1
|
Kumar S, Mishra S, Gourinath S. Structural and functional diversity of Entamoeba histolytica calcium-binding proteins. Biophys Rev 2020; 12:10.1007/s12551-020-00766-6. [PMID: 33063237 PMCID: PMC7755952 DOI: 10.1007/s12551-020-00766-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/09/2020] [Indexed: 12/20/2022] Open
Abstract
Entamoeba histolytica (E. histolytica) is an etiological agent of human amoebic colitis, and it causes a high level of morbidity and mortality worldwide, particularly in developing countries. Ca2+ plays a pivotal role in amoebic pathogenesis, and Ca2+-binding proteins (CaBPs) of E. histolytica appear to be a major determinant in this process. E. histolytica has 27-EF-hand containing CaBPs, suggesting that this organism has complex Ca2+ signaling cascade. E. histolytica CaBPs share (29-47%) sequence identity with ubiquitous Ca2+-binding protein calmodulin (CaM); however, they do not show any significant structural similarity, indicating lack of a typical CaM in this organism. Structurally, these CaBPs are very diverse among themselves, and perhaps such diversity allows them to recognize different cellular targets, thereby enabling them to perform a range of cellular functions. The presence of such varied signaling molecules helps parasites to invade host cells and advance in disease progression. In the past two decades, tremendous progress has been made in understanding the structure of E. histolytica CaBPs by using the X-ray or NMR method. To gain greater insight into the structural and functional diversity of these amoebic CaBPs, we analyzed and compiled all the available literature. Most of the CaBPs has about 150 amino acids with 4-EF hand or EF-hand-like sequences, similar to CaM. In a few cases, all the EF-hand motifs are not capable of binding Ca2+, suggesting them to be pseudo EF-hand motifs. The CaBPs perform diverse cellular signaling that includes cytoskeleton remodeling, phagocytosis, cell proliferation, migration of trophozoites, and GTPase activity. Overall, the structural and functional diversity of E. histolytica CaBPs compiled here may offer a basis to develop an efficient drug to counter its pathogenesis.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Present Address: Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425 USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Shalini Mishra
- School of Life Science Jawaharlal Nehru University, New Delhi, 110067 India
| | - S. Gourinath
- School of Life Science Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
2
|
Abstract
Calcium signaling plays a key role in many essential processes in almost all eukaryotic systems. It is believed that it may also be an important signaling system of the protist parasite Entamoeba histolytica. Motility, adhesion, cytolysis, and phagocytosis/trogocytosis are important steps in invasion and pathogenesis of E. histolytica, and Ca2+ signaling is thought to be associated with these processes leading to tissue invasion. There are a large number of Ca2+-binding proteins (CaBPs) in E. histolytica, and a number of these proteins appear to be associated with different steps in pathogenesis. The genome encodes 27 EF-hand–containing CaBPs in addition to a number of other Ca2+-binding domain/motif-containing proteins, which suggest intricate calcium signaling network in this parasite. Unlike other eukaryotes, a typical calmodulin-like protein has not been seen in E. histolytica. Though none of the CaBPs display sequence similarity with a typical calmodulin, extensive structural similarity has been seen in spite of lack of significant functional overlap with that of typical calmodulins. One of the unique features observed in E. histolytica is the identification of CaBPs (EhCaBP1, EhCaBP3) that have the ability to directly bind actin and modulate actin dynamics. Direct interaction of CaBPs with actin has not been seen in any other system. Pseudopod formation and phagocytosis are some of the processes that require actin dynamics, and some of the amoebic CaBPs (EhC2Pk, EhCaBP1, EhCaBP3, EhCaBP5) participate in this process. None of these E. histolytica CaBPs have any homolog in organisms other than different species of Entamoeba, suggesting a novel Ca2+ signaling pathway that has evolved in this genus.
