1
|
Wang S, Yang R, Song M, Li J, Zhou Y, Dai C, Song T. Current understanding of the role of DDX21 in orchestrating gene expression in health and diseases. Life Sci 2024; 349:122716. [PMID: 38762067 DOI: 10.1016/j.lfs.2024.122716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
RNA helicases are involved in almost all biological events, and the DDXs family is one of the largest subfamilies of RNA helicases. Recently, studies have reported that RNA helicase DDX21 is involved in several biological events, specifically in orchestrating gene expression. Hence, in this review, we provide a comprehensive overview of the function of DDX21 in health and diseases. In the genome, DDX21 contributes to genome stability by promoting DNA damage repair and resolving R-loops. It also facilitates transcriptional regulation by directly binding to promoter regions, interacting with transcription factors, and enhancing transcription through non-coding RNA. Moreover, DDX21 is involved in various RNA metabolism such as RNA processing, translation, and decay. Interestingly, the activity and function of DDX21 are regulated by post-translational modifications, which affect the localization and degradation of DDX21. Except for its role of RNA helicase, DDX21 also acts as a non-enzymatic function in unwinding RNA, regulating transcriptional modifications and promoting transcription. Next, we discuss the potential application of DDX21 as a clinical predictor for diseases, which may facilitate providing novel pharmacological targets for molecular therapy.
Collapse
Affiliation(s)
- Shaoshuai Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiqi Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengzhen Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jia Li
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; City of Hope Medical Center, Duarte, CA 91010, USA; Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA
| | - Yanrong Zhou
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chen Dai
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China.
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Aryan F, Detrés D, Luo CC, Kim SX, Shah AN, Bartusel M, Flynn RA, Calo E. Nucleolus activity-dependent recruitment and biomolecular condensation by pH sensing. Mol Cell 2023; 83:4413-4423.e10. [PMID: 37979585 PMCID: PMC10803072 DOI: 10.1016/j.molcel.2023.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/20/2023] [Accepted: 10/23/2023] [Indexed: 11/20/2023]
Abstract
DEAD-box ATPases are major regulators of biomolecular condensates and orchestrate diverse biochemical processes that are critical for the functioning of cells. How DEAD-box proteins are selectively recruited to their respective biomolecular condensates is unknown. We explored this in the context of the nucleolus and DEAD-box protein DDX21. We find that the pH of the nucleolus is intricately linked to the transcriptional activity of the organelle and facilitates the recruitment and condensation of DDX21. We identify an evolutionarily conserved feature of the C terminus of DDX21 responsible for nucleolar localization. This domain is essential for zebrafish development, and its intrinsically disordered and isoelectric properties are necessary and sufficient for the ability of DDX21 to respond to changes in pH and form condensates. Molecularly, the enzymatic activities of poly(ADP-ribose) polymerases contribute to maintaining the nucleolar pH and, consequently, DDX21 recruitment and nucleolar partitioning. These observations reveal an activity-dependent physicochemical mechanism for the selective recruitment of biochemical activities to biomolecular condensates.
Collapse
Affiliation(s)
- Fardin Aryan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Diego Detrés
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Claire C Luo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Skylar X Kim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arish N Shah
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michaela Bartusel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ryan A Flynn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Eliezer Calo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Caterino M, Paeschke K. Action and function of helicases on RNA G-quadruplexes. Methods 2021; 204:110-125. [PMID: 34509630 PMCID: PMC9236196 DOI: 10.1016/j.ymeth.2021.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/02/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Methodological progresses and piling evidence prove the rG4 biology in vivo. rG4s step in virtually every aspect of RNA biology. Helicases unwinding of rG4s is a fine regulatory layer to the downstream processes and general cell homeostasis. The current knowledge is however limited to a few cell lines. The regulation of helicases themselves is delineating as a important question. Non-helicase rG4-processing proteins likely play a role.
The nucleic acid structure called G-quadruplex (G4) is currently discussed to function in nucleic acid-based mechanisms that influence several cellular processes. They can modulate the cellular machinery either positively or negatively, both at the DNA and RNA level. The majority of what we know about G4 biology comes from DNA G4 (dG4) research. RNA G4s (rG4), on the other hand, are gaining interest as researchers become more aware of their role in several aspects of cellular homeostasis. In either case, the correct regulation of G4 structures within cells is essential and demands specialized proteins able to resolve them. Small changes in the formation and unfolding of G4 structures can have severe consequences for the cells that could even stimulate genome instability, apoptosis or proliferation. Helicases are the most relevant negative G4 regulators, which prevent and unfold G4 formation within cells during different pathways. Yet, and despite their importance only a handful of rG4 unwinding helicases have been identified and characterized thus far. This review addresses the current knowledge on rG4s-processing helicases with a focus on methodological approaches. An example of a non-helicase rG4s-unwinding protein is also briefly described.
Collapse
Affiliation(s)
- Marco Caterino
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, 53127 Bonn, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
4
|
Abstract
Melanoma is the deadliest form of skin cancer. While clinical developments have significantly improved patient prognosis, effective treatment is often obstructed by limited response rates, intrinsic or acquired resistance to therapy, and adverse events. Melanoma initiation and progression are associated with transcriptional reprogramming of melanocytes to a cell state that resembles the lineage from which the cells are specified during development, that is the neural crest. Convergence to a neural crest cell (NCC)-like state revealed the therapeutic potential of targeting developmental pathways for the treatment of melanoma. Neural crest cells have a unique sensitivity to metabolic dysregulation, especially nucleotide depletion. Mutations in the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH) particularly affect neural crest-derived tissues and cause Miller syndrome, a genetic disorder characterized by craniofacial malformations in patients. The developmental susceptibility of the neural crest to nucleotide deficiency is conserved in melanoma and provides a metabolic vulnerability that can be exploited for therapeutic purposes. We review the current knowledge on nucleotide stress responses in neural crest and melanoma and discuss how the recent scientific advances that have improved our understanding of transcriptional regulation during nucleotide depletion can impact melanoma treatment.
