1
|
Davidge B, McDermott SM, Carnes J, Lewis I, Tracy M, Stuart KD. Multiple domains of the integral KREPA3 protein are critical for the structure and precise functions of RNA editing catalytic complexes in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2023; 29:1591-1609. [PMID: 37474258 PMCID: PMC10578492 DOI: 10.1261/rna.079691.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
The gRNA directed U-insertion and deletion editing of mitochondrial mRNAs that is essential in different life-cycle stages for the protozoan parasite Trypanosoma brucei is performed by three similar multiprotein catalytic complexes (CCs) that contain the requisite enzymes. These CCs also contain a common set of eight proteins that have no apparent direct catalytic function, including six that have an OB-fold domain. We show here that one of these OB-fold proteins, KREPA3 (A3), has structural homology to other editing proteins, is essential for editing, and is multifunctional. We investigated A3 function by analyzing the effects of single amino acid loss of function mutations, most of which were identified by screening bloodstream form (BF) parasites for loss of growth following random mutagenesis. Mutations in the zinc fingers (ZFs), an intrinsically disordered region (IDR), and several within or near the carboxy-terminal OB-fold domain variably impacted CC structural integrity and editing. Some mutations resulted in almost complete loss of CCs and its proteins and editing, whereas others retained CCs but had aberrant editing. All but a mutation which is near the OB-fold affected growth and editing in BF but not procyclic form (PF) parasites. These data indicate that multiple positions within A3 have essential functions that contribute to the structural integrity of CCs, the precision of editing and the developmental differences in editing between BF and PF stages.
Collapse
Affiliation(s)
- Brittney Davidge
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, Washington 98109, USA
| | - Suzanne M McDermott
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, Washington 98109, USA
- Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
| | - Jason Carnes
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, Washington 98109, USA
| | - Isaac Lewis
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, Washington 98109, USA
| | - Maxwell Tracy
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, Washington 98109, USA
| | - Kenneth D Stuart
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, Washington 98109, USA
- Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
- Department of Global Health, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
2
|
Davidge B, McDermott SM, Carnes J, Lewis I, Tracy M, Stuart KD. Multiple domains of the integral KREPA3 protein are critical for the structure and precise functions of RNA Editing Catalytic Complexes in Trypanosoma brucei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537538. [PMID: 37131796 PMCID: PMC10153193 DOI: 10.1101/2023.04.19.537538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The gRNA directed U-insertion and deletion editing of mitochondrial mRNAs that is essential in different life cycle stages for the protozoan parasite Trypanosoma brucei is performed by three similar multi-protein catalytic complexes (CCs) that contain the requisite enzymes. These CCs also contain a common set of eight proteins that have no apparent direct catalytic function, including six that have an OB-fold domain. We show here that one of these OB-fold proteins, KREPA3 (A3), has structural homology to other editing proteins, is essential for editing and is multifunctional. We investigated A3 function by analyzing the effects of single amino acid loss of function mutations most of which were identified by screening bloodstream form (BF) parasites for loss of growth following random mutagenesis. Mutations in the ZFs, an intrinsically disordered region (IDR) and several within or near the C-terminal OB-fold domain variably impacted CC structural integrity and editing. Some mutations resulted in almost complete loss of CCs and its proteins and editing whereas others retained CCs but had aberrant editing. All but a mutation which is near the OB-fold affected growth and editing in BF but not procyclic form (PF) parasites. These data indicate that multiple positions within A3 have essential functions that contribute to the structural integrity of CCs, the precision of editing and the developmental differences in editing between BF and PF stages.