Collapse
Affiliation(s)
- Mrigya Babuta
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- Department of Biology, Ashoka University, Sonepat, Haryana, India
- * E-mail:
| |
Collapse
|
3
|
Mansuri MS, Bhattacharya S, Bhattacharya A. A novel alpha kinase EhAK1 phosphorylates actin and regulates phagocytosis in Entamoeba histolytica. PLoS Pathog 2014; 10:e1004411. [PMID: 25299184 PMCID: PMC4192601 DOI: 10.1371/journal.ppat.1004411] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/19/2014] [Indexed: 01/09/2023] Open
Abstract
Phagocytosis plays a key role in nutrient uptake and virulence of the protist parasite Entamoeba histolytica. Phagosomes have been characterized by proteomics, and their maturation in the cells has been studied. However, there is so far not much understanding about initiation of phagocytosis and formation of phagosomes at the molecular level. Our group has been studying initiation of phagocytosis and formation of phagosomes in E. histolytica, and have described some of the molecules that play key roles in the process. Here we show the involvement of EhAK1, an alpha kinase and a SH3 domain containing protein in the pathway that leads to formation of phagosomes using red blood cell as ligand particle. A number of approaches, such as proteomics, biochemical, confocal imaging using specific antibodies or GFP tagged molecules, expression down regulation by antisense RNA, over expression of wild type and mutant proteins, were used to understand the role of EhAK1 in phagocytosis. EhAK1 was found in the phagocytic cups during the progression of cups, until closure of phagosomes, but not in the phagosomes themselves. It is recruited to the phagosomes through interaction with the calcium binding protein EhCaBP1. A reduction in phagocytosis was observed when EhAK1 was down regulated by antisense RNA, or by over expression of the kinase dead mutant. G-actin was identified as one of the major substrates of EhAK1. Phosphorylated actin preferentially accumulated at the phagocytic cups and over expression of a phosphorylation defective actin led to defects in phagocytosis. In conclusion, we describe an important component of the pathway that is initiated on attachment of red blood cells to E. histolytica cells. The main function of EhAK1 is to couple signalling events initiated after accumulation of EhC2PK to actin dynamics.
Collapse
Affiliation(s)
- M. Shahid Mansuri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
4
|
Grewal JS, Padhan N, Aslam S, Bhattacharya A, Lohia A. The calcium binding protein EhCaBP6 is a microtubular-end binding protein inEntamoeba histolytica. Cell Microbiol 2013; 15:2020-33. [DOI: 10.1111/cmi.12167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 06/28/2013] [Accepted: 07/08/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Jaspreet Singh Grewal
- Department of Biochemistry; Bose Institute; P-1/12, C. I. T. Scheme VII-M Kolkata 700 054 India
| | - Narendra Padhan
- School of Life Sciences; Jawaharlal Nehru University; New Delhi India
| | - Saima Aslam
- School of Life Sciences; Jawaharlal Nehru University; New Delhi India
| | - Alok Bhattacharya
- School of Life Sciences; Jawaharlal Nehru University; New Delhi India
| | - Anuradha Lohia
- Department of Biochemistry; Bose Institute; P-1/12, C. I. T. Scheme VII-M Kolkata 700 054 India
| |
Collapse
|
5
|
A C2 domain protein kinase initiates phagocytosis in the protozoan parasite Entamoeba histolytica. Nat Commun 2011; 2:230. [PMID: 21407196 DOI: 10.1038/ncomms1199] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 01/19/2010] [Indexed: 11/08/2022] Open
Abstract
Phagocytosis is a process whereby particles are taken in by cells through mechanisms superficially similar to those for endocytosis. It serves a wide range of functions, from providing nutrition in unicellular organisms to initiation of both innate and adaptive immunity in vertebrates. In the protozoan parasite Entamoeba histolytica, it has an essential role in survival and pathogenesis. In this study, we show that EhC2PK, a C2-domain-containing protein kinase, and the Ca²(+) and actin-binding protein, EhCaBP1, are involved in the initiation of phagocytosis in E. histolytica. Conditional suppression of EhC2PK expression and overexpression of a mutant form reveals its role in the initiation of phagocytic cups. EhC2PK binds phosphatidylserine in the presence of Ca²(+) and thereby recruits EhCaBP1 and actin to the membrane. Identification of these proteins in phagocytosis is an important step in amoebic biology and these molecules could be the important targets for developing novel therapies against amoebiasis.
