1
|
Abdolvahab MH, Safari M, Hasannejad F, Asefi N, Salimi A, Nazari M. Optimization of a recombinant BlaR-CTD protein formulation using the response surface methodology. J Biol Eng 2024; 18:4. [PMID: 38212764 PMCID: PMC10785353 DOI: 10.1186/s13036-023-00399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024] Open
Abstract
The sequence of a carboxy-terminal of the β-lactam sensor-transducer protein (BlaR-CTD) from Bacillus licheniformis ATCC14580 was extracted from US7745193B2 patent and expressed in E. coli using pColdI vector as a soluble His-tag recombinant protein. In this study, several excipients were used to improve the stability of recombinant BlaR-CTD and obtain the optimal formulation for this protein using response surface methodology (RSM)/ Central Composite Design (CCD). Total protein concentration was measured by UV spectroscopy and the Bradford test. A total of 7 various factors were designed using four different excipients including Glycerol, Sucrose, Triton x-100, and Tween-20, and three different buffers like Tris, Borate, and PBS. By obtaining suitable excipients and buffer i.e. glycerol and sucrose, pH ranging from 7 to 9 were evaluated. The pH 7.62, glycerol 15.35%, and sucrose 152.52 mM were determined as the most suitable for improving the thermal stability of recombinant BlaR-CTD.
Collapse
Affiliation(s)
- Mohadeseh Haji Abdolvahab
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Mojdeh Safari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farkhonde Hasannejad
- Genetic Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Nika Asefi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Genetic Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Alireza Salimi
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Mahboobeh Nazari
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
2
|
Serchenya TS, Semizhon PA, Schaslionak AP, Harbachova IV, Vashkevich II, Sviridov OV. A Method for the Quantitative Determination of the Active Receptor of Beta-Lactam Antibiotics BlaR-CTD for Bioanalytical Applications. APPL BIOCHEM MICRO+ 2023. [DOI: 10.1134/s0003683823010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
3
|
Identification of the Extracytoplasmic Function σ Factor σ P Regulon in Bacillus thuringiensis. mSphere 2022; 7:e0096721. [PMID: 35080471 PMCID: PMC8791391 DOI: 10.1128/msphere.00967-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bacillus thuringiensis and other members of the Bacillus cereus family are resistant to many β-lactams. Resistance is dependent upon the extracytoplasmic function sigma factor σP. We used label-free quantitative proteomics to identify proteins whose expression was dependent upon σP. We compared the protein profiles of strains which either lacked σP or overexpressed σP. We identified 8 members of the σP regulon which included four β-lactamases as well as three penicillin-binding proteins (PBPs). Using transcriptional reporters, we confirmed that these genes are induced by β-lactams in a σP-dependent manner. These genes were deleted individually or in various combinations to determine their role in resistance to a subset of β-lactams, including ampicillin, methicillin, cephalexin, and cephalothin. We found that different combinations of β-lactamases and PBPs are involved in resistance to different β-lactams. Our data show that B. thuringiensis utilizes a suite of enzymes to protect itself from β-lactam antibiotics. IMPORTANCE Antimicrobial resistance is major concern for public health. β-Lactams remain an important treatment option for many diseases. However, the spread of β-lactam resistance continues to rise. Many pathogens acquire antibiotic resistance from environmental bacteria. Thus, understanding β-lactam resistance in environmental strains may provide insights into additional mechanisms of antibiotic resistance. Here, we describe how a single regulatory system, σP, in B. thuringiensis controls expression of multiple genes involved in resistance to β-lactams. Our findings indicate that some of these genes are partially redundant. Our data also suggest that the large number of genes controlled by σP results in increased resistance to a wider range of β-lactam classes than any single gene could provide.
Collapse
|
4
|
Hebdon SD, Gerritsen AT, Chen YP, Marcano JG, Chou KJ. Genome-Wide Transcription Factor DNA Binding Sites and Gene Regulatory Networks in Clostridium thermocellum. Front Microbiol 2021; 12:695517. [PMID: 34566906 PMCID: PMC8457756 DOI: 10.3389/fmicb.2021.695517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
Clostridium thermocellum is a thermophilic bacterium recognized for its natural ability to effectively deconstruct cellulosic biomass. While there is a large body of studies on the genetic engineering of this bacterium and its physiology to-date, there is limited knowledge in the transcriptional regulation in this organism and thermophilic bacteria in general. The study herein is the first report of a large-scale application of DNA-affinity purification sequencing (DAP-seq) to transcription factors (TFs) from a bacterium. We applied DAP-seq to > 90 TFs in C. thermocellum and detected genome-wide binding sites for 11 of them. We then compiled and aligned DNA binding sequences from these TFs to deduce the primary DNA-binding sequence motifs for each TF. These binding motifs are further validated with electrophoretic mobility shift assay (EMSA) and are used to identify individual TFs’ regulatory targets in C. thermocellum. Our results led to the discovery of novel, uncharacterized TFs as well as homologues of previously studied TFs including RexA-, LexA-, and LacI-type TFs. We then used these data to reconstruct gene regulatory networks for the 11 TFs individually, which resulted in a global network encompassing the TFs with some interconnections. As gene regulation governs and constrains how bacteria behave, our findings shed light on the roles of TFs delineated by their regulons, and potentially provides a means to enable rational, advanced genetic engineering of C. thermocellum and other organisms alike toward a desired phenotype.
Collapse
Affiliation(s)
- Skyler D Hebdon
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Alida T Gerritsen
- Computational Sciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Yi-Pei Chen
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Joan G Marcano
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Katherine J Chou
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| |
Collapse
|
5
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|
6
|
The Penicillin-Binding Protein PbpP Is a Sensor of β-Lactams and Is Required for Activation of the Extracytoplasmic Function σ Factor σ P in Bacillus thuringiensis. mBio 2021; 12:mBio.00179-21. [PMID: 33758089 PMCID: PMC8092216 DOI: 10.1128/mbio.00179-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
β-Lactams are a class of antibiotics that target the synthesis of peptidoglycan, an essential component of the cell wall. β-Lactams inhibit the function of penicillin-binding proteins (PBPs), which form the cross-links between strands of peptidoglycan. Resistance to β-lactams complicates the treatment of bacterial infections. In recent years, the spread of β-lactam resistance has increased with growing intensity. Resistance is often conferred by β-lactamases, which inactivate β-lactams, or the expression of alternative β-lactam-resistant PBPs. σP is an extracytoplasmic function (ECF) σ factor that controls β-lactam resistance in the species Bacillus thuringiensis, Bacillus cereus, and Bacillus anthracis σP is normally held inactive by the anti-σ factor RsiP. σP is activated by β-lactams that trigger the proteolytic destruction of RsiP. Here, we identify the penicillin-binding protein PbpP and demonstrate its essential role in the activation of σP Our data show that PbpP is required for σP activation and RsiP degradation. Our data suggest that PbpP acts as a β-lactam sensor since the binding of a subset of β-lactams to PbpP is required for σP activation. We find that PbpP likely directly or indirectly controls site 1 cleavage of RsiP, which results in the degradation of RsiP and, thus, σP activation. σP activation results in increased expression of β-lactamases and, thus, increased β-lactam resistance. This work is the first report of a PBP acting as a sensor for β-lactams and controlling the activation of an ECF σ factor.IMPORTANCE The bacterial cell envelope is the target for numerous antibiotics. Many antibiotics target the synthesis of peptidoglycan, which is a central metabolic pathway essential for bacterial survival. One of the most important classes of antibiotics has been β-lactams, which inhibit the transpeptidase activity of penicillin-binding proteins to decrease the cross-linking of peptidoglycan and the strength of the cell wall. While β-lactam antibiotics have historically proven to be effective, resistance to β-lactams is a growing problem. The ECF σ factor σP is required for β-lactam resistance in B. thuringiensis and close relatives, including B. anthracis Here, we provide insight into the mechanism of activation of σP by β-lactams.
Collapse
|
7
|
Construction of an Electrochemical Receptor Sensor Based on Graphene/Thionine for the Sensitive Determination of β-Lactam Antibiotics Content in Milk. Int J Mol Sci 2020; 21:ijms21093306. [PMID: 32392795 PMCID: PMC7246818 DOI: 10.3390/ijms21093306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 11/16/2022] Open
Abstract
In antibiotics, β-lactam is one kind of major concern acknowledged as an unavoidable contaminant in milk. Thus, a facile and sensitive method is essential for rapid β-lactam antibiotics detection. In our work, a specific electrochemical receptor sensor based on the graphene/thionine (GO/TH) composite was established. The mechanism of the electrochemical receptor sensor was a direct competitive inhibition of the binding of horseradish peroxidase-labeled ampicillin (HRP-AMP) to the mutant BlaR-CTD protein by free β-lactam antibiotics. Then, horseradish peroxidase (HRP) catalyzed the hydrolysis of the substrate hydrogen peroxide (H2O2), which produced an electrochemical signal. Under optimal experimental conditions, this method could quantitatively detect cefquinome from 0.1 to 8 μg L−1 and with the limit of detection (LOD) of 0.16 μg L−1, much lower than the maximum residue limit (MRL) of 5 μg L−1 set by the European Union. In addition, the LOD of spiked milk samples with cefalexin, cefquinoxime, cefotafur, penicillin G and ampicillin were 14.88 μg L−1, 2.46 μg L−1, 17.16 μg L−1, 0.06 μg L−1, 0.21 μg L−1 and the limits of quantitation (LOQ) were 36.09 μg L−1, 5.40 μg L−1, 41.45 μg L−1, 0.13 μg L−1, 0.42 μg L−1, respectively. The sensor showed a favorable recovery of 84.89–102.44%. Moreover, the electrochemical receptor sensor was successfully applied to assay β-lactam antibiotics in milk, which showed good correlation with the results obtained from liquid chromatography-tandem mass spectrometry (LC-MS/MS).