Collapse
Affiliation(s)
- Brittney Davidge
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, WA 98109
| | - Suzanne M McDermott
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, WA 98109
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Jason Carnes
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, WA 98109
| | - Isaac Lewis
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, WA 98109
| | - Maxwell Tracy
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, WA 98109
| | - Kenneth D Stuart
- Center for Global Infectious Disease Research (CGIDR), Seattle Children's Research Institute, Seattle, WA 98109
- Department of Pediatrics, University of Washington, Seattle, WA
- Department of Global Health, University of Washington, Seattle, WA
| |
Collapse
|
3
|
Ashton NW, Loo D, Paquet N, O'Byrne KJ, Richard DJ. Novel insight into the composition of human single-stranded DNA-binding protein 1 (hSSB1)-containing protein complexes. BMC Mol Biol 2016; 17:24. [PMID: 27938330 PMCID: PMC5148904 DOI: 10.1186/s12867-016-0077-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/02/2016] [Indexed: 11/10/2022] Open
Abstract
Background Single-stranded DNA-binding proteins are essential cellular components required for the protection, metabolism and processing of single-stranded DNA. Human single-stranded DNA-binding protein 1 (hSSB1) is one such protein, with described roles in genome stability maintenance and transcriptional regulation. As yet, however, the mechanisms through which hSSB1 functions and the binding partners with which it interacts remain poorly understood. Results In this work, hSSB1 was immunoprecipitated from cell lysate samples that had been enriched for non-soluble nuclear proteins and those associating with hSSB1 identified by mass spectrometry. In doing so, 334 potential hSSB1-associating proteins were identified, with known roles in a range of distinct biological processes. Unexpectedly, whilst hSSB1 has largely been studied in a genome stability context, few other DNA repair or replication proteins were detected. By contrast, a large number of proteins were identified with roles in mRNA metabolism, reflecting a currently emerging area of hSSB1 study. In addition, numerous proteins were detected that comprise various chromatin-remodelling complexes. Conclusions These findings provide new insight into the binding partners of hSSB1 and will likely function as a platform for future research. Electronic supplementary material The online version of this article (doi:10.1186/s12867-016-0077-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicholas W Ashton
- School of Biomedical Research, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Dorothy Loo
- Translational Research Institute Proteomics Facility, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Nicolas Paquet
- School of Biomedical Research, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Kenneth J O'Byrne
- School of Biomedical Research, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Derek J Richard
- School of Biomedical Research, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
4
|
Simonson T, Ye-Lehmann S, Palmai Z, Amara N, Wydau-Dematteis S, Bigan E, Druart K, Moch C, Plateau P. Redesigning the stereospecificity of tyrosyl-tRNA synthetase. Proteins 2016; 84:240-53. [PMID: 26676967 DOI: 10.1002/prot.24972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/30/2015] [Accepted: 11/26/2015] [Indexed: 12/14/2022]
Abstract
D-Amino acids are largely excluded from protein synthesis, yet they are of great interest in biotechnology. Unnatural amino acids have been introduced into proteins using engineered aminoacyl-tRNA synthetases (aaRSs), and this strategy might be applicable to D-amino acids. Several aaRSs can aminoacylate their tRNA with a D-amino acid; of these, tyrosyl-tRNA synthetase (TyrRS) has the weakest stereospecificity. We use computational protein design to suggest active site mutations in Escherichia coli TyrRS that could increase its D-Tyr binding further, relative to L-Tyr. The mutations selected all modify one or more sidechain charges in the Tyr binding pocket. We test their effect by probing the aminoacyl-adenylation reaction through pyrophosphate exchange experiments. We also perform extensive alchemical free energy simulations to obtain L-Tyr/D-Tyr binding free energy differences. Agreement with experiment is good, validating the structural models and detailed thermodynamic predictions the simulations provide. The TyrRS stereospecificity proves hard to engineer through charge-altering mutations in the first and second coordination shells of the Tyr ammonium group. Of six mutants tested, two are active towards D-Tyr; one of these has an inverted stereospecificity, with a large preference for D-Tyr. However, its activity is low. Evidently, the TyrRS stereospecificity is robust towards charge rearrangements near the ligand. Future design may have to consider more distant and/or electrically neutral target mutations, and possibly design for binding of the transition state, whose structure however can only be modeled.
Collapse
Affiliation(s)
- Thomas Simonson
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | | | - Zoltan Palmai
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Najette Amara
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Sandra Wydau-Dematteis
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Erwan Bigan
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Karen Druart
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Clara Moch
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Pierre Plateau
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| |
Collapse
|
5
|
Perona JJ, Hadd A. Structural diversity and protein engineering of the aminoacyl-tRNA synthetases. Biochemistry 2012; 51:8705-29. [PMID: 23075299 DOI: 10.1021/bi301180x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRS) are the enzymes that ensure faithful transmission of genetic information in all living cells, and are central to the developing technologies for expanding the capacity of the translation apparatus to incorporate nonstandard amino acids into proteins in vivo. The 24 known aaRS families are divided into two classes that exhibit functional evolutionary convergence. Each class features an active site domain with a common fold that binds ATP, the amino acid, and the 3'-terminus of tRNA, embellished by idiosyncratic further domains that bind distal portions of the tRNA and enhance specificity. Fidelity in the expression of the genetic code requires that the aaRS be selective for both amino acids and tRNAs, a substantial challenge given the presence of structurally very similar noncognate substrates of both types. Here we comprehensively review central themes concerning the architectures of the protein structures and the remarkable dual-substrate selectivities, with a view toward discerning the most important issues that still substantially limit our capacity for rational protein engineering. A suggested general approach to rational design is presented, which should yield insight into the identities of the protein-RNA motifs at the heart of the genetic code, while also offering a basis for improving the catalytic properties of engineered tRNA synthetases emerging from genetic selections.