Collapse
Affiliation(s)
- Audrey Sporrij
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Leonard I Zon
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.,Harvard Stem Cell Institute, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
5
|
Bora P, Gahurova L, Hauserova A, Stiborova M, Collier R, Potěšil D, Zdráhal Z, Bruce AW. DDX21 is a p38-MAPK-sensitive nucleolar protein necessary for mouse preimplantation embryo development and cell-fate specification. Open Biol 2021; 11:210092. [PMID: 34255976 PMCID: PMC8277471 DOI: 10.1098/rsob.210092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Successful navigation of the mouse preimplantation stages of development, during which three distinct blastocyst lineages are derived, represents a prerequisite for continued development. We previously identified a role for p38-mitogen-activated kinases (p38-MAPK) regulating blastocyst inner cell mass (ICM) cell fate, specifically primitive endoderm (PrE) differentiation, that is intimately linked to rRNA precursor processing, polysome formation and protein translation regulation. Here, we develop this work by assaying the role of DEAD-box RNA helicase 21 (DDX21), a known regulator of rRNA processing, in the context of p38-MAPK regulation of preimplantation mouse embryo development. We show nuclear DDX21 protein is robustly expressed from the 16-cell stage, becoming exclusively nucleolar during blastocyst maturation, a localization dependent on active p38-MAPK. siRNA-mediated clonal Ddx21 knockdown within developing embryos is associated with profound cell-autonomous and non-autonomous proliferation defects and reduced blastocyst volume, by the equivalent peri-implantation blastocyst stage. Moreover, ICM residing Ddx21 knockdown clones express the EPI marker NANOG but rarely express the PrE differentiation marker GATA4. These data contribute further significance to the emerging importance of lineage-specific translation regulation, as identified for p38-MAPK, during mouse preimplantation development.
Collapse
Affiliation(s)
- Pablo Bora
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Lenka Gahurova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic.,Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, Rumburská 89, 27721 Liběchov, Czech Republic
| | - Andrea Hauserova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Martina Stiborova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Rebecca Collier
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Alexander W Bruce
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
6
|
DEAD-box RNA helicase protein DDX21 as a prognosis marker for early stage colorectal cancer with microsatellite instability. Sci Rep 2020; 10:22085. [PMID: 33328538 PMCID: PMC7745018 DOI: 10.1038/s41598-020-79049-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/30/2020] [Indexed: 12/29/2022] Open
Abstract
DEAD-box RNA helicase DDX21 (also named nucleolar RNA helicase 2) is a nuclear autoantigen with undefined roles in cancer. To explore possible roles of autoimmune recognition in cancer immunity, we examined DDX21 protein expression in colorectal cancer tissue and its association with patient clinical outcomes. Unbiased deep proteomic profiling of two independent colorectal cancer cohorts using mass spectrometry showed that DDX21 protein was significantly upregulated in cancer relative to benign mucosa. We then examined DDX21 protein expression in a validation group of 710 patients, 619 of whom with early stage and 91 with late stage colorectal cancers. DDX21 was detected mostly in the tumor cell nuclei, with high expression in some mitotic cells. High levels of DDX21 protein were found in 28% of stage I, 21% of stage II, 30% of stage III, and 32% of stage IV colorectal cancer cases. DDX21 expression levels correlated with non-mucinous histology in early stage cancers but not with other clinicopathological features such as patient gender, age, tumor location, tumor grade, or mismatch repair status in any cancer stage. Kaplan-Meier analyses revealed that high DDX21 protein levels was associated with longer survival in patients with early stage colorectal cancer, especially longer disease-free survival in patients with microsatellite instability (MSI) cancers, but no such correlations were found for the microsatellite stable subtype or late stage colorectal cancer. Univariate and multivariate analyses also identified high DDX21 protein expression as an independent favorable prognostic marker for early stage MSI colorectal cancer.
Collapse
|
7
|
McRae EKS, Dupas SJ, Booy EP, Piragasam RS, Fahlman RP, McKenna SA. An RNA guanine quadruplex regulated pathway to TRAIL-sensitization by DDX21. RNA (NEW YORK, N.Y.) 2020; 26:44-57. [PMID: 31653714 PMCID: PMC6913123 DOI: 10.1261/rna.072199.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
DDX21 is a newly discovered RNA G-quadruplex (rG4) binding protein with no known biological rG4 targets. In this study we used label-free proteomic MS/MS to identify 26 proteins that are expressed at significantly different levels in cells expressing an rG4-binding deficient DDX21 (M4). MS data are available via ProteomeXchange with identifier PXD013501. From this list we validate MAGED2 as a protein that is regulated by DDX21 through rG4 in its 5'-UTR. MAGED2 protein levels, but not mRNA levels, are reduced by half in cells expressing DDX21 M4. MAGED2 has a repressive effect on TRAIL-R2 expression that is relieved under these conditions, resulting in elevated TRAIL-R2 mRNA and protein in MCF-7 cells, rendering them sensitive to TRAIL-mediated apoptosis. Our work identifies the role of DDX21 in regulation at the translational level through biologically relevant rG4 and shows that MAGED2 protein levels are regulated, at least in part, by the potential to form rG4 in their 5'-UTRs.
