative approach to addressing future influenza virus pandemics.
Collapse
|
4
|
Christen LA, Piacente S, Mohamed MR, Niles EG. Vaccinia virus early gene transcription termination factors VTF and Rap94 interact with the U9 termination motif in the nascent RNA in a transcription ternary complex. Virology 2008; 376:225-35. [PMID: 18455214 DOI: 10.1016/j.virol.2008.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 03/06/2008] [Accepted: 03/26/2008] [Indexed: 10/22/2022]
Abstract
The vaccinia virus core contains a 195 kb double stranded DNA genome, a multi-subunit RNA polymerase, transcription initiation and termination factors and mRNA processing enzymes. Upon infection, vaccinia virus early gene transcription takes place in the virus core. Transcription initiates at early promoters and terminates in response to a termination motif, UUUUUNU, in the nascent mRNA. Early gene transcription termination requires the vaccinia virus termination factor, VTF, a single stranded DNA-dependent ATPase, and NPH I, the Rap94 subunit of the virion RNA polymerase, as well as the presence of the UUUUUNU motif in the nascent RNA. The position of UUUUUNU in the ternary complex suggests that it serves as a site of interaction with one or more components of the transcription termination complex. In order to identify the factor(s) that interact with UUUUUNU a series of direct UV photo crosslinking and ribonuclease A protection studies were undertaken. Through these analyses both VTF and Rap94 were shown to interact with UUUUUNU in the isolated ternary complex. Evidence indicates that the interaction is not mutually exclusive. VTF was shown to bind to UUUUUNU through the N-terminal domain of the large D1 subunit. Furthermore, VTF protects from RNAse A digestion both the 5' region of the nascent transcript as well as a large central component containing UUUUUNU. The addition of an oligonucleotide containing the (5Br)U9 sequence both directly inhibits transcription termination, in vitro and inhibits UV photo crosslinking of VTF to the nascent RNA in the ternary complex. These results support a model in which the availability of the UUUUUNU motif outside of the transcribing RNA polymerase permits binding of both transcription termination factors, VTF and Rap94, to UUUUUNU. The assembly of this termination complex initiates the transcription termination sequence.
Collapse
Affiliation(s)
- Linda A Christen
- Department of Microbiology and Immunology, SUNY School of Medicine, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
5
|
Piacente S, Christen L, Dickerman B, Mohamed MR, Niles EG. Determinants of vaccinia virus early gene transcription termination. Virology 2008; 376:211-24. [PMID: 18433825 DOI: 10.1016/j.virol.2008.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 03/06/2008] [Accepted: 03/13/2008] [Indexed: 02/07/2023]
Abstract
Vaccinia virus early gene transcription requires the vaccinia termination factor, VTF, nucleoside triphosphate phosphohydrolase I, NPH I, ATP, the virion RNA polymerase, and the motif, UUUUUNU, in the nascent RNA, found within 30 to 50 bases from the poly A addition site, in vivo. In this study, the relationships among the vaccinia early gene transcription termination efficiency, termination motif specificity, and the elongation rate were investigated. A low transcription elongation rate maximizes termination efficiency and minimizes specificity for the UUUUUNU motif. Positioning the termination motif over a 63 base area upstream from the RNA polymerase allowed efficient transcript release, demonstrating a remarkable plasticity in the transcription termination complex. Efficient transcript release was observed during ongoing transcription, independent of VTF or UUUUUNU, but requiring both NPH I and either ATP or dATP. This argues for a two step model: the specifying step, requiring both VTF and UUUUUNU, and the energy-dependent step employing NPH I and ATP. Evaluation of NPH I mutants for the ability to stimulate transcription elongation demonstrated that ATPase activity and a stable interaction between NPH I and the Rap94 subunit of the viral RNA polymerase are required. These observations demonstrate that NPH I is a component of the elongating RNA polymerase, which is catalytically active during transcription elongation.
Collapse
Affiliation(s)
- Sarah Piacente
- Department of Microbiology and Immunology, SUNY School of Medicine and Biomedical Sciences, Buffalo, NY, 14214-3200, USA
| | | | | | | | | |
Collapse
|
6
|
Mohamed MR, Piacente SC, Dickerman B, Niles EG. Effect of UTP sugar and base modifications on vaccinia virus early gene transcription. Virology 2006; 349:359-70. [PMID: 16460779 DOI: 10.1016/j.virol.2006.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 12/03/2005] [Accepted: 01/03/2006] [Indexed: 11/23/2022]
Abstract
Prior efforts demonstrated that RNA oligonucleotides containing the transcription termination signal UUUUUNU stimulate premature termination of vaccinia virus early gene transcription, in vitro. This observation suggests that viral transcription termination may be an attractive target for the development of anti-poxvirus agents. Since short RNA molecules are readily susceptible to nuclease digestion, their use would require stabilizing modifications. In order to evaluate the effect of both ribose and uracil modifications of the U5NU signal on early gene transcription termination, UTP derivatives harboring modifications to the uracil base, the 2' position of the ribose sugar and the phosphodiester bond were examined in an in vitro vaccinia virus early gene transcription termination system. Incorporation of 4-S-U, 5-methyl-U, 2-S-U, pseudo U and 2'-F-dU into the nascent transcript inhibited transcription termination. 6-aza-U, 2'-amino-U, 2'-azido-U and 2'-O methyl-U inhibited transcription elongation resulting in the accumulation of short transcripts. The majority of the short transcripts remained in the ternary complex and could be chased into full-length transcripts. Initially, derivatives of all uridines in the termination signal were tested. Partial modification of the termination signal reduced termination activity, as well. Introduction of 2'-O methyl ribose to the first three uridines of the U9 termination signal reduced the ability of U9 containing oligonucleotides to stimulate in vitro transcription termination, in trans. Further modifications eliminated this activity. Thus, viral early gene transcription termination demonstrates a rigorous requirement for a U5NU signal that is unable to tolerate modification to the base or sugar. Additionally, VTF was shown to enhance transcription elongation through the T9 sequence in the template. These results suggest that VTF may play a subtle role in early gene transcription elongation in addition to its known function in mRNA cap formation, early gene transcription termination and intermediate gene transcription initiation.