Collapse
|
8
|
Fisher JF, Mobashery S. Constructing and deconstructing the bacterial cell wall. Protein Sci 2020; 29:629-646. [PMID: 31747090 PMCID: PMC7021008 DOI: 10.1002/pro.3737] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Abstract
The history of modern medicine cannot be written apart from the history of the antibiotics. Antibiotics are cytotoxic secondary metabolites that are isolated from Nature. The antibacterial antibiotics disproportionately target bacterial protein structure that is distinct from eukaryotic protein structure, notably within the ribosome and within the pathways for bacterial cell-wall biosynthesis (for which there is not a eukaryotic counterpart). This review focuses on a pre-eminent class of antibiotics-the β-lactams, exemplified by the penicillins and cephalosporins-from the perspective of the evolving mechanisms for bacterial resistance. The mechanism of action of the β-lactams is bacterial cell-wall destruction. In the monoderm (single membrane, Gram-positive staining) pathogen Staphylococcus aureus the dominant resistance mechanism is expression of a β-lactam-unreactive transpeptidase enzyme that functions in cell-wall construction. In the diderm (dual membrane, Gram-negative staining) pathogen Pseudomonas aeruginosa a dominant resistance mechanism (among several) is expression of a hydrolytic enzyme that destroys the critical β-lactam ring of the antibiotic. The key sensing mechanism used by P. aeruginosa is monitoring the molecular difference between cell-wall construction and cell-wall deconstruction. In both bacteria, the resistance pathways are manifested only when the bacteria detect the presence of β-lactams. This review summarizes how the β-lactams are sensed and how the resistance mechanisms are manifested, with the expectation that preventing these processes will be critical to future chemotherapeutic control of multidrug resistant bacteria.
Collapse
Affiliation(s)
- Jed F. Fisher
- Department of Chemistry and BiochemistryUniversity of Notre DameSouth BendIndiana
| | - Shahriar Mobashery
- Department of Chemistry and BiochemistryUniversity of Notre DameSouth BendIndiana
| |
Collapse
|
9
|
Regulation and Anaerobic Function of the Clostridioides difficile β-Lactamase. Antimicrob Agents Chemother 2019; 64:AAC.01496-19. [PMID: 31611350 DOI: 10.1128/aac.01496-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/07/2019] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile causes severe antibiotic-associated diarrhea and colitis. C. difficile is an anaerobic, Gram-positive sporeformer that is highly resistant to β-lactams, the most commonly prescribed antibiotics. The resistance of C. difficile to β-lactam antibiotics allows the pathogen to replicate and cause disease in antibiotic-treated patients. However, the mechanisms of β-lactam resistance in C. difficile are not fully understood. Our data reinforce prior evidence that C. difficile produces a β-lactamase, which is a common β-lactam resistance mechanism found in other bacterial species. Here, we characterize the C. difficile bla operon that encodes a lipoprotein of unknown function and a β-lactamase that was greatly induced in response to several classes of β-lactam antibiotics. An in-frame deletion of the operon abolished β-lactamase activity in C. difficile strain 630Δerm and resulted in decreased resistance to the β-lactam ampicillin. We found that the activity of this β-lactamase, BlaCDD, is dependent upon the redox state of the enzyme. In addition, we observed that transport of BlaCDD out of the cytosol and to the cell surface is facilitated by an N-terminal signal sequence. Our data demonstrate that a cotranscribed lipoprotein, BlaX, aids in BlaCDD activity. Further, we identified a conserved BlaRI regulatory system and demonstrated via insertional disruption that BlaRI controls transcription of the blaXCDD genes in response to β-lactams. These results provide support for the function of a β-lactamase in C. difficile antibiotic resistance and reveal the unique roles of a coregulated lipoprotein and reducing environment in C. difficile β-lactamase activity.
Collapse
|
10
|
Belluzo BS, Abriata LA, Giannini E, Mihovilcevic D, Dal Peraro M, Llarrull LI. An experiment-informed signal transduction model for the role of the Staphylococcus aureus MecR1 protein in β-lactam resistance. Sci Rep 2019; 9:19558. [PMID: 31862951 PMCID: PMC6925264 DOI: 10.1038/s41598-019-55923-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 12/04/2019] [Indexed: 11/13/2022] Open
Abstract
The treatment of hospital- and community-associated infections by methicillin-resistant Staphylococcus aureus (MRSA) is a perpetual challenge. This Gram-positive bacterium is resistant specifically to β-lactam antibiotics, and generally to many other antibacterial agents. Its resistance mechanisms to β-lactam antibiotics are activated only when the bacterium encounters a β-lactam. This activation is regulated by the transmembrane sensor/signal transducer proteins BlaR1 and MecR1. Neither the transmembrane/metalloprotease domain, nor the complete MecR1 and BlaR1 proteins, are isolatable for mechanistic study. Here we propose a model for full-length MecR1 based on homology modeling, residue coevolution data, a new extensive experimental mapping of transmembrane topology, partial structures, molecular simulations, and available NMR data. Our model defines the metalloprotease domain as a hydrophilic transmembrane chamber effectively sealed by the apo-sensor domain. It proposes that the amphipathic helices inserted into the gluzincin domain constitute the route for transmission of the β-lactam-binding event in the extracellular sensor domain, to the intracellular and membrane-embedded zinc-containing active site. From here, we discuss possible routes for subsequent activation of proteolytic action. This study provides the first coherent model of the structure of MecR1, opening routes for future functional investigations on how β-lactam binding culminates in the proteolytic degradation of MecI.
Collapse
Affiliation(s)
- Bruno S Belluzo
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 27 de Febrero 210 bis, 2000, Rosario, Argentina
| | - Luciano A Abriata
- Laboratory for Biomolecular Modeling - École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, CH-1015, Lausanne, Switzerland
| | - Estefanía Giannini
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 27 de Febrero 210 bis, 2000, Rosario, Argentina
| | - Damila Mihovilcevic
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 27 de Febrero 210 bis, 2000, Rosario, Argentina
| | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling - École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, CH-1015, Lausanne, Switzerland
| | - Leticia I Llarrull
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 27 de Febrero 210 bis, 2000, Rosario, Argentina. .,Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 2000, Rosario, Argentina.
| |
Collapse
|
11
|
Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Takebayashi Y, Spencer J. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J Mol Biol 2019; 431:3472-3500. [PMID: 30959050 PMCID: PMC6723624 DOI: 10.1016/j.jmb.2019.04.002] [Citation(s) in RCA: 459] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 12/31/2022]
Abstract
The β-lactams retain a central place in the antibacterial armamentarium. In Gram-negative bacteria, β-lactamase enzymes that hydrolyze the amide bond of the four-membered β-lactam ring are the primary resistance mechanism, with multiple enzymes disseminating on mobile genetic elements across opportunistic pathogens such as Enterobacteriaceae (e.g., Escherichia coli) and non-fermenting organisms (e.g., Pseudomonas aeruginosa). β-Lactamases divide into four classes; the active-site serine β-lactamases (classes A, C and D) and the zinc-dependent or metallo-β-lactamases (MBLs; class B). Here we review recent advances in mechanistic understanding of each class, focusing upon how growing numbers of crystal structures, in particular for β-lactam complexes, and methods such as neutron diffraction and molecular simulations, have improved understanding of the biochemistry of β-lactam breakdown. A second focus is β-lactamase interactions with carbapenems, as carbapenem-resistant bacteria are of grave clinical concern and carbapenem-hydrolyzing enzymes such as KPC (class A) NDM (class B) and OXA-48 (class D) are proliferating worldwide. An overview is provided of the changing landscape of β-lactamase inhibitors, exemplified by the introduction to the clinic of combinations of β-lactams with diazabicyclooctanone and cyclic boronate serine β-lactamase inhibitors, and of progress and strategies toward clinically useful MBL inhibitors. Despite the long history of β-lactamase research, we contend that issues including continuing unresolved questions around mechanism; opportunities afforded by new technologies such as serial femtosecond crystallography; the need for new inhibitors, particularly for MBLs; the likely impact of new β-lactam:inhibitor combinations and the continuing clinical importance of β-lactams mean that this remains a rewarding research area.