Collapse
Affiliation(s)
- Ewan K S McRae
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Steven J Dupas
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | | | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 2R7
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9
| |
Collapse
|
8
|
Cao J, Wu N, Han Y, Hou Q, Zhao Y, Pan Y, Xie X, Chen F. DDX21 promotes gastric cancer proliferation by regulating cell cycle. Biochem Biophys Res Commun 2018; 505:1189-1194. [PMID: 30322617 DOI: 10.1016/j.bbrc.2018.10.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/12/2023]
Abstract
DEAD (Asp-Glu-Ala-Asp) cassette helicase 21 (DDX21) is an ATP-dependent RNA helicase that is overexpressed in various malignancies. There is increasing evidence that DDX21 is involved in carcinogenesis and cancer progression by promoting cell proliferation. However, the functional role of DDX21 in gastric cancer is largely unknown. In this study, we observed that DDX21 was significantly up-regulated in gastric cancer tissues compared to paired adjacent normal tissues. The expression of DDX21 was closely related to the pathological stage of gastric cancer. In vitro and in vivo studies had shown that knockdown of DDX21 inhibited gastric cancer cell proliferation, colony formation, G1/S cell cycle transition and xenograft growth, while ectopic expression of DDX21 promoted these cell functions. Mechanically, DDX21 induced gastric cancer cell growth by up-regulating levels of Cyclin D1 and CDK2. Taken together, these results revealed a novel role for DDX21 in the proliferation of gastric cancer cells via the Cyclin D1 and CDK2 pathways. Therefore, DDX21 can be used as a therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Jiayi Cao
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China.
| | - Nan Wu
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China.
| | - Yuying Han
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China.
| | - Qiuqiu Hou
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China.
| | - Yu Zhao
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China.
| | - Yanan Pan
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China.
| | - Xin Xie
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China.
| | - Fulin Chen
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China.
| |
Collapse
|
9
|
Suzuki H, Shibagaki Y, Hattori S, Matsuoka M. The proline-arginine repeat protein linked to C9-ALS/FTD causes neuronal toxicity by inhibiting the DEAD-box RNA helicase-mediated ribosome biogenesis. Cell Death Dis 2018; 9:975. [PMID: 30250194 PMCID: PMC6155127 DOI: 10.1038/s41419-018-1028-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/16/2018] [Accepted: 09/04/2018] [Indexed: 12/31/2022]
Abstract
A GGGGCC repeat expansion in the C9ORF72 gene has been identified as the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. The repeat expansion undergoes unconventional translation to produce dipeptide repeat (DPR) proteins. Although it has been reported that DPR proteins cause neurotoxicity, the underlying mechanism has not been fully elucidated. In this study, we have first confirmed that proline-arginine repeat protein (poly-PR) reduces levels of ribosomal RNA and causes neurotoxicity and found that the poly-PR-induced neurotoxicity is repressed by the acceleration of ribosomal RNA synthesis. These results suggest that the poly-PR-induced inhibition of ribosome biogenesis contributes to the poly-PR-induced neurotoxicity. We have further identified DEAD-box RNA helicases as poly-PR-binding proteins, the functions of which are inhibited by poly-PR. The enforced reduction in the expression of DEAD-box RNA helicases causes impairment of ribosome biogenesis and neuronal cell death. These results together suggest that poly-PR causes neurotoxicity by inhibiting the DEAD-box RNA helicase-mediated ribosome biogenesis.
Collapse
Affiliation(s)
- Hiroaki Suzuki
- Department of Pharmacology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Yoshio Shibagaki
- Division of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Seisuke Hattori
- Division of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masaaki Matsuoka
- Department of Pharmacology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
- Department of Dermatological Neuroscience, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| |
Collapse
|
10
|
TLR4/NF-κB-responsive microRNAs and their potential target genes: a mouse model of skeletal muscle ischemia-reperfusion injury. BIOMED RESEARCH INTERNATIONAL 2015; 2015:410721. [PMID: 25692136 PMCID: PMC4321099 DOI: 10.1155/2015/410721] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/01/2014] [Accepted: 10/13/2014] [Indexed: 12/20/2022]
Abstract
Background. The aim of this study was to profile TLR4/NF-κB-responsive microRNAs (miRNAs) and their potential target genes in the skeletal muscles of mice following ischemia-reperfusion injury. Methods. Thigh skeletal muscles of C57BL/6, Tlr4−/−, and NF-κB−/− mice isolated based on femoral artery perfusion were subjected to ischemia for 2 h and reperfusion for 0 h, 4 h, 1 d, and 7 d. The muscle specimens were analyzed with miRNA arrays. Immunoprecipitation with an argonaute 2- (Ago2-) specific monoclonal antibody followed by whole genome microarray was performed to identify mRNA associated with the RNA-silencing machinery. The potential targets of each upregulated miRNA were identified by combined analysis involving the bioinformatics algorithm miRanda and whole genome expression. Results. Three TLR4/NF-κB-responsive miRNAs (miR-15a, miR-744, and miR-1196) were significantly upregulated in the muscles following ischemia-reperfusion injury. The combined in silico and whole genome microarray approaches identified 5, 4, and 20 potential target genes for miR-15a, miR-744, and miR-1196, respectively. Among the 3 genes (Zbed4, Lrsam1, and Ddx21) regulated by at least 2 of the 3 upregulated miRNAs, Lrsam1 and Ddx21 are known to be associated with the innate immunity pathway. Conclusions. This study profiled TLR4/NF-κB-responsive miRNAs and their potential target genes in mouse skeletal muscle subjected to ischemia-reperfusion injury.