Collapse
|
6
|
Crystal structure and trimer-monomer transition of N-terminal domain of EhCaBP1 from Entamoeba histolytica. Biophys J 2010; 98:2933-42. [PMID: 20550906 DOI: 10.1016/j.bpj.2010.03.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/16/2010] [Accepted: 03/22/2010] [Indexed: 11/20/2022] Open
Abstract
EhCaBP1 is a well-characterized calcium binding protein from Entamoeba histolytica with four canonical EF-hand motifs. The crystal structure of EhCaBP1 reveals the trimeric organization of N-terminal domain. The solution structure obtained at pH 6.0 indicated its monomeric nature, similar to that of calmodulin. Recent domain-wise studies showed clearly that the N-terminal domain of EhCaBP1 is capable of performing most of the functions of the full-length protein. Additionally, the mode of target binding in the trimer is similar to that found in calmodulin. To study the dynamic nature of this protein and further validate the trimerization of N-terminal domain at physiological conditions, the crystal structure of N-terminal domain was determined at 2.5 A resolution. The final structure consists of EF-1 and EF-2 motifs separated by a long straight helix as seen in the full-length protein. The spectroscopic and stability studies, like far and near-ultraviolet circular dichroism spectra, intrinsic and extrinsic fluorescence spectra, acrylamide quenching, thermal denaturation, and dynamic light scattering, provided clear evidence for a conversion from trimeric state to monomeric state. As the pH was lowered from the physiological pH, a dynamic trimer-monomer transition was observed. The trimeric state and monomeric state observed in spectroscopic studies may represent the x-ray and NMR structures of the EhCaBP1. At pH 6.0, the endogenous kinase activation function was almost lost, indicating that the monomeric state of the protein, where EF-hand motifs are far apart, is not a functional state.
Collapse
|
7
|
Jain R, Kumar S, Gourinath S, Bhattacharya S, Bhattacharya A. N- and C-terminal domains of the calcium binding protein EhCaBP1 of the parasite Entamoeba histolytica display distinct functions. PLoS One 2009; 4:e5269. [PMID: 19384409 PMCID: PMC2668073 DOI: 10.1371/journal.pone.0005269] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 03/18/2009] [Indexed: 11/23/2022] Open
Abstract
Entamoeba histolytica, a protozoan parasite, is the causative agent of amoebiasis, and calcium signaling is thought to be involved in amoebic pathogenesis. EhCaBP1, a Ca2+ binding protein of E. histolytica, is essential for parasite growth. High resolution crystal structure of EhCaBP1 suggested an unusual arrangement of the EF-hand domains in the N-terminal part of the structure, while C-terminal part of the protein was not traced. The structure revealed a trimer with amino terminal domains of the three molecules interacting in a head-to-tail manner forming an assembled domain at the interface with EF1 and EF2 motifs of different molecules coming close to each other. In order to understand the specific roles of the two domains of EhCaBP1, the molecule was divided into two halves, and each half was separately expressed. The domains were characterized with respect to their structure, as well as specific functional features, such as ability to activate kinase and bind actin. The domains were also expressed in E. histolytica cells along with green fluorescent protein. The results suggest that the N-terminal domain retains some of the properties, such as localization in phagocytic cups and activation of kinase. Crystal structure of EhCaBP1 with Phenylalanine revealed that the assembled domains, which are similar to Calmodulin N-terminal domain, bind to Phenylalanine revealing the binding mode to the target proteins. The C-terminal domain did not show any of the activities tested. However, over-expression in amebic cells led to a dominant negative phenotype. The results suggest that the two domains of EhCaBP1 are functionally and structurally different from each other. Both the domains are required for structural stability and full range of functional diversity.
Collapse
Affiliation(s)
- Ruchi Jain
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shivesh Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
8
|
Singh S, Bharti N, Mohapatra PP. Chemistry and Biology of Synthetic and Naturally Occurring Antiamoebic Agents. Chem Rev 2009; 109:1900-47. [DOI: 10.1021/cr068217k] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shailendra Singh
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, and Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611
| | - Neelam Bharti
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, and Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611
| | - Prabhu P. Mohapatra
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, and Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
9
|
Gilchrist CA, Petri WA. Using differential gene expression to study Entamoeba histolytica pathogenesis. Trends Parasitol 2009; 25:124-31. [PMID: 19217826 DOI: 10.1016/j.pt.2008.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2008] [Revised: 11/26/2008] [Accepted: 12/04/2008] [Indexed: 12/18/2022]
Abstract
The release of the Entamoeba histolytica genome has facilitated the development of techniques to survey rapidly and to relate gene expression with biology. The association and potential contribution of differential gene expression to the life cycle and the virulence of this protozoan parasite of humans are reviewed here.