Collapse
Affiliation(s)
- John J Perona
- Department of Chemistry, Portland State University, Portland, Oregon 97207, United States.
| | | |
Collapse
|
6
|
Yu T, Li J, Yang Y, Qi L, Chen B, Zhao F, Bao Q, Wu J. Codon usage patterns and adaptive evolution of marine unicellular cyanobacteria Synechococcus and Prochlorococcus. Mol Phylogenet Evol 2012; 62:206-13. [DOI: 10.1016/j.ympev.2011.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 09/03/2011] [Accepted: 09/23/2011] [Indexed: 10/16/2022]
|
7
|
Hughes RA, Ellington AD. Rational design of an orthogonal tryptophanyl nonsense suppressor tRNA. Nucleic Acids Res 2010; 38:6813-30. [PMID: 20571084 PMCID: PMC2965240 DOI: 10.1093/nar/gkq521] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
While a number of aminoacyl tRNA synthetase (aaRS):tRNA pairs have been engineered to alter or expand the genetic code, only the Methanococcus jannaschii tyrosyl tRNA synthetase and tRNA have been used extensively in bacteria, limiting the types and numbers of unnatural amino acids that can be utilized at any one time to expand the genetic code. In order to expand the number and type of aaRS/tRNA pairs available for engineering bacterial genetic codes, we have developed an orthogonal tryptophanyl tRNA synthetase and tRNA pair, derived from Saccharomyces cerevisiae. In the process of developing an amber suppressor tRNA, we discovered that the Escherichia coli lysyl tRNA synthetase was responsible for misacylating the initial amber suppressor version of the yeast tryptophanyl tRNA. It was discovered that modification of the G:C content of the anticodon stem and therefore reducing the structural flexibility of this stem eliminated misacylation by the E. coli lysyl tRNA synthetase, and led to the development of a functional, orthogonal suppressor pair that should prove useful for the incorporation of bulky, unnatural amino acids into the genetic code. Our results provide insight into the role of tRNA flexibility in molecular recognition and the engineering and evolution of tRNA specificity.
Collapse
Affiliation(s)
- Randall A Hughes
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712, USA
| | | |
Collapse
|
8
|
Lopes A, Schmidt Am Busch M, Simonson T. Computational design of protein-ligand binding: modifying the specificity of asparaginyl-tRNA synthetase. J Comput Chem 2010; 31:1273-86. [PMID: 19862811 DOI: 10.1002/jcc.21414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A method for computational design of protein-ligand interactions is implemented and tested on the asparaginyl- and aspartyl-tRNA synthetase enzymes (AsnRS, AspRS). The substrate specificity of these enzymes is crucial for the accurate translation of the genetic code. The method relies on a molecular mechanics energy function and a simple, continuum electrostatic, implicit solvent model. As test calculations, we first compute AspRS-substrate binding free energy changes due to nine point mutations, for which experimental data are available; we also perform large-scale redesign of the entire active site of each enzyme (40 amino acids) and compare to experimental sequences. We then apply the method to engineer an increased binding of aspartyl-adenylate (AspAMP) into AsnRS. Mutants are obtained using several directed evolution protocols, where four or five amino acid positions in the active site are randomized. Promising mutants are subjected to molecular dynamics simulations; Poisson-Boltzmann calculations provide an estimate of the corresponding, AspAMP, binding free energy changes, relative to the native AsnRS. Several of the mutants are predicted to have an inverted binding specificity, preferring to bind AspAMP rather than the natural substrate, AsnAMP. The computed binding affinities are significantly weaker than the native, AsnRS:AsnAMP affinity, and in most cases, the active site structure is significantly changed, compared to the native complex. This almost certainly precludes catalytic activity. One of the designed sequences has a higher affinity and more native-like structure and may represent a valid candidate for Asp activity.