Collapse
|
11
|
Calo E, Flynn RA, Martin L, Spitale RC, Chang HY, Wysocka J. RNA helicase DDX21 coordinates transcription and ribosomal RNA processing. Nature 2014; 518:249-53. [PMID: 25470060 DOI: 10.1038/nature13923] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 10/06/2014] [Indexed: 12/19/2022]
Abstract
DEAD-box RNA helicases are vital for the regulation of various aspects of the RNA life cycle, but the molecular underpinnings of their involvement, particularly in mammalian cells, remain poorly understood. Here we show that the DEAD-box RNA helicase DDX21 can sense the transcriptional status of both RNA polymerase (Pol) I and II to control multiple steps of ribosome biogenesis in human cells. We demonstrate that DDX21 widely associates with Pol I- and Pol II-transcribed genes and with diverse species of RNA, most prominently with non-coding RNAs involved in the formation of ribonucleoprotein complexes, including ribosomal RNA, small nucleolar RNAs (snoRNAs) and 7SK RNA. Although broad, these molecular interactions, both at the chromatin and RNA level, exhibit remarkable specificity for the regulation of ribosomal genes. In the nucleolus, DDX21 occupies the transcribed rDNA locus, directly contacts both rRNA and snoRNAs, and promotes rRNA transcription, processing and modification. In the nucleoplasm, DDX21 binds 7SK RNA and, as a component of the 7SK small nuclear ribonucleoprotein (snRNP) complex, is recruited to the promoters of Pol II-transcribed genes encoding ribosomal proteins and snoRNAs. Promoter-bound DDX21 facilitates the release of the positive transcription elongation factor b (P-TEFb) from the 7SK snRNP in a manner that is dependent on its helicase activity, thereby promoting transcription of its target genes. Our results uncover the multifaceted role of DDX21 in multiple steps of ribosome biogenesis, and provide evidence implicating a mammalian RNA helicase in RNA modification and Pol II elongation control.
Collapse
Affiliation(s)
- Eliezer Calo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Ryan A Flynn
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Lance Martin
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Robert C Spitale
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Howard Y Chang
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joanna Wysocka
- 1] Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
12
|
Zhang Y, Baysac KC, Yee LF, Saporita AJ, Weber JD. Elevated DDX21 regulates c-Jun activity and rRNA processing in human breast cancers. Breast Cancer Res 2014; 16:449. [PMID: 25260534 PMCID: PMC4303128 DOI: 10.1186/s13058-014-0449-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 09/19/2014] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION The DDX21 RNA helicase has been shown to be a nucleolar and nuclear protein involved in ribosome RNA processing and AP-1 transcription. DDX21 is highly expressed in colon cancer, lymphomas, and some breast cancers, but little is known about how DDX21 might promote tumorigenesis. METHODS Immunohistochemistry was performed on a breast cancer tissue array of 187 patients. In order to study the subcellular localization of DDX21 in both tumor tissue and tumor cell lines, indirect immunofluorescence was applied. The effect of DDX21 knockdown was measured by cellular apoptosis, rRNA processing assays, soft agar growth and mouse xenograft imaging. AP-1 transcriptional activity was analyzed with a luciferase reporter and bioluminescence imaging, as well as qRT-PCR analysis of downstream target, cyclin D1, to determine the mechanism of action for DDX21 in breast tumorigenesis. RESULTS Herein, we show that DDX21 is highly expressed in breast cancer tissues and established cell lines. A significant number of mammary tumor tissues and established breast cancer cell lines exhibit nuclear but not nucleolar localization of DDX21. The protein expression level of DDX21 correlates with cell proliferation rate and is markedly induced by EGF signaling. Mechanistically, DDX21 is required for the phosphorylation of c-Jun on Ser73 and DDX21 deficiency markedly reduces the transcriptional activity of AP-1. Additionally, DDX21 promotes rRNA processing in multiple breast cancer cell lines. Tumor cells expressing high levels of endogenous DDX21 undergo apoptosis after acute DDX21 knockdown, resulting in significant reduction of tumorigenicity in vitro and in vivo. CONCLUSIONS Our findings indicate that DDX21 expression in breast cancer cells can promote AP-1 activity and rRNA processing, and thus, promote tumorigenesis by two independent mechanisms. DDX21 could serve as a marker for a subset of breast cancer patients with higher proliferation potential and may be used as a therapeutic target for a subset of breast cancer patients.
Collapse
|
13
|
Hirai Y, Louvet E, Oda T, Kumeta M, Watanabe Y, Horigome T, Takeyasu K. Nucleolar scaffold protein, WDR46, determines the granular compartmental localization of nucleolin and DDX21. Genes Cells 2013; 18:780-97. [PMID: 23848194 DOI: 10.1111/gtc.12077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/16/2013] [Indexed: 12/01/2022]
Abstract
The nuclear scaffold is an insoluble nuclear structure that contributes to the inner nuclear organization. In this study, we showed that one of the nuclear scaffold proteins, WDR46, plays a role as a fundamental scaffold component of the nucleolar structure. WDR46 is a highly insoluble nucleolar protein, and its subcellular localization is dependent on neither DNA nor RNA. The N- and C-terminal regions of WDR46 are predicted to be intrinsically disordered, and both regions are critical for the nucleolar localization of WDR46 and the association with its binding partners. When WDR46 was knocked down, two of its binding partners, nucleolin and DDX21 (involved in 18S rRNA processing), were mislocalized from the granular component to the edges of the nucleoli, whereas other binding partners, NOP2 and EBP2 (involved in 28S rRNA processing), were not affected. This is because the proper recruitment of nucleolin and DDX21 to the nucleoli in daughter cells after cell division is ensured by WDR46. These findings suggest a structural role for WDR46 in organizing the 18S ribosomal RNA processing machinery. This role of WDR46 is enabled by its interaction property via intrinsically disordered regions.