Collapse
Affiliation(s)
- Carol A Gilchrist
- Division of Infectious Diseases and International Health, Departments of Medicine, Microbiology and Pathology, University of Virginia, PO Box 801340, Charlottesville, VA 22908-1340, USA
| | | |
Collapse
|
10
|
Structural characterization of a novel Ca2+-binding protein from Entamoeba histolytica: structural basis for the observed functional differences with its isoform. J Biol Inorg Chem 2009; 14:471-83. [PMID: 19137330 DOI: 10.1007/s00775-008-0463-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 11/30/2008] [Indexed: 10/21/2022]
Abstract
A novel Ca(2+)-binding protein (EhCaBP2) was identified from the protozoan parasite Entamoeba histolytica. EhCaBP2 has 79% sequence identity with calcium-binding protein EhCaBP1. The 3D structure of EhCaBP2 was determined using multidimensional nuclear magnetic resonance spectroscopic techniques. The study reveals that the protein consists of two globular domains connected by a short flexible linker region of four residues. On comparison of the 3D structure and dynamics of EhCaBP2 with those of EhCaBP1, it is found that they vary significantly in their N-terminal domains and interdomain linker. Immunofluorescence localization experiments revealed that EhCaBP1 and EhCaBP2 may not carry out similar functions, as their cellular distribution patterns are not the same. The functional differences between the two isoforms are explained on the basis of results obtained from the structural studies. The structural variation in the interdomain linker region and the formation of functionally important hydrophobic clefts in different regions of EhCaBP1 and EhCaBP2 provide interesting insights into the differences in the functionality of these two isoforms.
Collapse
|
11
|
Anamika K, Bhattacharya A, Srinivasan N. Analysis of the protein kinome of Entamoeba histolytica. Proteins 2008; 71:995-1006. [PMID: 18004777 DOI: 10.1002/prot.21790] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein kinases play important roles in almost all major signaling and regulatory pathways of eukaryotic organisms. Members in the family of protein kinases make up a substantial fraction of eukaryotic proteome. Analysis of the protein kinase repertoire (kinome) would help in the better understanding of the regulatory processes. In this article, we report the identification and analysis of the repertoire of protein kinases in the intracellular parasite Entamoeba histolytica. Using a combination of various sensitive sequence search methods and manual analysis, we have identified a set of 307 protein kinases in E. histolytica genome. We have classified these protein kinases into different subfamilies originally defined by Hanks and Hunter and studied these kinases further in the context of noncatalytic domains that are tethered to catalytic kinase domain. Compared to other eukaryotic organisms, protein kinases from E. histolytica vary in terms of their domain organization and displays features that may have a bearing in the unusual biology of this organism. Some of the parasitic kinases show high sequence similarity in the catalytic domain region with calmodulin/calcium dependent protein kinase subfamily. However, they are unlikely to act like typical calcium/calmodulin dependent kinases as they lack noncatalytic domains characteristic of such kinases in other organisms. Such kinases form the largest subfamily of kinases in E. histolytica. Interestingly, a PKA/PKG-like subfamily member is tethered to pleckstrin homology domain. Although potential cyclins and cyclin-dependent kinases could be identified in the genome the likely absence of other cell cycle proteins suggests unusual nature of cell cycle in E. histolytica. Some of the unusual features recognized in our analysis include the absence of MEK as a part of the Mitogen Activated Kinase signaling pathway and identification of transmembrane region containing Src kinase-like kinases. Sequences which could not be classified into known subfamilies of protein kinases have unusual domain architectures. Many such unclassified protein kinases are tethered to domains which are Cysteine-rich and to domains known to be involved in protein-protein interactions. Our kinome analysis of E. histolytica suggests that the organism possesses a complex protein phosphorylation network that involves many unusual kinases.