Collapse
Affiliation(s)
- Catherine L Tooke
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Eilis C Bragginton
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Charlotte K Colenso
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Viivi H A Hirvonen
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Yuiko Takebayashi
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
12
|
Ning J, Ahmed S, Cheng G, Chen T, Wang Y, Peng D, Yuan Z. Analysis of the stability and affinity of BlaR-CTD protein to β-lactam antibiotics based on docking and mutagenesis studies. J Biol Eng 2019; 13:27. [PMID: 30976316 PMCID: PMC6441189 DOI: 10.1186/s13036-019-0157-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
Owing to the thermal instability and low affinity of BlaR-CTD to some β-lactams, the receptor assay based on BlaR-CTD is limited in the detection of abundant variety of drugs and the result is often unstable. In this study, the three-dimensional structure of BlaR-CTD from Bacillus licheniformis ATCC14580 was constructed by homologous modeling based on the crystal structure of BlaR-CTD from B. licheniformis 749/I, and the binding sites of this protein to 40 β-lactams were also obtained by molecular docking. To improve the stability and affinity of the protein, 23 mutant proteins were designed based on docking and homologous alignment results as well as by inserting disulfide bond and building the salt bridge. The mutation was rationality evaluated by SIFT and PloyPhen2 software. The heterologous expressed and purified mutant proteins were then subjected to the activity and stability assay. It was shown that among all mutant proteins, I188K/S19C/G24C, A138E/R50C/Q147C and S190Y/E183C/I188K respectively exhibited a higher affinity to 33, 22 and 21 β-lactams than the wild-type protein, while I188K/S19C/G24C exhibited the best stability. This may due to that the conformation of the active site in mutant protein I188K/S19C/G24C changed, and the random coli in the surface of protein activity increased. Our study suggests a possible structure-function relationship on the stability and affinity of BlaR-CTD, which provides new insights into protein rational design study and lays a solid foundation for establishing the receptor-based screening assay for the detection of β-lactam residues.
Collapse
Affiliation(s)
- Jianan Ning
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, 430070 China
| | - Saeed Ahmed
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, 430070 China
| | - Guyue Cheng
- 2MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ting Chen
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yulian Wang
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, 430070 China
| | - Dapeng Peng
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zonghui Yuan
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, 430070 China.,2MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
13
|
Frederick TE, Peng JW. A gratuitous β-Lactamase inducer uncovers hidden active site dynamics of the Staphylococcus aureus BlaR1 sensor domain. PLoS One 2018; 13:e0197241. [PMID: 29771929 PMCID: PMC5957439 DOI: 10.1371/journal.pone.0197241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/28/2018] [Indexed: 11/18/2022] Open
Abstract
Increasing evidence shows that active sites of proteins have non-trivial conformational dynamics. These dynamics include active site residues sampling different local conformations that allow for multiple, and possibly novel, inhibitor binding poses. Yet, active site dynamics garner only marginal attention in most inhibitor design efforts and exert little influence on synthesis strategies. This is partly because synthesis requires a level of atomic structural detail that is frequently missing in current characterizations of conformational dynamics. In particular, while the identity of the mobile protein residues may be clear, the specific conformations they sample remain obscure. Here, we show how an appropriate choice of ligand can significantly sharpen our abilities to describe the interconverting binding poses (conformations) of protein active sites. Specifically, we show how 2-(2'-carboxyphenyl)-benzoyl-6-aminopenicillanic acid (CBAP) exposes otherwise hidden dynamics of a protein active site that binds β-lactam antibiotics. When CBAP acylates (binds) the active site serine of the β-lactam sensor domain of BlaR1 (BlaRS), it shifts the time scale of the active site dynamics to the slow exchange regime. Slow exchange enables direct characterization of inter-converting protein and bound ligand conformations using NMR methods. These methods include chemical shift analysis, 2-d exchange spectroscopy, off-resonance ROESY of the bound ligand, and reduced spectral density mapping. The active site architecture of BlaRS is shared by many β-lactamases of therapeutic interest, suggesting CBAP could expose functional motions in other β-lactam binding proteins. More broadly, CBAP highlights the utility of identifying chemical probes common to structurally homologous proteins to better expose functional motions of active sites.
Collapse
Affiliation(s)
- Thomas E. Frederick
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States of America
| | - Jeffrey W. Peng
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States of America
- Department of Physics, University of Notre Dame, Notre Dame, IN, United States of America
| |
Collapse
|
14
|
Lohans CT, Wang DY, Jorgensen C, Cahill ST, Clifton IJ, McDonough MA, Oswin HP, Spencer J, Domene C, Claridge TDW, Brem J, Schofield CJ. 13C-Carbamylation as a mechanistic probe for the inhibition of class D β-lactamases by avibactam and halide ions. Org Biomol Chem 2018; 15:6024-6032. [PMID: 28678295 DOI: 10.1039/c7ob01514c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The class D (OXA) serine β-lactamases are a major cause of resistance to β-lactam antibiotics. The class D enzymes are unique amongst β-lactamases because they have a carbamylated lysine that acts as a general acid/base in catalysis. Previous crystallographic studies led to the proposal that β-lactamase inhibitor avibactam targets OXA enzymes in part by promoting decarbamylation. Similarly, halide ions are proposed to inhibit OXA enzymes via decarbamylation. NMR analyses, in which the carbamylated lysines of OXA-10, -23 and -48 were 13C-labelled, indicate that reaction with avibactam does not ablate lysine carbamylation in solution. While halide ions did not decarbamylate the 13C-labelled OXA enzymes in the absence of substrate or inhibitor, avibactam-treated OXA enzymes were susceptible to decarbamylation mediated by halide ions, suggesting halide ions may inhibit OXA enzymes by promoting decarbamylation of acyl-enzyme complex. Crystal structures of the OXA-10 avibactam complex were obtained with bromide, iodide, and sodium ions bound between Trp-154 and Lys-70. Structures were also obtained wherein bromide and iodide ions occupy the position expected for the 'hydrolytic water' molecule. In contrast with some solution studies, Lys-70 was decarbamylated in these structures. These results reveal clear differences between crystallographic and solution studies on the interaction of class D β-lactamases with avibactam and halides, and demonstrate the utility of 13C-NMR for studying lysine carbamylation in solution.
Collapse
Affiliation(s)
| | - David Y Wang
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| | | | - Samuel T Cahill
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| | - Ian J Clifton
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| | | | - Henry P Oswin
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Carmen Domene
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK. and Department of Chemistry, King's College London, London, SE1 1DB, UK
| | | | - Jürgen Brem
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| | | |
Collapse
|
15
|
Prevalence of blaOXA-1 and blaDHA-1 AmpC β-Lactamase-Producing and Methicillin-Resistant Staphylococcus aureus in Iran. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2016. [DOI: 10.5812/pedinfect.36778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Craney A, Romesberg FE. The inhibition of type I bacterial signal peptidase: Biological consequences and therapeutic potential. Bioorg Med Chem Lett 2015; 25:4761-4766. [PMID: 26276537 DOI: 10.1016/j.bmcl.2015.07.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/16/2015] [Accepted: 07/21/2015] [Indexed: 01/05/2023]
Abstract
The general secretory pathway has long been regarded as a potential antibiotic drug target. In particular, bacterial type I signal peptidase (SPase) is emerging as a strong candidate for therapeutic use. In this review, we focus on the information gained from the use of SPase inhibitors as probes of prokaryote biology. A thorough understanding of the consequences of SPase inhibition and the mechanisms of resistance that arise are essential to the success of SPase as an antibiotic target. In addition to the role of SPase in processing secreted proteins, the use of SPase inhibitors has elucidated a previously unknown function for SPase in regulating cleavage events of membrane proteins.
Collapse
Affiliation(s)
- Arryn Craney
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
17
|
Staude MW, Frederick TE, Natarajan SV, Wilson BD, Tanner CE, Ruggiero ST, Mobashery S, Peng JW. Investigation of signal transduction routes within the sensor/transducer protein BlaR1 of Staphylococcus aureus. Biochemistry 2015; 54:1600-10. [PMID: 25658195 DOI: 10.1021/bi501463k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transmembrane antibiotic sensor/signal transducer protein BlaR1 is part of a cohort of proteins that confer β-lactam antibiotic resistance in methicillin-resistant Staphylococcus aureus (MRSA) [Fisher, J. F., Meroueh, S. O., and Mobashery, S. (2005) Chem. Rev. 105, 395-424; Llarrull, L. I., Fisher, J. F., and Mobashery, S. (2009) Antimicrob. Agents Chemother. 53, 4051-4063; Llarrull, L. I., Toth, M., Champion, M. M., and Mobashery, S. (2011) J. Biol. Chem. 286, 38148-38158]. Specifically, BlaR1 regulates the inducible expression of β-lactamases that hydrolytically destroy β-lactam antibiotics. The resistance phenotype starts with β-lactam antibiotic acylation of the BlaR1 extracellular domain (BlaRS). The acylation activates the cytoplasmic protease domain through an obscure signal transduction mechanism. Here, we compare protein dynamics of apo versus antibiotic-acylated BlaRS using nuclear magnetic resonance. Our analyses reveal inter-residue interactions that relay acylation-induced perturbations within the antibiotic-binding site to the transmembrane helix regions near the membrane surface. These are the first insights into the process of signal transduction by BlaR1.