Collapse
Affiliation(s)
- Yuya Hirai
- Graduate School of Biostudies, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Martin R, Straub AU, Doebele C, Bohnsack MT. DExD/H-box RNA helicases in ribosome biogenesis. RNA Biol 2012; 10:4-18. [PMID: 22922795 DOI: 10.4161/rna.21879] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ribosome synthesis requires a multitude of cofactors, among them DExD/H-box RNA helicases. Bacterial RNA helicases involved in ribosome assembly are not essential, while eukaryotes strictly require multiple DExD/H-box proteins that are involved in the much more complex ribosome biogenesis pathway. Here, RNA helicases are thought to act in structural remodeling of the RNPs including the modulation of protein binding, and they are required for allowing access or the release of specific snoRNPs from pre-ribosomes. Interestingly, helicase action is modulated by specific cofactors that can regulate recruitment and enzymatic activity. This review summarizes the current knowledge and focuses on recent findings and open questions on RNA helicase function and regulation in ribosome synthesis.
Collapse
Affiliation(s)
- Roman Martin
- Centre for Biochemistry and Molecular Cell Biology, Göttingen University, Göttingen, Germany
| | | | | | | |
Collapse
|
15
|
Zhao J, Yu H, Lin L, Tu J, Cai L, Chen Y, Zhong F, Lin C, He F, Yang P. Interactome study suggests multiple cellular functions of hepatoma-derived growth factor (HDGF). J Proteomics 2011; 75:588-602. [DOI: 10.1016/j.jprot.2011.08.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 08/14/2011] [Accepted: 08/25/2011] [Indexed: 02/05/2023]
|
16
|
Zuo S, Xue Y, Tang S, Yao J, Du R, Yang P, Chen X. 14-3-3 epsilon dynamically interacts with key components of mitogen-activated protein kinase signal module for selective modulation of the TNF-alpha-induced time course-dependent NF-kappaB activity. J Proteome Res 2010; 9:3465-78. [PMID: 20462248 DOI: 10.1021/pr9011377] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inflammation is tightly regulated by nuclear factor-kappa B (NF-kappaB), and if left unchecked excessive NF-kappaB activation for cytokine overproduction can lead to various pathogenic consequences including carcinogenesis. A proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha), can be used to explore possible mechanisms whereby unknown functional pathways modulate the NF-kappaB activity for regulating TNF-alpha-induced inflammation. Given the multifunctional nature of 14-3-3 family proteins and the recent finding of their presence in the TNF-alpha/NF-kappaB pathway network, we used a dual-tagging quantitative proteomic method to first profile the TNF-alpha-inducible interacting partners of 14-3-3 epsilon, the least characterized 14-3-3 isomer in the family. For the first time, we found that TNF-alpha stimulation enhances the interactions between 14-3-3 epsilon and some key components in the mitogen-activated protein kinase (MAPK) signal module which is located at the immediate upstream of NF-kappaB, including transforming growth factor-beta activated kinase-1 (TAK1) and its interacting protein, protein phosphatase 2C beta (PPM1B). By using confocal laser scanning, we observed the TNF-alpha-induced colocalizations among 14-3-3 epsilon, TAK1, and protein phosphatase 2C beta (PPM1B), and these interactions were also TNF-alpha-inducible in different cell types. Further, we found that during the full course of the cellular response to TNF-alpha, the interactions between 14-3-3 epsilon and these two proteins were dynamic and were closely correlated with the time course-dependent changes in NF-kappaB activity, suggesting that these 14-3-3 epsilon interactions are the critical points of convergence for TNF-alpha signaling for modulating NF-kappaB activity. We then postulated a mechanistic view describing how 14-3-3 epsilon coordinates its dynamic interactions with TAK1 and PPM1B for differentially modulating TNF-alpha-induced changes in NF-kappaB activity. By using bioinformatics tools, we constructed the network involving most of the 14-3-3 epsilon interacting proteins identified in our proteomic study. We revealed that 14-3-3 epsilon coordinates the cross talks between the MAPK signal module and other molecular pathways/biological processes primarily including protein metabolism and synthesis, DNA repair, and cell cycle regulation where pharmacological targets for therapeutic intervention could be systematically located.
Collapse
Affiliation(s)
- Shuai Zuo
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Several nucleolar proteins, such as ARF, ribosomal protein (RP) L5, L11, L23 and S7, have been shown to induce p53 activation by inhibiting MDM2 E3 ligase activity and consequently to trigger cell cycle arrest and/or apoptosis. Our recent study revealed another nucleolar protein called nucleostemin (NS), a nucleolar GTP binding protein, as a novel regulator of the p53-MDM2 feedback loop. However, unlike other known nucleolar regulators of this loop, NS surprisingly plays a dual role, as both up and downregulations of its levels could turn on p53 activity. Here, we try to offer some prospective views for this unusual phenomenon by reconciling previously and recently published studies in the field in hoping to better depict the role of NS in linking the p53 pathway with ribosomal biogenesis during cell growth and proliferation as well as to propose NS as another potential molecular target for anti-cancer drug development.