Collapse
Affiliation(s)
- K Anamika
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
12
|
Clark CG, Alsmark UCM, Tazreiter M, Saito-Nakano Y, Ali V, Marion S, Weber C, Mukherjee C, Bruchhaus I, Tannich E, Leippe M, Sicheritz-Ponten T, Foster PG, Samuelson J, Noël CJ, Hirt RP, Embley TM, Gilchrist CA, Mann BJ, Singh U, Ackers JP, Bhattacharya S, Bhattacharya A, Lohia A, Guillén N, Duchêne M, Nozaki T, Hall N. Structure and content of the Entamoeba histolytica genome. ADVANCES IN PARASITOLOGY 2008; 65:51-190. [PMID: 18063096 DOI: 10.1016/s0065-308x(07)65002-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The intestinal parasite Entamoeba histolytica is one of the first protists for which a draft genome sequence has been published. Although the genome is still incomplete, it is unlikely that many genes are missing from the list of those already identified. In this chapter we summarise the features of the genome as they are currently understood and provide previously unpublished analyses of many of the genes.
Collapse
Affiliation(s)
- C G Clark
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Capozzi F, Luchinat C, Micheletti C, Pontiggia F. Essential Dynamics of Helices Provide a Functional Classification of EF-Hand Proteins. J Proteome Res 2007; 6:4245-55. [DOI: 10.1021/pr070314m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Francesco Capozzi
- Department of Food Science, University of Bologna, Piazza Goidanich, 60, 47023 Cesena, Italy, Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi, 6, 50019 Sesto Fiorentino, Italy, Department of Agricultural Biotechnology, Via F. Maragliano, 75-77, 50144 Florence, Italy, and International School for Advanced Studies (SISSA), INFM-Democritos and Italian Institute of Technology, Via Beirut 2-4, 34014 Trieste, Italy
| | - Claudio Luchinat
- Department of Food Science, University of Bologna, Piazza Goidanich, 60, 47023 Cesena, Italy, Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi, 6, 50019 Sesto Fiorentino, Italy, Department of Agricultural Biotechnology, Via F. Maragliano, 75-77, 50144 Florence, Italy, and International School for Advanced Studies (SISSA), INFM-Democritos and Italian Institute of Technology, Via Beirut 2-4, 34014 Trieste, Italy
| | - Cristian Micheletti
- Department of Food Science, University of Bologna, Piazza Goidanich, 60, 47023 Cesena, Italy, Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi, 6, 50019 Sesto Fiorentino, Italy, Department of Agricultural Biotechnology, Via F. Maragliano, 75-77, 50144 Florence, Italy, and International School for Advanced Studies (SISSA), INFM-Democritos and Italian Institute of Technology, Via Beirut 2-4, 34014 Trieste, Italy
| | - Francesco Pontiggia
- Department of Food Science, University of Bologna, Piazza Goidanich, 60, 47023 Cesena, Italy, Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi, 6, 50019 Sesto Fiorentino, Italy, Department of Agricultural Biotechnology, Via F. Maragliano, 75-77, 50144 Florence, Italy, and International School for Advanced Studies (SISSA), INFM-Democritos and Italian Institute of Technology, Via Beirut 2-4, 34014 Trieste, Italy
| |
Collapse
|
14
|
Kumar S, Padhan N, Alam N, Gourinath S. Crystal structure of calcium binding protein-1 from Entamoeba histolytica: a novel arrangement of EF hand motifs. Proteins 2007; 68:990-8. [PMID: 17554780 DOI: 10.1002/prot.21455] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Calcium plays a pivotal role in the pathogenesis of amoebiasis, a major disease caused by Entamoeba histolytica. Several EF-hand containing calcium-binding proteins (CaBPs) have been identified from E. histolytica. Even though these proteins have very high sequence similarity, they bind to different target proteins in a Ca2+ dependent manner, leading to different functional pathways (Yadava et al., Mol Biochem Parasito 1997;84:69-82; Chakrabarty et al., J Biol Chem 2004;279:12898-12908) The crystal structure of the Entamoeba histolytica calcium binding protein-1 (EhCaBP1) has been determined at 2.4 A resolution. The crystals were grown using MPD as precipitant and they belong to P6(3) space group with unit cell parameters of a = 95.25 A, b = 95.25 A, c = 64.99 A. Only two out of the four expected EF hand motifs could be modeled into the electron density map and the final model refined to R factor of 25.6% and Free_R of 28%. Unlike CaM, the first two EF hand motifs in EhCaBP1 are connected by a long helix and form a dumbbell shaped structure. Owing to domain swapping oligomerization three EhCaBP1 molecules interact in a head to tail manner to form a triangular trimer. This arrangement allows the EF-hand motif of one molecule to interact with that of an adjacent molecule to form a two EF-hand domain similar to that seen in the N-terminal domain of the NMR structure of CaBP1, calmodulin and troponin C. The oligomeric state of EhCaBP1 results in reduced flexibility between domains and may be responsible for the more limited set of targets recognized by EhCaBP1.