Collapse
Affiliation(s)
- Michael W Staude
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | | | | | | | | | | | | | | |
Collapse
|
18
|
June CM, Vaughan RM, Ulberg LS, Bonomo RA, Witucki LA, Leonard DA. A fluorescent carbapenem for structure function studies of penicillin-binding proteins, β-lactamases, and β-lactam sensors. Anal Biochem 2014; 463:70-4. [PMID: 25058926 DOI: 10.1016/j.ab.2014.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/12/2014] [Indexed: 11/29/2022]
Abstract
By reacting fluorescein isothiocyanate with meropenem, we have prepared a carbapenem-based fluorescent β-lactam. Fluorescein-meropenem binds both penicillin-binding proteins and β-lactam sensors and undergoes a typical acylation reaction in the active site of these proteins. The probe binds the class D carbapenemase OXA-24/40 with close to the same affinity as meropenem and undergoes a complete catalytic hydrolysis reaction. The visible light excitation and strong emission of fluorescein render this molecule a useful structure-function probe through its application in sodium dodecyl sulfate-polyacrylamide gel electrophoresis assays as well as solution-based kinetic anisotropy assays. Its classification as a carbapenem β-lactam and the position of its fluorescent modification render it a useful complement to other fluorescent β-lactams, most notably Bocillin FL. In this study, we show the utility of fluorescein-meropenem by using it to detect mutants of OXA-24/40 that arrest at the acyl-intermediate state with carbapenem substrates but maintain catalytic competency with penicillin substrates.
Collapse
Affiliation(s)
- Cynthia M June
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - Robert M Vaughan
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - Lucas S Ulberg
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and Department of Pharmacology, Molecular Biology, and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Laurie A Witucki
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - David A Leonard
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA.
| |
Collapse
|
19
|
El-Sheshtawy HS, Abou Baker AM. Synthesis, structural, theoretical studies and biological activities of 3-(arylamino)-2-phenyl-1H-inden-1-one derivative. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.03.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Blázquez B, Llarrull LI, Luque-Ortega JR, Alfonso C, Boggess B, Mobashery S. Regulation of the expression of the β-lactam antibiotic-resistance determinants in methicillin-resistant Staphylococcus aureus (MRSA). Biochemistry 2014; 53:1548-50. [PMID: 24564530 PMCID: PMC3971960 DOI: 10.1021/bi500074w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
β-Lactam
antibiotics have faced obsolescence with the emergence
of methicillin-resistant Staphylococcus aureus (MRSA).
A complex set of events ensues upon exposure of MRSA to these antibiotics,
which culminates in proteolysis of BlaI or MecI, two gene repressors,
and results in the induction of resistance. We report studies on the
mechanism of binding of these gene repressors to the operator regions
by fluorescence anisotropy. Within the range of in vivo concentrations for BlaI and MecI, these proteins interact with their
regulatory elements in a reversible manner, as both a monomer and
a dimer.
Collapse
Affiliation(s)
- Blas Blázquez
- Department Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | | | | | | | | | | |
Collapse
|
21
|
Che T, Bethel CR, Pusztai-Carey M, Bonomo RA, Carey PR. The different inhibition mechanisms of OXA-1 and OXA-24 β-lactamases are determined by the stability of active site carboxylated lysine. J Biol Chem 2014; 289:6152-64. [PMID: 24443569 DOI: 10.1074/jbc.m113.533562] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The catalytic efficiency of class D β-lactamases depends critically on an unusual carboxylated lysine as the general base residue for both the acylation and deacylation steps of the enzyme. Microbiological and biochemical studies on the class D β-lactamases OXA-1 and OXA-24 showed that the two enzymes behave differently when reacting with two 6-methylidene penems (penem 1 and penem 3): the penems are good inhibitors of OXA-1 but act more like substrates for OXA-24. UV difference and Raman spectroscopy revealed that the respective reaction mechanisms are different. The penems form an unusual intermediate, a 1,4-thiazepine derivative in OXA-1, and undergo deacylation followed by the decarboxylation of Lys-70, rendering OXA-1 inactive. This inactivation could not be reversed by the addition of 100 mM NaHCO3. In OXA-24, under mild conditions (enzyme:inhibitor = 1:4), only hydrolyzed products were detected, and the enzyme remained active. However, under harsh conditions (enzyme:inhibitor = 1:2000), OXA-24 was inhibited via decarboxylation of Lys-84; however, the enzyme could be reactivated by the addition of 100 mM NaHCO3. We conclude that OXA-24 not only decarboxylates with difficulty but also recarboxylates with ease; in contrast, OXA-1 decarboxylates easily but recarboxylates with difficulty. Structural analysis of the active site indicates that a crystallographic water molecule may play an important role in carboxylation in OXA-24 (an analogous water molecule is not found in OXA-1), supporting the suggestion that a water molecule in the active site of OXA-24 can lower the energy barrier for carboxylation significantly.
Collapse
Affiliation(s)
- Tao Che
- From the Departments of Biochemistry
| | | | | | | | | |
Collapse
|
22
|
Leonard DA, Bonomo RA, Powers RA. Class D β-lactamases: a reappraisal after five decades. Acc Chem Res 2013; 46:2407-15. [PMID: 23902256 DOI: 10.1021/ar300327a] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite 70 years of clinical use, β-lactam antibiotics still remain at the forefront of antimicrobial chemotherapy. The major challenge to these life-saving therapeutics is the presence of bacterial enzymes (i.e., β-lactamases) that can hydrolyze the β-lactam bond and inactivate the antibiotic. These enzymes can be grouped into four classes (A-D). Among the most genetically diverse are the class D β-lactamases. In this class are β-lactamases that can inactivate the entire spectrum of β-lactam antibiotics (penicillins, cephalosporins, and carbapenems). Class D β-lactamases are mostly found in Gram-negative bacteria such as Pseudomonas aeruginosa , Escherichia coli , Proteus mirabilis , and Acinetobacter baumannii . The active-sites of class D β-lactamases contain an unusual N-carboxylated lysine post-translational modification. A strongly hydrophobic active-site helps create the conditions that allow the lysine to combine with CO2, and the resulting carbamate is stabilized by a number of hydrogen bonds. The carboxy-lysine plays a symmetric role in the reaction, serving as a general base to activate the serine nucleophile in the acylation reaction, and the deacylating water in the second step. There are more than 250 class D β-lactamases described, and the full set of variants shows remarkable diversity with regard to substrate binding and turnover. Narrow-spectrum variants are most effective against the earliest generation penicillins and cephalosporins such as ampicillin and cephalothin. Extended-spectrum variants (also known as extended-spectrum β-lactamases, ESBLs) pose a more dangerous clinical threat as they possess a small number of substitutions that allow them to bind and hydrolyze later generation cephalosporins that contain bulkier side-chain constituents (e.g., cefotaxime, ceftazidime, and cefepime). Mutations that permit this versatility seem to cluster in the area surrounding an active-site tryptophan resulting in a widened active-site to accommodate the oxyimino side-chains of these cephalosporins. More concerning are the class D β-lactamases that hydrolyze clinically important carbapenem β-lactam drugs (e.g., imipenem). Whereas carbapenems irreversibly acylate and inhibit narrow-spectrum β-lactamases, class D carbapenemases are able to recruit and activate a deacylating water. The rotational orientation of the C6 hydroxyethyl group found on all carbapenem antibiotics likely plays a role in whether the deacylating water is effective or not. Inhibition of class D β-lactamases is a current challenge. Commercially available inhibitors that are active against other classes of β-lactamases are ineffective against class D enzymes. On the horizon are several compounds, consisting of both β-lactam derivatives and non-β-lactams, that have the potential of providing novel leads to design new mechanism-based inactivators that are effective against the class D enzymes. Several act synergistically when given in combination with a β-lactam antibiotic, and others show a unique mechanism of inhibition that is distinct from the traditional β-lactamase inhibitors. These studies will bolster structure-based inhibitor design efforts to facilitate the optimization and development of these compounds as class D inactivators.
Collapse
Affiliation(s)
- David A. Leonard
- Department of Chemistry, Grand Valley State University, Allendale, Michigan 49401, United States
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and Department of Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Rachel A. Powers
- Department of Chemistry, Grand Valley State University, Allendale, Michigan 49401, United States
| |
Collapse
|
23
|
Cain JA, Solis N, Cordwell SJ. Beyond gene expression: the impact of protein post-translational modifications in bacteria. J Proteomics 2013; 97:265-86. [PMID: 23994099 DOI: 10.1016/j.jprot.2013.08.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/08/2013] [Accepted: 08/10/2013] [Indexed: 12/12/2022]
Abstract
The post-translational modification (PTM) of proteins plays a critical role in the regulation of a broad range of cellular processes in eukaryotes. Yet their role in governing similar systems in the conventionally presumed 'simpler' forms of life has been largely neglected and, until recently, was thought to occur only rarely, with some modifications assumed to be limited to higher organisms alone. Recent developments in mass spectrometry-based proteomics have provided an unparalleled power to enrich, identify and quantify peptides with PTMs. Additional modifications to biological molecules such as lipids and carbohydrates that are essential for bacterial pathophysiology have only recently been detected on proteins. Here we review bacterial protein PTMs, focusing on phosphorylation, acetylation, proteolytic degradation, methylation and lipidation and the roles they play in bacterial adaptation - thus highlighting the importance of proteomic techniques in a field that is only just in its infancy. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Joel A Cain
- School of Molecular Bioscience, School of Medical Sciences, The University of Sydney, 2006, Australia
| | - Nestor Solis
- School of Molecular Bioscience, School of Medical Sciences, The University of Sydney, 2006, Australia
| | - Stuart J Cordwell
- School of Molecular Bioscience, School of Medical Sciences, The University of Sydney, 2006, Australia; Discipline of Pathology, School of Medical Sciences, The University of Sydney, 2006, Australia.
| |
Collapse
|
24
|
Llarrull LI, Mobashery S. Dissection of events in the resistance to β-lactam antibiotics mediated by the protein BlaR1 from Staphylococcus aureus. Biochemistry 2012; 51:4642-9. [PMID: 22616850 DOI: 10.1021/bi300429p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A heterologous expression system was used to evaluate activation of BlaR1, a sensor/signal transducer protein of Staphylococcus aureus with a central role in resistance to β-lactam antibiotics. In the absence of other S. aureus proteins that might respond to antibiotics and participate in signal transduction events, we documented that BlaR1 fragmentation is autolytic, that it occurs in the absence of antibiotics, and that BlaR1 directly degrades BlaI, the gene repressor of the system. Furthermore, we disclosed that this proteolytic activity is metal ion-dependent and that it is not modulated directly by acylation of the sensor domain by β-lactam antibiotics.