Collapse
Affiliation(s)
- Mohamed Ragaa Mohamed
- Department of Biochemistry, Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
7
|
Mohamed MR, Niles EG. UUUUUNU oligonucleotide inhibition of RNA synthesis in vaccinia virus cores. Virology 2004; 324:493-500. [PMID: 15207634 DOI: 10.1016/j.virol.2004.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Revised: 03/24/2004] [Accepted: 04/01/2004] [Indexed: 11/15/2022]
Abstract
Recent results from this laboratory demonstrated the ability of U5NU-containing oligonucleotides to stimulate premature termination of early gene transcription in vitro. Further studies on the oligonucleotide sequence and structural requirements for stimulating premature termination demonstrated that only oligonucleotides possessing ribouracil U9 with a phosphodiester linkage are active. Because an oligonucleotide as short as 9 bases serves as an effective stimulator of premature transcription termination, we reasoned that short U5NU-containing oligonucleotides might serve as efficacious anti-poxvirus agents because they would prevent the synthesis of full-sized early mRNA. To be useful in vivo, the oligonucleotides must not only be taken up by the infected cells, but also be able to enter the virus core, the site of early gene transcription, and retain their ability to stimulate premature termination. The ability of U9-containing oligonucleotides to inhibit virus core RNA synthesis was evaluated. The U5NU oligonucleotides exhibited a dramatic sequence-specific inhibition of core RNA synthesis, consistent with their ability to stimulate premature termination of early gene transcription. Moreover, the concentration of U5NU oligonucleotide required to exhibit half maximal inhibition of RNA synthesis was found to be less for a 9 mer RNA than it was for a 17 or 22 mer RNA. This suggests the possibility that the smaller oligonucleotides may have easier access to the core. This observation lends support to the notion that such oligonucleotides might serve as effective anti-poxvirus therapeutic agents.
Collapse
Affiliation(s)
- Mohamed Ragaa Mohamed
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14214, USA
| | | |
Collapse
|
8
|
Kim SJ, Martinson HG. Poly(A)-dependent transcription termination: continued communication of the poly(A) signal with the polymerase is required long after extrusion in vivo. J Biol Chem 2003; 278:41691-701. [PMID: 12933817 DOI: 10.1074/jbc.m306304200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genes encoding polyadenylated mRNAs depend on their poly(A) signals for termination of transcription. An unsolved problem is how the poly(A) signal triggers the polymerase to terminate. A popular model is that this occurs during extrusion of the poly(A) signal, at which time it interacts with factors on the transcription complex. To test this idea we used cis-antisense inhibition in vivo to probe the temporal relationship between poly(A) signal extrusion and the commitment of the polymerase to terminate. Our rationale was to inactivate the poly(A) signal at increasing times post-extrusion to determine the point beyond which it is no longer required for termination. We found that communication with the polymerase is not temporally restricted to the time of poly(A) signal extrusion, but is ongoing and perhaps random. Some polymerases terminate almost immediately. Others have yet to receive their termination instructions from the poly(A) signal even 500 bp downstream, as indicated by the ability of an antisense at this distance to block termination. Thus, the poly(A) signal can functionally interact with the polymerase at considerable distances down the template. This is consistent with the emerging picture of a processing apparatus that assembles and matures while riding with the polymerase.
Collapse
Affiliation(s)
- Steven J Kim
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095-1569, USA
| | | |
Collapse
|
9
|
Mohamed MR, Niles EG. UUUUUNU stimulation of vaccinia virus early gene transcription termination. Oligonucleotide sequence and structural requirements for stimulation of premature termination in vitro. J Biol Chem 2003; 278:39534-41. [PMID: 12890673 DOI: 10.1074/jbc.m306048200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vaccinia virus early genes are unique in that transcription terminates in a signal- and factor-dependent manner. Recent results from this laboratory demonstrated that a 22-mer RNA oligonucleotide containing a central U9 sequence exhibited sequence- and concentration-dependent stimulation of premature transcription termination and transcript release in trans. In an effort to better understand the different aspects of the U5NU stimulation of premature termination, we evaluated the activity of various oligonucleotides in vitro. Neither RNA containing a mutant U5NU signal nor single-stranded DNA containing T5NT was able to stimulate premature termination, demonstrating both sequence specificity and a requirement for ribose. Furthermore, neither oligonucleotide was able to compete with U5NU, demonstrating that each failed to bind to the U5NU recognition factor. Substitution of the U9 signal with either BrU9 or BrdU9 inhibited normal termination but did not stimulate premature termination. The addition of BrdU5NdU inhibited U5NU stimulation of premature termination, demonstrating that both oligonucleotides bind to the same site on the U5NU recognition factor. Finally, U5NU containing RNA as short as nine bases served as an effective stimulator of premature termination. These observations impact directly on the development of oligonucleotide based anti-poxvirus therapeutic agents.
Collapse
Affiliation(s)
- Mohamed Ragaa Mohamed
- Department of Biochemistry, State University of New York, Schol of Medicine and Biomedical Sciences, Buffalo, 14214, USA
| | | |
Collapse
|