Collapse
Affiliation(s)
- Shivesh Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | |
Collapse
|
15
|
Meza I, Talamás-Rohana P, Vargas MA. The Cytoskeleton of Entamoeba histolytica: Structure, Function, and Regulation by Signaling Pathways. Arch Med Res 2006; 37:234-43. [PMID: 16380324 DOI: 10.1016/j.arcmed.2005.09.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 09/26/2005] [Indexed: 01/16/2023]
Abstract
Pathogenesis in the parasite Entamoeba histolytica has been related to motility of the trophozoites. Motility is an important feature in amebas as they perform multiple motile functions during invasion of host tissues. As motility depends on the organization and regulation of the cytoskeleton elements, in particular of the actin cytoskeleton, the study of the molecular components of the machinery responsible for movement has been a key aspect to study in this parasite. Although many of the components have high homology in amino acid sequence and function to those characterized in higher eukaryotic cells, there are important differences to suggest that parasitic organisms may have developed adaptative differences that could be useful as targets to stop invasion. The purpose of this review is to evaluate current knowledge about the cytoskeleton of E. histolytica and the ways in which the parasite controls motility.
Collapse
Affiliation(s)
- Isaura Meza
- Departamentos de Biomedicina Molecular, Centro de Investigación y de Estudios, Avanzados del IPN, México D.F., México.
| | | | | |
Collapse
|
16
|
Bhattacharya A, Padhan N, Jain R, Bhattacharya S. Calcium-Binding Proteins of Entamoeba histolytica. Arch Med Res 2006; 37:221-5. [PMID: 16380322 DOI: 10.1016/j.arcmed.2005.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 10/04/2005] [Indexed: 10/25/2022]
Abstract
Calcium plays an essential role in many fundamental processes in almost all eukaryotic cells including protozoan parasite Entamoeba histolytica. Many of the calcium-mediated processes are carried out through the help of calcium-binding proteins (CaBPs). A few of these E. histolytica CaBPs have been described before. These proteins are unique to this organism and are thought to be essential. Availability of genome sequence has opened up the possibility of studying CaBPs at the whole genome level. In this preliminary report, we describe the complement of CaBPs present in E. histolytica. A large fraction of these genes are expressed in the trophozoites and are likely to be functional. The results suggest a number of pathways that are involved in calcium signaling and may be unique for this organism.