Collapse
Affiliation(s)
- Leticia I Llarrull
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
25
|
Buchman JS, Schneider KD, Lloyd AR, Pavlish SL, Leonard DA. Site-saturation mutagenesis of position V117 in OXA-1 β-lactamase: effect of side chain polarity on enzyme carboxylation and substrate turnover. Biochemistry 2012; 51:3143-50. [PMID: 22429123 DOI: 10.1021/bi201896k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Class D β-lactamases pose an emerging threat to the efficacy of β-lactam therapy for bacterial infections. Class D enzymes differ mechanistically from other β-lactamases by the presence of an active-site N-carboxylated lysine that serves as a general base to activate the serine nucleophile for attack. We have used site-saturation mutagenesis at position V117 in the class D β-lactamase OXA-1 to investigate how alterations in the environment around N-carboxylated K70 affect the ability of that modified residue to carry out its normal function. Minimum inhibitory concentration analysis of the 20 position 117 variants demonstrates a clear pattern of charge and polarity effects on the level of ampicillin resistance imparted on Escherichia coli (E. coli). Substitutions that introduce a negative charge (D, E) at position 117 reduce resistance to near background levels, while the positively charged K and R residues maintain the highest resistance levels of all mutants. Treatment of the acidic variants with the fluorescent penicillin BOCILLIN FL followed by SDS-PAGE shows that they are active for acylation by substrate but deacylation-deficient. We used a novel fluorescence anisotropy assay to show that the specific charge and hydrogen-bonding potential of the residue at position 117 affect CO(2) binding to K70, which in turn correlates to deacylation activity. These conclusions are discussed in light of the mechanisms proposed for both class D β-lactamases and BlaR β-lactam sensor proteins and suggest a reason for the preponderance of asparagine at the V117-homologous position in the sensors.
Collapse
Affiliation(s)
- Jennifer S Buchman
- Department of Chemistry, Grand Valley State University, Allendale, Michigan 49401, USA
| | | | | | | | | |
Collapse
|
26
|
Kumarasiri M, Llarrull LI, Borbulevych O, Fishovitz J, Lastochkin E, Baker BM, Mobashery S. An amino acid position at crossroads of evolution of protein function: antibiotic sensor domain of BlaR1 protein from Staphylococcus aureus versus clasS D β-lactamases. J Biol Chem 2012; 287:8232-41. [PMID: 22262858 DOI: 10.1074/jbc.m111.333179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The integral membrane protein BlaR1 of Staphylococcus aureus senses the presence of β-lactam antibiotics in the milieu and transduces the information to its cytoplasmic side, where its activity unleashes the expression of a set of genes, including that for BlaR1 itself, which manifest the antibiotic-resistant phenotype. The x-ray structure of the sensor domain of this protein exhibits an uncanny similarity to those of the class D β-lactamases. The former is a membrane-bound receptor/sensor for the β-lactam antibiotics, devoid of catalytic competence for substrate turnover, whereas the latter are soluble periplasmic enzymes in gram-negative bacteria with avid ability for β-lactam turnover. The two are clearly related to each other from an evolutionary point of view. However, the high resolution x-ray structures for both by themselves do not reveal why one is a receptor and the other an enzyme. It is documented herein that a single amino acid change at position 439 of the BlaR1 protein is sufficient to endow the receptor/sensor protein with modest turnover ability for cephalosporins as substrates. The x-ray structure for this mutant protein and the dynamics simulations revealed how a hydrolytic water molecule may sequester itself in the antibiotic-binding site to enable hydrolysis of the acylated species. These studies document how the nature of the residue at position 439 is critical for the fate of the protein in imparting unique functions on the same molecular template, to result in one as a receptor and in another as a catalyst.
Collapse
Affiliation(s)
- Malika Kumarasiri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Llarrull LI, Toth M, Champion MM, Mobashery S. Activation of BlaR1 protein of methicillin-resistant Staphylococcus aureus, its proteolytic processing, and recovery from induction of resistance. J Biol Chem 2011; 286:38148-38158. [PMID: 21896485 DOI: 10.1074/jbc.m111.288985] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The fates of BlaI, the gene repressor protein for the bla operon, BlaR1, the β-lactam sensor/signal transducer, and PC1 β-lactamase in four strains of Staphylococcus aureus upon exposure to four different β-lactam antibiotics were investigated as a function of time. The genes for the three proteins are encoded by the bla operon, the functions of which afford inducible resistance to β-lactam antibiotics in S. aureus. BlaR1 protein is expressed at low copy number. Acylation of the sensor domain of BlaR1 by β-lactam antibiotics initiates signal transduction to the cytoplasmic domain, a zinc protease, which is activated and degrades BlaI. This proteolytic degradation derepresses transcription of all three genes, resulting in inducible resistance. These processes take place within minutes of exposure to the antibiotics. The BlaR1 protein was shown to undergo fragmentation in three S. aureus strains within the time frame relevant for manifestation of resistance and was below the detection threshold in the fourth. Two specific sites of fragmentation were identified, one cytoplasmic and the other in the sensor domain. This is proposed as a means for turnover, a process required for recovery from induction of resistance in S. aureus in the absence of the antibiotic challenge. In S. aureus not exposed to β-lactam antibiotics (i.e. not acylated by antibiotic) the same fragmentation of BlaR1 is still observed, including the shedding of the sensor domain, an observation that leads to the conclusion that the sites of proteolysis might have evolved to predispose the protein to degradation within a set period of time.
Collapse
Affiliation(s)
- Leticia I Llarrull
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556.
| |
Collapse
|
28
|
Borbulevych O, Kumarasiri M, Wilson B, Llarrull LI, Lee M, Hesek D, Shi Q, Peng J, Baker BM, Mobashery S. Lysine Nzeta-decarboxylation switch and activation of the beta-lactam sensor domain of BlaR1 protein of methicillin-resistant Staphylococcus aureus. J Biol Chem 2011; 286:31466-72. [PMID: 21775440 DOI: 10.1074/jbc.m111.252189] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The integral membrane protein BlaR1 of methicillin-resistant Staphylococcus aureus senses the presence of β-lactam antibiotics in the milieu and transduces the information to the cytoplasm, where the biochemical events that unleash induction of antibiotic resistance mechanisms take place. We report herein by two-dimensional and three-dimensional NMR experiments of the sensor domain of BlaR1 in solution and by determination of an x-ray structure for the apo protein that Lys-392 of the antibiotic-binding site is posttranslationally modified by N(ζ)-carboxylation. Additional crystallographic and NMR data reveal that on acylation of Ser-389 by antibiotics, Lys-392 experiences N(ζ)-decarboxylation. This unique process, termed the lysine N(ζ)-decarboxylation switch, arrests the sensor domain in the activated ("on") state, necessary for signal transduction and all the subsequent biochemical processes. We present structural information on how this receptor activation process takes place, imparting longevity to the antibiotic-receptor complex that is needed for the induction of the antibiotic-resistant phenotype in methicillin-resistant S. aureus.
Collapse
Affiliation(s)
- Oleg Borbulevych
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Three factors that modulate the activity of class D β-lactamases and interfere with the post-translational carboxylation of Lys70. Biochem J 2011; 432:495-504. [PMID: 21108605 DOI: 10.1042/bj20101122] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The activity of class D β-lactamases is dependent on Lys70 carboxylation in the active site. Structural, kinetic and affinity studies show that this post-translational modification can be affected by the presence of a poor substrate such as moxalactam but also by the V117T substitution. Val117 is a strictly conserved hydrophobic residue located in the active site. In addition, inhibition of class D β-lactamases by chloride ions is due to a competition between the side chain carboxylate of the modified Lys70 and chloride ions. Determination of the individual kinetic constants shows that the deacylation of the acyl-enzyme is the rate-limiting step for the wild-type OXA-10 β-lactamase.
Collapse
|
30
|
Llarrull LI, Prorok M, Mobashery S. Binding of the gene repressor BlaI to the bla operon in methicillin-resistant Staphylococcus aureus. Biochemistry 2010; 49:7975-7. [PMID: 20722402 DOI: 10.1021/bi101177a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The expression of the gene products in many methicillin-resistant Staphylococcus aureus (MRSA) strains is regulated by the gene repressor BlaI. Here we show that BlaI is a mixture of monomer and dimer at in vivo concentrations, binds to the operator regions preferentially as a monomeric protein, and the measured dissociation constants and in vivo concentrations account for the basal level transcription of the resistance genes. These observations for the first time provide a quantitative picture of the processes that take place in the cytoplasm that lead to the induction of antibiotic resistance factors to counter the challenge by β-lactams.