Collapse
Affiliation(s)
- Dorothy Lo
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-Simon Cancer Center, Indianapolis, Indiana, USA
| | | |
Collapse
|
18
|
Percipalle P. The long journey of actin and actin-associated proteins from genes to polysomes. Cell Mol Life Sci 2009; 66:2151-65. [PMID: 19300907 PMCID: PMC11115535 DOI: 10.1007/s00018-009-0012-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/13/2009] [Accepted: 02/24/2009] [Indexed: 12/11/2022]
Abstract
During gene expression, multiple regulatory steps make sure that alterations of chromatin structure are synchronized with RNA synthesis, co-transcriptional assembly of ribonucleoprotein complexes, transport to the cytoplasm and localized translation. These events are controlled by large multiprotein complexes commonly referred to as molecular machines, which are specialized and at the same time display a highly dynamic protein composition. The crosstalk between these molecular machines is essential for efficient RNA biogenesis. Actin has been recently proposed to be an important factor throughout the entire RNA biogenesis pathway as a component of chromatin remodeling complexes, associated with all eukaryotic RNA polymerases as well as precursor and mature ribonucleoprotein complexes. The aim of this review is to present evidence on the involvement of actin and actin-associated proteins in RNA biogenesis and propose integrative models supporting the view that actin facilitates coordination of the different steps in gene expression.
Collapse
Affiliation(s)
- Piergiorgio Percipalle
- Department of Cell and Molecular Biology, Karolinska Institutet, Box 285, 171 77, Stockholm, Sweden.
| |
Collapse
|
19
|
Osman AM, Kol SV, Peijnenburg A, Blokland M, Pennings JLA, Kleinjans JCS, Loveren HV. Proteomic analysis of mouse thymoma EL4 cells treated with bis(tri-n-butyltin)oxide (TBTO). J Immunotoxicol 2009. [DOI: 10.1080/15476910903051723] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
20
|
Romanova L, Grand A, Zhang L, Rayner S, Katoku-Kikyo N, Kellner S, Kikyo N. Critical role of nucleostemin in pre-rRNA processing. J Biol Chem 2008; 284:4968-77. [PMID: 19106111 DOI: 10.1074/jbc.m804594200] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleostemin is a nucleolar protein widely expressed in proliferating cells. Nucleostemin is involved in the regulation of cell proliferation, and both depletion and overexpression of nucleostemin induce cell cycle arrest through the p53 signaling pathway. Although the presence of p53-independent functions of nucleostemin has been previously suggested, the identities of these additional functions remained to be investigated. Here, we show that nucleostemin has a novel role as an integrated component of ribosome biogenesis, particularly pre-rRNA processing. Nucleostemin forms a large protein complex (>700 kDa) that co-fractionates with the pre-60 S ribosomal subunit in a sucrose gradient. This complex contains proteins related to pre-rRNA processing, such as Pes1, DDX21, and EBP2, in addition to several ribosomal proteins. We show that the nucleolar retention of DDX21 and EBP2 is dependent on the presence of nucleostemin in the nucleolus. Furthermore, the knockdown of nucleostemin delays the processing of 32 S pre-rRNA into 28 S rRNA. This is accompanied by a substantial decrease of protein synthesis as well as the levels of rRNAs and some mRNAs. In addition, overexpressed nucleostemin significantly promotes the processing of 32 S pre-rRNA. Collectively, these biochemical and functional studies demonstrate a novel role of nucleostemin in ribosome biogenesis. This is a key aspect of the role of nucleostemin in regulating cell proliferation.
Collapse
Affiliation(s)
- Liudmila Romanova
- Stem Cell Institute, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Girstun A, Kowalska-Loth B, Czubaty A, Klocek M, Staroń K. Fragment responsible for translocation in the N-terminal domain of human topoisomerase I. Biochem Biophys Res Commun 2008; 366:250-7. [DOI: 10.1016/j.bbrc.2007.11.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 11/23/2007] [Indexed: 11/17/2022]
|
22
|
Holmström TH, Mialon A, Kallio M, Nymalm Y, Mannermaa L, Holm T, Johansson H, Black E, Gillespie D, Salminen TA, Langel U, Valdez BC, Westermarck J. c-Jun supports ribosomal RNA processing and nucleolar localization of RNA helicase DDX21. J Biol Chem 2008; 283:7046-53. [PMID: 18180292 DOI: 10.1074/jbc.m709613200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanisms by which the AP-1 transcription factor c-Jun exerts its biological functions are not clearly understood. In addition to its well established role in transcriptional regulation of gene expression, several reports have suggested that c-Jun may also regulate cell behavior by non-transcriptional mechanisms. Here, we report that small interfering RNA-mediated depletion of c-Jun from mammalian cells results in inhibition of 28 S and 18 S rRNA accumulation. Moreover, we show that c-Jun depletion results in partial translocation of RNA helicase DDX21, implicated in rRNA processing, from the nucleolus to the nucleoplasm. We demonstrate that DDX21 translocation is rescued by exogenous c-Jun expression and that c-Jun depletion inhibits rRNA binding of DDX21. Furthermore, the direct interaction between c-Jun and DDX21 regulates nucleolar localization of DDX21. These results demonstrate that in addition to its transcriptional effects, c-Jun regulates rRNA processing and nucleolar compartmentalization of the rRNA processing protein DDX21. Thus, our results demonstrate a nucleolar mechanism through which c-Jun can regulate cell behavior. Moreover, these results suggest that the phenotypes observed previously in c-Jun-depleted mouse models and cell lines could be partly due to the effects of c-Jun on rRNA processing.