Collapse
Affiliation(s)
- Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| | | | | | | |
Collapse
|
17
|
Sahoo N, Labruyère E, Bhattacharya S, Sen P, Guillén N, Bhattacharya A. Calcium binding protein 1 of the protozoan parasite Entamoeba histolytica interacts with actin and is involved in cytoskeleton dynamics. J Cell Sci 2005; 117:3625-34. [PMID: 15252130 DOI: 10.1242/jcs.01198] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Blocking expression of EhCaBP1, a calmodulin-like, four EF-hand protein from the protozoan parasite Entamoeba histolytica, resulted in inhibition of cellular proliferation. In this paper we report that EhCaBP1 is involved in dynamic changes of the actin cytoskeleton. Both endocytosis and phagocytosis were severely impaired in cells where EhCaBP1 expression was blocked by inducible expression of the antisense RNA. In wild-type cells both actin and EhCaBP1 were found to co-localize in phagocytic cups and in pseudopods. However, in antisense-blocked cells the phagocytic cup formation is affected. Analysis of the staining patterns in the presence and absence of actin dynamics inhibitors, jasplakinolide and cytochalasin D suggested that EhCaBP1 and polymerized F-actin co-localize on membrane protrusions. Direct interaction between soluble EhCaBP1 and F-actin was further demonstrated by a co-sedimentation assay. A variant of EhCaBP1 did not bind F-actin showing the specificity of the interaction between EhCaBP1 and actin. There is no significant change in the kinetics of in vitro polymerization of actin in presence of EhCaBP1, indicating that EhCaBP1 does not affect filament treadmilling. In addition, using atomic force microscopy; it was found that filaments of F-actin, polymerized in presence of EhCaBP1, were thinner. These results indicate that EhCaBP1 may be involved in dynamic membrane restructuring at the time of cell pseudopod formation, phagocytosis and endocytosis in a process mediated by direct binding of EhCaBP1 to actin, affecting the bundling of actin filaments.
Collapse
Affiliation(s)
- Nivedita Sahoo
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | | | | | | | | | | |
Collapse
|
18
|
Bansal-Mutalik R, Mustafi SM, Bhattacharya A, Chary KVR. Sequence specific 1HN, 13C and 15N resonance assignments of a novel calcium-binding protein from Entamoeba histolytica. JOURNAL OF BIOMOLECULAR NMR 2005; 31:379-80. [PMID: 15929013 DOI: 10.1007/s10858-005-2471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Accepted: 02/09/2005] [Indexed: 05/02/2023]
|
19
|
Gourinath S, Padhan N, Alam N, Bhattacharya A. Crystallization and preliminary crystallographic analysis of calcium-binding protein-2 from Entamoeba histolytica and its complexes with strontium and the IQ1 motif of myosin V. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:417-20. [PMID: 16511057 PMCID: PMC1952423 DOI: 10.1107/s1744309105007955] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2004] [Accepted: 03/14/2005] [Indexed: 11/10/2022]
Abstract
Calcium plays a pivotal role in the pathogenesis of amoebiasis, a major disease caused by Entamoeba histolytica. Two domains with four canonical EF-hand-containing calcium-binding proteins (CaBPs) have been identified from E. histolytica. Even though they have very high sequence similarity, these bind to different target proteins in a Ca2+-dependent manner, leading to different functional pathways. Calcium-binding protein-2 (EhCaBP2) crystals were grown using MPD as a precipitant. The crystals belong to space group P2(1), with unit-cell parameters a = 111.74, b = 68.83, c = 113.25 A, beta = 116.7 degrees. EhCaBP2 also crystallized in complex with strontium (replacing calcium) at similar conditions. The crystals belong to space group P2(1), with unit-cell parameters a = 69.18, b = 112.03, c = 93.42 A, beta = 92.8 degrees. Preliminary data for EhCaBP2 crystals in complex with an IQ motif are also reported. This complex was crystallized with MPD and ethanol as precipitating agents. These crystals belong to space group P2(1), with unit-cell parameters a = 60.5, b = 69.86, c = 86.5 A, beta = 97.9 degrees.
Collapse
Affiliation(s)
- S Gourinath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | | | | | | |
Collapse
|
20
|
Abstract
The year 2004 represents a milestone for the biosensor research community: in this year, over 1000 articles were published describing experiments performed using commercially available systems. The 1038 papers we found represent an approximately 10% increase over the past year and demonstrate that the implementation of biosensors continues to expand at a healthy pace. We evaluated the data presented in each paper and compiled a 'top 10' list. These 10 articles, which we recommend every biosensor user reads, describe well-performed kinetic, equilibrium and qualitative/screening studies, provide comparisons between binding parameters obtained from different biosensor users, as well as from biosensor- and solution-based interaction analyses, and summarize the cutting-edge applications of the technology. We also re-iterate some of the experimental pitfalls that lead to sub-optimal data and over-interpreted results. We are hopeful that the biosensor community, by applying the hints we outline, will obtain data on a par with that presented in the 10 spotlighted articles. This will ensure that the scientific community at large can be confident in the data we report from optical biosensors.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|