Collapse
Affiliation(s)
- Leticia I Llarrull
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
31
|
Li Y, Yu X, Ho J, Fushman D, Allewell NM, Tuchman M, Shi D. Reversible post-translational carboxylation modulates the enzymatic activity of N-acetyl-L-ornithine transcarbamylase. Biochemistry 2010; 49:6887-95. [PMID: 20695527 DOI: 10.1021/bi1007386] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Acetyl-l-ornithine transcarbamylase (AOTCase), rather than ornithine transcarbamylase (OTCase), is the essential carbamylase enzyme in the arginine biosynthesis of several plant and human pathogens. The specificity of this unique enzyme provides a potential target for controlling the spread of these pathogens. Recently, several crystal structures of AOTCase from Xanthomonas campestris (xc) have been determined. In these structures, an unexplained electron density at the tip of the Lys302 side chain was observed. Using (13)C NMR spectroscopy, we show herein that Lys302 is post-translationally carboxylated. The structure of wild-type AOTCase in a complex with the bisubstrate analogue N(delta)-(phosphonoacetyl)-N(alpha)-acetyl-l-ornithine (PALAO) indicates that the carboxyl group on Lys302 forms a strong hydrogen bonding network with surrounding active site residues, Lys252, Ser253, His293, and Glu92 from the adjacent subunit either directly or via a water molecule. Furthermore, the carboxyl group is involved in binding N-acetyl-l-ornithine via a water molecule. Activity assays with the wild-type enzyme and several mutants demonstrate that the post-translational modification of lysine 302 has an important role in catalysis.
Collapse
Affiliation(s)
- Yongdong Li
- Research Center for Genetic Medicine and Department of Integrative Systems Biology, Children's National Medical Center, The George Washington University, Washington, DC 20010, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, USA
| | | |
Collapse
|
33
|
Schneider KD, Karpen ME, Bonomo RA, Leonard DA, Powers RA. The 1.4 A crystal structure of the class D beta-lactamase OXA-1 complexed with doripenem. Biochemistry 2010; 48:11840-7. [PMID: 19919101 DOI: 10.1021/bi901690r] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The clinical efficacy of carbapenem antibiotics depends on their resistance to the hydrolytic action of beta-lactamase enzymes. The structure of the class D beta-lactamase OXA-1 as an acyl complex with the carbapenem doripenem was determined to 1.4 A resolution. Unlike most class A and class C carbapenem complexes, the acyl carbonyl oxygen in the OXA-1-doripenem complex is bound in the oxyanion hole. Interestingly, no water molecules were observed in the vicinity of the acyl linkage, providing an explanation for why carbapenems inhibit OXA-1. The side chain amine of K70 remains fully carboxylated in the acyl structure, and the resulting carbamate group forms a hydrogen bond to the alcohol of the 6alpha-hydroxyethyl moiety of doripenem. The carboxylate attached to the beta-lactam ring of doripenem is stabilized by a salt bridge to K212 and a hydrogen bond with T213, in lieu of the interaction with an arginine side chain found in most other beta-lactamase-beta-lactam complexes (e.g., R244 in the class A member TEM-1). This novel set of interactions with the carboxylate results in a major shift of the carbapenem's pyrroline ring compared to the structure of the same ring in meropenem bound to OXA-13. Additionally, bond angles of the pyrroline ring suggest that after acylation, doripenem adopts the Delta(1) tautomer. These findings provide important insights into the role that carbapenems may have in the inactivation process of class D beta-lactamases.
Collapse
Affiliation(s)
- Kyle D Schneider
- Department of Chemistry, Grand Valley State University, Allendale, Michigan 49401, USA
| | | | | | | | | |
Collapse
|
34
|
McCallum N, Berger-Bächi B, Senn MM. Regulation of antibiotic resistance in Staphylococcus aureus. Int J Med Microbiol 2009; 300:118-29. [PMID: 19800843 DOI: 10.1016/j.ijmm.2009.08.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Staphylococcus aureus has a formidable ability to adapt to varying environmental conditions and an extraordinary capacity to rapidly become resistant to virtually all antibiotics. Resistance develops either through mutations and rearrangements within the staphylococcal genome, or by the acquisition of resistance determinants. Antibiotic resistances often impose a fitness burden on the host. Such biological costs can be reduced by tight regulation and antibiotic-inducible expression of resistance genes, or by compensatory mutations. Resistance induction by antibiotics can be mediated by dedicated, antibiotic-recognizing signal transducers or by mechanisms relieving translational attenuation. Antibiotic tolerance and the expression of resistance phenotypes can also be strongly influenced by the genetic backgrounds of strains and several other factors. Modification and indirect regulation of resistance levels can occur by mutations that alter gene expression or substrate specificity of genes contributing to resistance. Insertion elements can alter resistance profiles by turning relevant genes on or off. Environmental conditions and stress response mechanisms triggered by perturbation of the cell envelope, DNA damage, or faulty intermediary metabolism can also have an impact on resistance development and expression. Clinically relevant resistance is often built up through multiple steps, each of which contributes to an increase in resistance. The driving force behind resistance formation is antibiotic stress, and under clinical conditions selection for resistance is continuously competing with selection for bacterial fitness.
Collapse
Affiliation(s)
- Nadine McCallum
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 32, CH-8006 Zürich, Switzerland
| | | | | |
Collapse
|
35
|
Meulenbroek EM, Paspaleva K, Thomassen EAJ, Abrahams JP, Goosen N, Pannu NS. Involvement of a carboxylated lysine in UV damage endonuclease. Protein Sci 2009; 18:549-58. [PMID: 19241382 DOI: 10.1002/pro.54] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
UV damage endonuclease is a DNA repair enzyme that can both recognize damage such as UV lesions and introduce a nick directly 5' to them. Recently, the crystal structure of the enzyme from Thermus thermophilus was solved. In the electron density map of this structure, unexplained density near the active site was observed at the tip of Lys229. Based on this finding, it was proposed that Lys229 is post-translationally modified. In this article, we give evidence that this modification is a carboxyl group. By combining activity assays and X-ray crystallography on several point mutants, we show that the carboxyl group assists in metal binding required for catalysis by donating negative charge to the metal-coordinating residue His231. Moreover, functional and structural analysis of the K229R mutant reveals that if His231 shifts away, an increased activity results on both damaged and undamaged DNA. Taken together, the results show that T. thermophilus ultraviolet damage endonuclease is carboxylated and the modified lysine is required for proper catalysis and preventing increased incision of undamaged DNA.
Collapse
|
36
|
Schneider KD, Bethel CR, Distler AM, Hujer AM, Bonomo RA, Leonard DA. Mutation of the active site carboxy-lysine (K70) of OXA-1 beta-lactamase results in a deacylation-deficient enzyme. Biochemistry 2009; 48:6136-45. [PMID: 19485421 DOI: 10.1021/bi900448u] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Class D beta-lactamases hydrolyze beta-lactam antibiotics by using an active site serine nucleophile to form a covalent acyl-enzyme intermediate and subsequently employ water to deacylate the beta-lactam and release product. Class D beta-lactamases are carboxylated on the epsilon-amino group of an active site lysine, with the resulting carbamate functional group serving as a general base. We discovered that substitutions of the active site serine and lysine in OXA-1 beta-lactamase, a monomeric class D enzyme, significantly disrupt catalytic turnover. Substitution of glycine for the nucleophilic serine (S67G) results in an enzyme that can still bind substrate but is unable to form a covalent acyl-enzyme intermediate. Substitution of the carboxylated lysine (K70), on the other hand, results in enzyme that can be acylated by substrate but is impaired with respect to deacylation. We employed the fluorescent penicillin BOCILLIN FL to show that three different substitutions for K70 (alanine, aspartate, and glutamate) lead to the accumulation of significant acyl-enzyme intermediate. Interestingly, BOCILLIN FL deacylation rates (t(1/2)) vary depending on the identity of the substituting residue, from approximately 60 min for K70A to undetectable deacylation for K70D. Tryptophan fluorescence spectroscopy was used to confirm that these results are applicable to natural (i.e., nonfluorescent) substrates. Deacylation by K70A, but not K70D or K70E, can be partially restored by the addition of short-chain carboxylic acid mimetics of the lysine carbamate. In conclusion, we establish the functional role of the carboxylated lysine in OXA-1 and highlight its specific role in acylation and deacylation.