Collapse
Affiliation(s)
- Tim H Holmström
- Centre for Biotechnology, University of Turku and Abo Akademi University, 20520 Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Helbing CC, Ji L, Bailey CM, Veldhoen N, Zhang F, Holcombe GW, Kosian PA, Tietge J, Korte JJ, Degitz SJ. Identification of gene expression indicators for thyroid axis disruption in a Xenopus laevis metamorphosis screening assay. Part 2. Effects on the tail and hindlimb. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2007; 82:215-26. [PMID: 17399805 DOI: 10.1016/j.aquatox.2007.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 02/01/2007] [Accepted: 02/03/2007] [Indexed: 05/14/2023]
Abstract
Thyroid hormones (TH), thyroxine (T(4)) and 3,5,3'-triiodothyronine (T(3)), play crucial roles in regulation of growth, development and metabolism in vertebrates and are targets for endocrine disruptive agents. Perturbations in TH action can contribute to the development of disease states and the US Environmental Protection Agency is developing a high throughput screen using TH-dependent metamorphosis of the Xenopus laevis tadpole as an assay platform. Currently this methodology relies on external morphological endpoints and changes in central thyroid axis parameters. However, exposure-related changes in gene expression in TH-sensitive tissue types that occur over shorter time frames have the potential to augment this screen. Using a combination of cDNA array and real time quantitative polymerase chain reaction (QPCR) analyses, this study identifies molecular markers in tissues peripheral to the central thyroid axis. We examine the hindlimb and tail of tadpoles up to 96 h of continuous exposure to T(3), T(4), methimazole, propylthiouracil, or perchlorate. Several novel biomarker candidates are indicated that include transcripts encoding importin, RNA helicase II/Gu, and defender against death protein, DAD1. In combination with previously-identified biomarker candidates, these transcripts will greatly augment the predictive and diagnostic power of the Xenopus metamorphosis assay for perturbation of TH action.
Collapse
Affiliation(s)
- Caren C Helbing
- Department of Biochemistry and Microbiology, PO Box 3055, Stn. CSC, University of Victoria, Victoria, British Columbia V8W 3P6, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Linder P. Dead-box proteins: a family affair--active and passive players in RNP-remodeling. Nucleic Acids Res 2006; 34:4168-80. [PMID: 16936318 PMCID: PMC1616962 DOI: 10.1093/nar/gkl468] [Citation(s) in RCA: 347] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 06/19/2006] [Accepted: 06/20/2006] [Indexed: 11/23/2022] Open
Abstract
DEAD-box proteins are characterized by nine conserved motifs. According to these criteria, several hundreds of these proteins can be identified in databases. Many different DEAD-box proteins can be found in eukaryotes, whereas prokaryotes have small numbers of different DEAD-box proteins. DEAD-box proteins play important roles in RNA metabolism, and they are very specific and cannot mutually be replaced. In vitro, many DEAD-box proteins have been shown to have RNA-dependent ATPase and ATP-dependent RNA helicase activities. From the genetic and biochemical data obtained mainly in yeast, it has become clear that these proteins play important roles in remodeling RNP complexes in a temporally controlled fashion. Here, I shall give a general overview of the DEAD-box protein family.
Collapse
Affiliation(s)
- Patrick Linder
- Department of Microbiology and Molecular Medicine, CMU 1, rue Michel Servet, CH-1211 Genève 4, Switzerland.
| |
Collapse
|
25
|
Fuller-Pace FV. DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res 2006; 34:4206-15. [PMID: 16935882 PMCID: PMC1616952 DOI: 10.1093/nar/gkl460] [Citation(s) in RCA: 338] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The DExD/H box family of proteins includes a large number of proteins that play important roles in RNA metabolism. Members of this family have been shown to act as RNA helicases or unwindases, using the energy from ATP hydrolysis to unwind RNA structures or dissociate RNA–protein complexes in cellular processes that require modulation of RNA structures. However, it is clear that several members of this family are multifunctional and, in addition to acting as RNA helicases in processes such as pre-mRNA processing, play important roles in transcriptional regulation. In this review I shall concentrate on RNA helicase A (Dhx9), DP103 (Ddx20), p68 (Ddx5) and p72 (Ddx17), proteins for which there is a strong body of evidence showing that they play important roles in transcription, often as coactivators or corepressors through their interaction with key components of the transcriptional machinery, such as CREB-binding protein, p300, RNA polymerase II and histone deacetylases.
Collapse
Affiliation(s)
- Frances V Fuller-Pace
- Cancer Biology Group, Division of Pathology and Neuroscience, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK.
| |
Collapse
|
26
|
Application of Xenopus laevis in ecotoxicology (I) —Introduction and quality control of laboratory animal. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s11434-006-1273-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Gonzales B, Yang H, Henning D, Valdez BC. Cloning and functional characterization of the Xenopus orthologue of the Treacher Collins syndrome (TCOF1) gene product. Gene 2005; 359:73-80. [PMID: 16125876 DOI: 10.1016/j.gene.2005.04.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 04/21/2005] [Accepted: 04/28/2005] [Indexed: 12/01/2022]
Abstract
Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development caused by mutations in the TCOF1 gene, which encodes the nucleolar phosphoprotein treacle. We previously reported a function for mammalian treacle in ribosomal DNA gene transcription by its interaction with upstream binding factor. As an initial step in the development of a TCS model for frog the cDNA that encodes the Xenopus laevis treacle was cloned. Although the derived amino acid sequence shows a poor homology with its mammalian orthologues, Xenopus treacle has 11 highly homologous direct repeats near the center of the protein molecule similar to those present in its human, dog and mouse orthologues. Comparison of their amino acid compositions indicates conservation of predominant specific amino acid residues. Antisense-mediated down-regulation of treacle expression in X. laevis oocytes resulted in inhibition of rDNA gene transcription. The results suggest evolutionary conservation of the function of treacle in ribosomal RNA biogenesis in higher eukaryotes.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Line
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Ribosomal/genetics
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Female
- Fluorescent Antibody Technique, Indirect
- HeLa Cells
- Humans
- Mandibulofacial Dysostosis/genetics
- Microinjections
- Molecular Sequence Data
- Molecular Weight
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacology
- Oocytes/drug effects
- Oocytes/metabolism
- Phosphoproteins/chemistry
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transcription, Genetic/drug effects
- Xenopus Proteins/chemistry
- Xenopus Proteins/genetics
- Xenopus Proteins/metabolism
- Xenopus laevis/genetics
Collapse
Affiliation(s)
- Bianca Gonzales
- Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | | | | | | |
Collapse
|
28
|
Yang H, Henning D, Valdez BC. Functional interaction between RNA helicase II/Gu(alpha) and ribosomal protein L4. FEBS J 2005; 272:3788-802. [PMID: 16045751 DOI: 10.1111/j.1742-4658.2005.04811.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
RNA helicase II/Gu(alpha) is a multifunctional nucleolar protein involved in ribosomal RNA processing in Xenopus laevis oocytes and mammalian cells. Downregulation of Gu(alpha) using small interfering RNA (siRNA) in HeLa cells resulted in 80% inhibition of both 18S and 28S rRNA production. The mechanisms underlying this effect remain unclear. Here we show that in mammalian cells, Gu(alpha) physically interacts with ribosomal protein L4 (RPL4), a component of 60S ribosome large subunit. The ATPase activity of Gu(alpha) is important for this interaction and is also necessary for the function of Gu(alpha) in the production of both 18S and 28S rRNAs. Knocking down RPL4 expression using siRNA in mouse LAP3 cells inhibits the production of 47/45S, 32S, 28S, and 18S rRNAs. This inhibition is reversed by exogenous expression of wild-type human RPL4 protein but not the mutant form lacking Gu(alpha)-interacting motif. These observations have suggested that the function of Gu(alpha) in rRNA processing is at least partially dependent on its ability to interact with RPL4.