Collapse
Affiliation(s)
- Anne Lopes
- Laboratoire de Biochimie, Department of Biology, UMR CNRS 7654, Ecole Polytechnique, 91128 Palaiseau, France
| | | | | |
Collapse
|
9
|
Eshete M, Marchbank MT, Deutscher SL, Sproat B, Leszczynska G, Malkiewicz A, Agris PF. Specificity of Phage Display Selected Peptides for Modified Anticodon Stem and Loop Domains of tRNA. Protein J 2007; 26:61-73. [PMID: 17237992 DOI: 10.1007/s10930-006-9046-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein recognition of RNA has been studied using Peptide Phage Display Libraries, but in the absence of RNA modifications. Peptides from two libraries, selected for binding the modified anticodon stem and loop (ASL) of human tRNA(LyS3) having 2-thiouridine (s(2)U34) and pseudouridine (psi39), bound the modified human ASL(Lys3)(s(2)U34;psi39) preferentially and had significant homology with RNA binding proteins. Selected peptides were narrowed to a manageable number using a less sensitive, but inexpensive assay before conducting intensive characterization. The affinity and specificity of the best binding peptide (with an N-terminal fluorescein) were characterized by fluorescence spectrophotometry. The peptide exhibited the highest binding affinity for ASL(LYS3)(s(2)U34; psi39), followed by the hypermodified ASL(Lys3) (mcm(5)s(2) U34; ms(2)t(6)A37) and the unmodified ASL(Lys3), but bound poorly to singly modified ASL(Lys3) constructs (psi39, ms(2)t(6)A37, s(2)34), ASL(Lys1,2) (t(6)A37) and Escherichia coli ASL(Glu) (s(2)U34). Thus, RNA modifications are potentially important recognition elements for proteins and can be targets for selective recognition by peptides.
Collapse
Affiliation(s)
- Matthewos Eshete
- Department of Molecular and Structural Biochemistry, North Carolina State University, 128 Polk Hall, Campus Box 7622, Raleigh, NC, 27695-7622, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Feng L, Yuan J, Toogood H, Tumbula-Hansen D, Söll D. Aspartyl-tRNA Synthetase Requires a Conserved Proline in the Anticodon-binding Loop for tRNAAsn Recognition in Vivo. J Biol Chem 2005; 280:20638-41. [PMID: 15781458 DOI: 10.1074/jbc.m500874200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most prokaryotes require Asp-tRNA(Asn) for the synthesis of Asn-tRNA(Asn). This misacylated tRNA species is synthesized by a non-discriminating aspartyl-tRNA synthetase (AspRS) that acylates both tRNA(Asp) and tRNA(Asn) with aspartate. In contrast, a discriminating AspRS forms only Asp-tRNA(Asp). Here we show that a conserved proline (position 77) in the L1 loop of the non-discriminating Deinococcus radiodurans AspRS2 is required for tRNA(Asn) recognition in vivo. Escherichia coli trpA34 was transformed with DNA from a library of D. radiodurans aspS2 genes with a randomized codon 77 and then subjected to in vivo selection for Asp-tRNA(Asn) formation by growth in minimal medium. Only proline codons were found at position 77 in the aspS2 genes isolated from 21 of the resulting viable colonies. However, when the aspS temperature-sensitive E. coli strain CS89 was transformed with the same DNA library and then screened for Asp-tRNA(Asp) formation in vivo by growth at the non-permissive temperature, codons for seven other amino acids besides proline were identified at position 77 in the isolates examined. Thus, replacement of proline 77 by cysteine, isoleucine, leucine, lysine, phenylalanine, serine, or valine resulted in mutant D. radiodurans AspRS2 enzymes still capable of forming Asp-tRNA(Asp) but unable to recognize tRNA(Asn). This strongly suggests that proline 77 is responsible for the non-discriminatory tRNA recognition properties of this enzyme.