Collapse
Affiliation(s)
- Kyle D Schneider
- Department of Chemistry, Grand Valley State University, Allendale, Michigan 49401, USA
| | | | | | | | | | | |
Collapse
|
37
|
Autiero I, Costantini S, Colonna G. Modeling of the bacterial mechanism of methicillin-resistance by a systems biology approach. PLoS One 2009; 4:e6226. [PMID: 19593454 PMCID: PMC2707609 DOI: 10.1371/journal.pone.0006226] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 06/15/2009] [Indexed: 02/06/2023] Open
Abstract
Background A microorganism is a complex biological system able to preserve its functional features against external perturbations and the ability of the living systems to oppose to these external perturbations is defined “robustness”. The antibiotic resistance, developed by different bacteria strains, is a clear example of robustness and of ability of the bacterial system to acquire a particular functional behaviour in response to environmental changes. In this work we have modeled the whole mechanism essential to the methicillin-resistance through a systems biology approach. The methicillin is a β-lactamic antibiotic that act by inhibiting the penicillin-binding proteins (PBPs). These PBPs are involved in the synthesis of peptidoglycans, essential mesh-like polymers that surround cellular enzymes and are crucial for the bacterium survival. Methodology The network of genes, mRNA, proteins and metabolites was created using CellDesigner program and the data of molecular interactions are stored in Systems Biology Markup Language (SBML). To simulate the dynamic behaviour of this biochemical network, the kinetic equations were associated with each reaction. Conclusions Our model simulates the mechanism of the inactivation of the PBP by methicillin, as well as the expression of PBP2a isoform, the regulation of the SCCmec elements (SCC: staphylococcal cassette chromosome) and the synthesis of peptidoglycan by PBP2a. The obtained results by our integrated approach show that the model describes correctly the whole phenomenon of the methicillin resistance and is able to respond to the external perturbations in the same way of the real cell. Therefore, this model can be useful to develop new therapeutic approaches for the methicillin control and to understand the general mechanism regarding the cellular resistance to some antibiotics.
Collapse
Affiliation(s)
- Ida Autiero
- CRISCEB (Interdepartmental Research Center for Computational and Biotechnological Sciences), Second University of Naples, Naples, Italy
| | - Susan Costantini
- CRISCEB (Interdepartmental Research Center for Computational and Biotechnological Sciences), Second University of Naples, Naples, Italy
- CROM (Oncology Research Centre of Mercogliano) “Fiorentino Lo Vuolo”, Mercogliano, Italy
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
- * E-mail:
| | - Giovanni Colonna
- CRISCEB (Interdepartmental Research Center for Computational and Biotechnological Sciences), Second University of Naples, Naples, Italy
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| |
Collapse
|
38
|
Molecular basis and phenotype of methicillin resistance in Staphylococcus aureus and insights into new beta-lactams that meet the challenge. Antimicrob Agents Chemother 2009; 53:4051-63. [PMID: 19470504 DOI: 10.1128/aac.00084-09] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
39
|
Ender M, Berger-Bächi B, McCallum N. A novel DNA-binding protein modulating methicillin resistance in Staphylococcus aureus. BMC Microbiol 2009; 9:15. [PMID: 19173709 PMCID: PMC2658668 DOI: 10.1186/1471-2180-9-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 01/27/2009] [Indexed: 11/25/2022] Open
Abstract
Background Methicillin resistance in Staphylococcus aureus is conferred by the mecA-encoded penicillin-binding protein PBP2a. Additional genomic factors are also known to influence resistance levels in strain specific ways, although little is known about their contribution to resistance phenotypes in clinical isolates. Here we searched for novel proteins binding to the mec operator, in an attempt to identify new factor(s) controlling methicillin resistance phenotypes. Results Analysis of proteins binding to a DNA fragment containing the mec operator region identified a novel, putative helix-turn-helix DNA-binding protein, SA1665. Nonpolar deletion of SA1665, in heterogeneously methicillin resistant S. aureus (MRSA) of different genetic backgrounds, increased methicillin resistance levels in a strain dependent manner. This phenotype could be fully complemented by reintroducing SA1665 in trans. Northern and Western blot analyses, however, revealed that SA1665 had no visible influence on mecA transcription or amounts of PBP2a produced. Conclusion SA1665 is a new chromosomal factor which influences methicillin resistance in MRSA. Although SA1665 bound to the mecA promoter region, it had no apparent influence on mecA transcription or translation, suggesting that this predicted DNA-binding protein modulates resistance indirectly, most likely through the control of other genomic factors which contribute to resistance.
Collapse
Affiliation(s)
- Miriam Ender
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
40
|
Klitgaard JK, Skov MN, Kallipolitis BH, Kolmos HJ. Reversal of methicillin resistance in Staphylococcus aureus by thioridazine. J Antimicrob Chemother 2008; 62:1215-21. [PMID: 18836185 DOI: 10.1093/jac/dkn417] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Thioridazine has been shown to reverse oxacillin resistance in methicillin-resistant Staphylococcus aureus (MRSA) in vitro. The aim of this study was to investigate whether thioridazine alone or in combination with oxacillin affects the transcription of the methicillin resistance gene mecA and the protein level of the encoded protein PBP2a. METHODS Viability of MRSA was determined in liquid media in the presence of oxacillin or thioridazine alone or in combination. Transcription of mecA was analysed by primer extension, and the protein level of PBP2a was analysed by western blotting in the presence of thioridazine and oxacillin. RESULTS We observed an increased susceptibility of MRSA towards oxacillin in the presence of thioridazine compared with bacteria grown with oxacillin or thioridazine alone. Transcription of mecA was reduced with increasing concentrations of thioridazine in the presence of a fixed amount of oxacillin. Furthermore, the protein level of PBP2a was reduced when bacteria were treated with the combination of oxacillin and thioridazine. The two drugs also affected the mRNA level of the beta-lactamase gene, blaZ. CONCLUSIONS The present study indicates that reversal of methicillin resistance by thioridazine in MRSA may be explained by a reduced transcription of mecA and blaZ, resulting in a reduced protein level of PBP2a.
Collapse
Affiliation(s)
- Janne K Klitgaard
- Department of Clinical Microbiology, Institute of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark.
| | | | | | | |
Collapse
|
41
|
The role of OXA-1 beta-lactamase Asp(66) in the stabilization of the active-site carbamate group and in substrate turnover. Biochem J 2008; 410:455-62. [PMID: 18031291 DOI: 10.1042/bj20070573] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The OXA-1 beta-lactamase is one of the few class D enzymes that has an aspartate residue at position 66, a position that is proximal to the active-site residue Ser(67). In class A beta-lactamases, such as TEM-1 and SHV-1, residues adjacent to the active-site serine residue play a crucial role in inhibitor resistance and substrate selectivity. To probe the role of Asp(66) in substrate affinity and catalysis, we performed site-saturation mutagenesis at this position. Ampicillin MIC (minimum inhibitory concentration) values for the full set of Asp(66) mutants expressed in Escherichia coli DH10B ranged from < or =8 microg/ml for cysteine, proline and the basic amino acids to > or =256 microg/ml for asparagine, leucine and the wild-type aspartate. Replacement of aspartic acid by asparagine at position 66 also led to a moderate enhancement of extended-spectrum cephalosporin resistance. OXA-1 shares with other class D enzymes a carboxylated residue, Lys(70), that acts as a general base in the catalytic mechanism. The addition of 25 mM bicarbonate to Luria-Bertani-broth agar resulted in a > or =16-fold increase in MICs for most OXA-1 variants with amino acid replacements at position 66 when expressed in E. coli. Because Asp(66) forms hydrogen bonds with several other residues in the OXA-1 active site, we propose that this residue plays a role in stabilizing the CO2 bound to Lys(70) and thereby profoundly affects substrate turnover.
Collapse
|
42
|
Jordan S, Hutchings MI, Mascher T. Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol Rev 2008; 32:107-46. [PMID: 18173394 DOI: 10.1111/j.1574-6976.2007.00091.x] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Sina Jordan
- Department of General Microbiology, Georg-August-University, Grisebachstrasse 8, Göttingen, Germany
| | | | | |
Collapse
|
43
|
Fan X, Liu Y, Smith D, Konermann L, Siu KWM, Golemi-Kotra D. Diversity of penicillin-binding proteins. Resistance factor FmtA of Staphylococcus aureus. J Biol Chem 2007; 282:35143-52. [PMID: 17925392 DOI: 10.1074/jbc.m706296200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antibiotic-resistant Staphylococcus aureus is a major concern to public health. Methicillin-resistant S. aureus strains are completely resistant to all beta-lactams antibiotics. One of the main factors involved in methicillin resistance in S. aureus is the penicillin-binding protein, PBP2a. This protein is insensitive to inactivation by beta-lactam antibiotics such as methicillin. Although other proteins are implicated in high and homogeneous levels of methicillin resistance, the functions of these other proteins remain elusive. Herein, we report for the first time on the putative function of one of these proteins, FmtA. This protein specifically interacts with beta-lactam antibiotics forming covalently bound complexes. The serine residue present in the sequence motif Ser-X-X-Lys (which is conserved among penicillin-binding proteins and beta-lactamases) is the active-site nucleophile during the formation of acyl-enzyme species. FmtA has a low binding affinity for beta-lactams, and it experiences a slow acylation rate, suggesting that this protein is intrinsically resistant to beta-lactam inactivation. We found that FmtA undergoes conformational changes in presence of beta-lactams that may be essential to the beta-lactam resistance mechanism. FmtA binds to peptidoglycan in vitro. Our findings suggest that FmtA is a penicillin-binding protein, and as such, it may compensate for suppressed peptidoglycan biosynthesis under beta-lactam induced cell wall stress conditions.