Collapse
Affiliation(s)
- Hushan Yang
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
29
|
Mathavan S, Lee SGP, Mak A, Miller LD, Murthy KRK, Govindarajan KR, Tong Y, Wu YL, Lam SH, Yang H, Ruan Y, Korzh V, Gong Z, Liu ET, Lufkin T. Transcriptome analysis of zebrafish embryogenesis using microarrays. PLoS Genet 2005; 1:260-76. [PMID: 16132083 PMCID: PMC1193535 DOI: 10.1371/journal.pgen.0010029] [Citation(s) in RCA: 252] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 07/14/2005] [Indexed: 11/18/2022] Open
Abstract
Zebrafish (Danio rerio) is a well-recognized model for the study of vertebrate developmental genetics, yet at the same time little is known about the transcriptional events that underlie zebrafish embryogenesis. Here we have employed microarray analysis to study the temporal activity of developmentally regulated genes during zebrafish embryogenesis. Transcriptome analysis at 12 different embryonic time points covering five different developmental stages (maternal, blastula, gastrula, segmentation, and pharyngula) revealed a highly dynamic transcriptional profile. Hierarchical clustering, stage-specific clustering, and algorithms to detect onset and peak of gene expression revealed clearly demarcated transcript clusters with maximum gene activity at distinct developmental stages as well as co-regulated expression of gene groups involved in dedicated functions such as organogenesis. Our study also revealed a previously unidentified cohort of genes that are transcribed prior to the mid-blastula transition, a time point earlier than when the zygotic genome was traditionally thought to become active. Here we provide, for the first time to our knowledge, a comprehensive list of developmentally regulated zebrafish genes and their expression profiles during embryogenesis, including novel information on the temporal expression of several thousand previously uncharacterized genes. The expression data generated from this study are accessible to all interested scientists from our institute resource database (http://giscompute.gis.a-star.edu.sg/~govind/zebrafish/data_download.html).
Collapse
Affiliation(s)
| | | | - Alicia Mak
- Genome Institute of Singapore, Singapore
| | | | | | | | - Yan Tong
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yi Lian Wu
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Siew Hong Lam
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | - Yijun Ruan
- Genome Institute of Singapore, Singapore
| | | | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | - Thomas Lufkin
- Genome Institute of Singapore, Singapore
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Henning D, So RB, Jin R, Lau LF, Valdez BC. Silencing of RNA helicase II/Gualpha inhibits mammalian ribosomal RNA production. J Biol Chem 2003; 278:52307-14. [PMID: 14559904 DOI: 10.1074/jbc.m310846200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The intricate production of ribosomal RNA is well defined in yeast, but its complexity in higher organisms is barely understood. We recently showed that down-regulation of nucleolar protein RNA helicase II/Gualpha (RH-II/Gualpha or DDX21) in Xenopus oocytes inhibited processing of 20 S rRNA to 18 S and contributed to degradation of 28 S rRNA (Yang, H., Zhou, J., Ochs, R. L., Henning, D., Jin, R., and Valdez, B. C. (2003) J. Biol. Chem. 278, 38847-38859). Since no nucleolar RNA helicase has been functionally characterized in mammalian cells, we used short interfering RNA to search for functions for RH-II/Gualpha and its paralogue RH-II/Gubeta in rRNA production. Silencing of RH-II/Gualpha by more than 80% in HeLa cells resulted in an almost 80% inhibition of 18 and 28 S rRNA production. This inhibition could be reversed by exogenous expression of wild type RH-II/Gualpha. A helicase-deficient mutant form having ATPase activity was able to rescue the production of 28 S but not 18 S rRNA. A phenotype exhibiting inhibition of 18 S and 28 S rRNA production was also observed when the paralogue RH-II/Gubeta was overexpressed. Both down-regulation of RH-II/Gualpha and overexpression of RH-II/Gubeta slowed cell proliferation. The opposite effects of the two paralogues suggest antagonistic functions.
Collapse
Affiliation(s)
- Dale Henning
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|