Collapse
Affiliation(s)
- Liang Feng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | | | |
Collapse
|
11
|
Tang SN, Huang JF. Evolution of different oligomeric glycyl-tRNA synthetases. FEBS Lett 2005; 579:1441-5. [PMID: 15733854 DOI: 10.1016/j.febslet.2005.01.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 01/11/2005] [Accepted: 01/11/2005] [Indexed: 10/25/2022]
Abstract
There are two oligomeric types of glycyl-tRNA synthetases (GlyRSs) in genome, the alpha2beta2 tetramer and alpha2 dimer. Here, we showed that the anticodon-binding domains (ABDs) of dimeric and tetrameric GlyRSs are non-homologous, although their catalytic central domains (CCDs) are homologous. The dimeric GlyRS_ABD is fused to the C-terminal of CCD in alpha-subunit, but the tetrameric GlyRS_ABD is to the C-terminal in beta-subunit during evolution. Generally, one species only contains one oligomeric type of GlyRS, but the both oligomeric GlyRSs with the multiple homologous domains can be observed in Magnetospirillum magnetotacticum genome, nevertheless, these homologous domains are probably from different genomes.
Collapse
Affiliation(s)
- Su-Ni Tang
- Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Eastern Jiaochang Road, Kunming, Yunnan 650223, PR China
| | | |
Collapse
|
12
|
Martin F, Barends S, Eriani G. Single amino acid changes in AspRS reveal alternative routes for expanding its tRNA repertoire in vivo. Nucleic Acids Res 2004; 32:4081-9. [PMID: 15289581 PMCID: PMC506823 DOI: 10.1093/nar/gkh751] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are enzymes that are highly specific for their tRNA substrates. Here, we describe the expansion of a class IIb aaRS-tRNA specificity by a genetic selection that involves the use of a modified tRNA displaying an amber anticodon and the argE(amber) and lacZ(amber) reporters. The study was performed on Escherichia coli aspartyl-tRNA synthetase (AspRS) and amber tRNA(Asp). Nine AspRS mutants able to charge the amber tRNA(Asp) and to suppress the reporter genes were selected from a randomly mutated library. All the mutants exhibited a new amber tRNA(Asp) specificity in addition to the initial native tRNA(Asp). Six mutations were found in the anticodon-binding site located in the N-terminal OB-fold. The strongest suppressor was a mutation of residue Glu-93 that contacts specifically the anticodon nucleotide 34 in the crystal structure. The other mutations in the OB-fold were found at close distance from the anticodon in the so-called loop L45 and strand S1. They concern residues that do not contact tRNA(Asp) in the native complex. In addition, this study shows that suppressors can carry mutations located far from the anticodon-binding site. One such mutation was found in the synthetase hinge-module where it increases the tRNA(Asp)-charging rate, and two other mutations were found in the prokaryotic-specific insertion domain and the catalytic core. These mutants seem to act by indirect effects on the tRNA acceptor stem binding and on the conformation of the active site of the enzyme. Altogether, these data suggest the existence of various ways for modifying the mechanism of tRNA discrimination.
Collapse
Affiliation(s)
- Franck Martin
- UPR 9002 SMBMR du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15, rue René Descartes, 67084 Strasbourg, France
| | | | | |
Collapse
|
13
|
Polycarpo C, Ambrogelly A, Ruan B, Tumbula-Hansen D, Ataide SF, Ishitani R, Yokoyama S, Nureki O, Ibba M, Söll D. Activation of the Pyrrolysine Suppressor tRNA Requires Formation of a Ternary Complex with Class I and Class II Lysyl-tRNA Synthetases. Mol Cell 2003; 12:287-94. [PMID: 14536069 DOI: 10.1016/s1097-2765(03)00280-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Monomethylamine methyltransferase of the archaeon Methanosarcina barkeri contains a rare amino acid, pyrrolysine, encoded by the termination codon UAG. Translation of this UAG requires the aminoacylation of the corresponding amber suppressor tRNAPyl. Previous studies reported that tRNAPyl could be aminoacylated by the synthetase-like protein PylS. We now show that tRNAPyl is efficiently aminoacylated in the presence of both the class I LysRS and class II LysRS of M. barkeri, but not by either enzyme acting alone or by PylS. In vitro studies show that both the class I and II LysRS enzymes must bind tRNAPyl in order for the aminoacylation reaction to proceed. Structural modeling and selective inhibition experiments indicate that the class I and II LysRSs form a ternary complex with tRNAPyl, with the aminoacylation activity residing in the class II enzyme.
Collapse
Affiliation(s)
- Carla Polycarpo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|