Collapse
Affiliation(s)
- Xin Fan
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Cha J, Vakulenko SB, Mobashery S. Characterization of the β-Lactam Antibiotic Sensor Domain of the MecR1 Signal Sensor/Transducer Protein from Methicillin-Resistant Staphylococcus aureus. Biochemistry 2007; 46:7822-31. [PMID: 17550272 DOI: 10.1021/bi7005459] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has evolved two mechanisms for resistance to beta-lactam antibiotics. One is production of a beta-lactamase, and the other is that of penicillin-binding protein 2a (PBP 2a). The expression of these two proteins is regulated by the bla and mec operons, respectively. BlaR1 and MecR1 are beta-lactam sensor/signal transducer proteins, which experience acylation by beta-lactam antibiotics on the cell surface and transduce the signal into the cytoplasm. The C-terminal surface domain of MecR1 (MecRS) has been cloned, expressed, and purified to homogeneity. This protein has been characterized by documenting that it has a critical and unusual Nzeta-carboxylated lysine at position 394. Furthermore, the kinetics of interactions with beta-lactam antibiotics were evaluated, a process that entails conformational changes for the protein that might be critical for the signal transduction event. Kinetics of acylation of MecRS are suggestive that signal sensing may be the step where the two systems are substantially different from one another.
Collapse
Affiliation(s)
- Jooyoung Cha
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
45
|
Cha J, Mobashery S. Lysine N(zeta)-decarboxylation in the BlaR1 protein from Staphylococcus aureus at the root of its function as an antibiotic sensor. J Am Chem Soc 2007; 129:3834-5. [PMID: 17343387 DOI: 10.1021/ja070472e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jooyoung Cha
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
46
|
Marrero A, Mallorquí-Fernández G, Guevara T, García-Castellanos R, Gomis-Rüth FX. Unbound and acylated structures of the MecR1 extracellular antibiotic-sensor domain provide insights into the signal-transduction system that triggers methicillin resistance. J Mol Biol 2006; 361:506-21. [PMID: 16846613 DOI: 10.1016/j.jmb.2006.06.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 06/15/2006] [Accepted: 06/16/2006] [Indexed: 11/25/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) strains are responsible for most hospital-onset bacterial infections. Lately, they have become a major threat to the community through infections of skin, soft tissue and respiratory tract, and subsequent septicaemia or septic shock. MRSA strains are resistant to most beta-lactam antibiotics (BLAs) as a result of the biosynthesis of a penicillin-binding protein with low affinity for BLAs, called PBP2a, PBP2' or MecA. This response is regulated by the chromosomal mec-divergon, which encodes a signal-transduction system including a transcriptional repressor, MecI, and a sensor/transducer, MecR1, as well as the structural mecA gene. This system is similar to those encoded by bla divergons in S. aureus and Bacillus licheniformis. MecR1 comprises an integral-membrane latent metalloprotease domain facing the cytosol and an extracellular sensor domain. The latter binds BLAs and transmits a signal through the membrane that eventually triggers activation of the metalloprotease moiety, which in turn switches off MecI-induced repression of mecA transcription. The MecR1 sensor domain, MecR1-PBD, reveals a two-domain structure of alpha/beta-type fold reminiscent of penicillin-binding proteins and beta-lactamases, and a catalytic serine residue as the ultimate cause for BLA-binding. Covalent complexes with benzylpenicillin and oxacillin provide evidence that serine acylation does not entail significant structural changes, thus supporting the hypothesis that additional extracellular segments of MecR1 are involved in signal transmission. The chemical nature of the residues shaping the active-site cleft favours stabilisation of the acyl enzyme complexes in MecR1-PBD, in contrast to the closely related OXA beta-lactamases, where the cleft is more likely to promote subsequent hydrolysis. The present structural data provide insights into the mec-encoded BLA-response mechanism and an explanation for kinetic differences in signal transmission with the related bla-encoded systems.
Collapse
Affiliation(s)
- Aniebrys Marrero
- Institut de Biologia Molecular de Barcelona, C.I.D.-C.S.I.C. C/Jordi Girona, 18-26 08034 Barcelona, Spain
| | | | | | | | | |
Collapse
|
47
|
Thumanu K, Cha J, Fisher JF, Perrins R, Mobashery S, Wharton C. Discrete steps in sensing of beta-lactam antibiotics by the BlaR1 protein of the methicillin-resistant Staphylococcus aureus bacterium. Proc Natl Acad Sci U S A 2006; 103:10630-5. [PMID: 16815972 PMCID: PMC1502283 DOI: 10.1073/pnas.0601971103] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chemical sensing by cell-surface receptors to effect signal transduction is a ubiquitous biological event. Despite extensive structural biochemical study, detailed knowledge of how signal transduction occurs is largely lacking. We report herein a kinetic and structural study, obtained by stopped-flow IR spectroscopy, of the activation of the BlaR1 receptor of the Staphylococcus aureus bacterium by beta-lactam antibiotics. The cell-surface BlaR1 receptor alerts the bacterium to the presence of beta-lactam antibiotics, resulting in expression of the gene for a beta-lactamase enzyme. This enzyme hydrolytically destroys the remaining beta-lactam antibiotics. IR spectroscopic interrogation of the beta-lactam-BlaR1 receptor reaction has allowed the simultaneous measurement of the chemical events of receptor recognition of the beta-lactam and the characterization of the conformational changes in the BlaR1 receptor that result. The key chemical events in beta-lactam recognition are serine acylation and subsequent irreversible decarboxylation of the BlaR1 active site lysine carbamate. Both events are observed by stopped-flow IR kinetics and (13)C isotope-edited IR spectroscopy. The secondary structural changes in the BlaR1 receptor conformation that occur as a consequence of this acylation/decarboxylation are predicted to correlate to the signal transduction event accomplished by this receptor.
Collapse
Affiliation(s)
- Kanjana Thumanu
- *School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Jooyoung Cha
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Jed F. Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Richard Perrins
- *School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
- To whom correspondence may be addressed. E-mail:
or
| | - Christopher Wharton
- *School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
48
|
Frère JM, Marchot P. Inactivators in competition. How to deal with them ... and not! Biochem Pharmacol 2005; 70:1417-23. [PMID: 16139804 DOI: 10.1016/j.bcp.2005.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 07/05/2005] [Accepted: 07/08/2005] [Indexed: 11/24/2022]
Abstract
A method is described to determine the values of the equilibrium (K) and rate (k(2)) constants for enzyme inactivations which occur according to two-step pathways involving a first non-covalent complex and a covalent, irreversibly inactivated adduct. The method rests on a competition between a reference compound [R] for which the k(2) and K values are already known and another inactivator [C]. During the experiments, the disappearance of the reference compound or the appearance of the ER(*) adduct is monitored. The analysis shows that under conditions where the k(2) and K values for the competing substrate can be determined, the measured apparent first-order rate constant for the disappearance of the reference compound is not the sum of the rate constants obtained for each inactivator in the absence of the other. The method can be used to determine the K and k(2) constants when an adequate reference compound is available, in particular, for the interactions between beta-lactam antibiotics and penicillin-binding proteins. The precautions which must be taken to avoid large errors on the estimation of the parameters of the competing inactivator are discussed. Examples found in the literature are discussed where an erroneous simplified equation has been utilised, thus yielding incorrect values for k(2) and K. Interestingly, the correct values can be calculated on the basis of the published results which do not contain the raw experimental data. But some of the values should be considered with a lot of caution since the experiments have not been performed under optimal conditions.
Collapse
Affiliation(s)
- Jean-Marie Frère
- CIP, Université de Liège, Institut de Chimie B6, Sart-Tilman, B-4000 Liège, Belgium.
| | | |
Collapse
|
49
|
Li J, Cross JB, Vreven T, Meroueh SO, Mobashery S, Schlegel HB. Lysine carboxylation in proteins: OXA-10 β-lactamase. Proteins 2005; 61:246-57. [PMID: 16121396 DOI: 10.1002/prot.20596] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An increasing number of proteins are being shown to have an N(zeta)-carboxylated lysine in their structures, a posttranslational modification of proteins that proceeds without the intervention of a specific enzyme. The role of the carboxylated lysine in these proteins is typically structural (hydrogen bonding or metal coordination). However, carboxylated lysines in the active sites of OXA-10 and OXA-1 beta-lactamases and the sensor domain of BlaR signal-transducer protein serve in proton transfer events required for the functions of these proteins. These examples demonstrate the utility of this unusual amino acid in acid-base chemistry, in expansion of function beyond those of the 20 standard amino acids. In this study, the ONIOM quantum-mechanical/molecular-mechanical (QM/MM) method is used to study the carboxylation of lysine in the OXA-10 beta-lactamase. Lys-70 and the active site of the OXA-10 beta-lactamase were treated with B3LYP/6-31G(d,p) density functional calculations and the remainder of the enzyme with the AMBER molecular mechanics force field. The barriers for unassisted carboxylation of neutral lysine by carbon dioxide or bicarbonate are high. However, when the reaction with CO2 is catalyzed by a molecule of water in the active site, it is exothermic by about 13 kcal/mol, with a barrier of approximately 14 kcal/mol. The calculations show that the carboxylation and decarboxylation of Lys-70 are likely to be accompanied by deprotonation and protonation of the carbamate, respectively. The analysis may also be relevant for other proteins with carboxylated lysines, a feature that may be more common in nature than previously appreciated.
Collapse
Affiliation(s)
- Jie Li
- Department of Chemistry and Institute for Scientific Computing, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | | | |
Collapse
|
50
|
Fisher JF, Meroueh SO, Mobashery S. Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. Chem Rev 2005; 105:395-424. [PMID: 15700950 DOI: 10.1021/cr030102i] [Citation(s) in RCA: 692] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|