1
|
Kosek DM, Leal JL, Kikovska-Stojanovska E, Mao G, Wu S, Flores SC, Kirsebom LA. RNase P cleavage of pseudoknot substrates reveals differences in active site architecture that depend on residue N-1 in the 5' leader. RNA Biol 2025; 22:1-19. [PMID: 39831626 DOI: 10.1080/15476286.2024.2427906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 01/22/2025] Open
Abstract
We show that a small biotin-binding RNA aptamer that folds into a pseudoknot structure acts as a substrate for bacterial RNase P RNA (RPR) with and without the RNase P C5 protein. Cleavage in the single-stranded region in loop 1 was shown to depend on the presence of a RCCA-motif at the 3' end of the substrate. The nucleobase and the 2'hydroxyl at the position immediately 5' of the cleavage site contribute to both cleavage efficiency and site selection, where C at this position induces significant cleavage at an alternative site, one base upstream of the main cleavage site. The frequencies of cleavage at these two sites and Mg2+ binding change upon altering the structural topology in the vicinity of the cleavage site as well as by replacing Mg2+ with other divalent metal ions. Modelling studies of RPR in complex with the pseudoknot substrates suggest alternative structural topologies for cleavage at the main and the alternative site and a shift in positioning of Mg2+ that activates the H2O nucleophile. Together, our data are consistent with a model where the organization of the active site structure and positioning of Mg2+ is influenced by the identities of residues at and in the vicinity of the site of cleavage.
Collapse
Affiliation(s)
- David M Kosek
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - J Luis Leal
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Department of Ecology and Genetics, Evolutionary Biology Center EBC, Uppsala University, Uppsala, Sweden
| | - Ema Kikovska-Stojanovska
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Merck Healthcare KGaA, Global Regulatory CMC & Devices, Darmstadt, Germany
| | - Guanzhong Mao
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Shiying Wu
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Bio-Works AB, Uppsala, Sweden
| | - Samuel C Flores
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Kirsebom LA, Liu F, McClain WH. The discovery of a catalytic RNA within RNase P and its legacy. J Biol Chem 2024; 300:107318. [PMID: 38677513 PMCID: PMC11143913 DOI: 10.1016/j.jbc.2024.107318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
Sidney Altman's discovery of the processing of one RNA by another RNA that acts like an enzyme was revolutionary in biology and the basis for his sharing the 1989 Nobel Prize in Chemistry with Thomas Cech. These breakthrough findings support the key role of RNA in molecular evolution, where replicating RNAs (and similar chemical derivatives) either with or without peptides functioned in protocells during the early stages of life on Earth, an era referred to as the RNA world. Here, we cover the historical background highlighting the work of Altman and his colleagues and the subsequent efforts of other researchers to understand the biological function of RNase P and its catalytic RNA subunit and to employ it as a tool to downregulate gene expression. We primarily discuss bacterial RNase P-related studies but acknowledge that many groups have significantly contributed to our understanding of archaeal and eukaryotic RNase P, as reviewed in this special issue and elsewhere.
Collapse
Affiliation(s)
- Leif A Kirsebom
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, California, USA.
| | - William H McClain
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
3
|
Mao G, Srivastava AS, Wu S, Kosek D, Kirsebom LA. Importance of residue 248 in Escherichia coli RNase P RNA mediated cleavage. Sci Rep 2023; 13:14140. [PMID: 37644068 PMCID: PMC10465520 DOI: 10.1038/s41598-023-41203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
tRNA genes are transcribed as precursors and RNase P generates the matured 5' end of tRNAs. It has been suggested that residue - 1 (the residue immediately 5' of the scissile bond) in the pre-tRNA interacts with the well-conserved bacterial RNase P RNA (RPR) residue A248 (Escherichia coli numbering). The way A248 interacts with residue - 1 is not clear. To gain insight into the role of A248, we analyzed cleavage as a function of A248 substitutions and N-1 nucleobase identity by using pre-tRNA and three model substrates. Our findings are consistent with a model where the structural topology of the active site varies and depends on the identity of the nucleobases at, and in proximity to, the cleavage site and their potential to interact. This leads to positioning of Mg2+ that activates the water that acts as the nucleophile resulting in efficient and correct cleavage. We propose that in addition to be involved in anchoring the substrate the role of A248 is to exclude bulk water from access to the amino acid acceptor stem, thereby preventing non-specific hydrolysis of the pre-tRNA. Finally, base stacking is discussed as a way to protect functionally important base-pairing interactions from non-specific hydrolysis, thereby ensuring high fidelity during RNA processing and the decoding of mRNA.
Collapse
Affiliation(s)
- Guanzhong Mao
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, 751 24, Uppsala, Sweden
| | - Abhishek S Srivastava
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, 751 24, Uppsala, Sweden
| | - Shiying Wu
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, 751 24, Uppsala, Sweden
| | - David Kosek
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, 751 24, Uppsala, Sweden
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, 751 24, Uppsala, Sweden.
| |
Collapse
|
4
|
Maurel MC, Leclerc F, Hervé G. Ribozyme Chemistry: To Be or Not To Be under High Pressure. Chem Rev 2019; 120:4898-4918. [DOI: 10.1021/acs.chemrev.9b00457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marie-Christine Maurel
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, Sorbonne Université, Muséum National d’Histoire Naturelle, EPHE, F-75005 Paris, France
| | - Fabrice Leclerc
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris Sud, F-91198 Gif-sur-Yvette, France
| | - Guy Hervé
- Laboratoire BIOSIPE, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Campus Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
5
|
Aldag J, Persson T, Hartmann RK. 2'-Fluoro-Pyrimidine-Modified RNA Aptamers Specific for Lipopolysaccharide Binding Protein (LBP). Int J Mol Sci 2018; 19:ijms19123883. [PMID: 30563044 PMCID: PMC6321028 DOI: 10.3390/ijms19123883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Lipopolysaccaride binding protein (LBP), a glycosylated acute phase protein, plays an important role in the pathophysiology of sepsis. LBP binds with high affinity to the lipid part of bacterial lipopolysaccaride (LPS). Inhibition of the LPS-LBP interaction or blockage of LBP-mediated transfer of LPS monomers to CD14 may be therapeutical strategies to prevent septic shock. LBP is also of interest as a biomarker to identify septic patients at high risk for death, as LBP levels are elevated during early stages of severe sepsis. As a first step toward such potential applications, we isolated aptamers specific for murine LBP (mLBP) by in vitro selection from a library containing a 60-nucleotide randomized region. Modified RNA pools were transcribed in the presence of 2′-fluoro-modified pyrimidine nucleotides to stabilize transcripts against nuclease degradation. As verified for one aptamer experimentally, the selected aptamers adopt a “three-helix junction” architecture, presenting single-stranded 7-nt (5′-YGCTTCY) or 6-nt (5′-RTTTCY) consensus sequences in their core. The best binder (aptamer A011; Kd of 270 nM for binding to mLBP), characterized in more detail by structure probing and boundary analysis, was demonstrated to bind with high specificity to murine LBP.
Collapse
Affiliation(s)
- Jasmin Aldag
- Jasmin Aldag, EUROIMMUN AG, Seekamp 31, D-23560 Lübeck, Germany.
| | - Tina Persson
- Tina Persson, Passage2Pro AB, Östra Kristinelundsvägen 4B, SE-21748 Malmö, Sweden.
| | - Roland K Hartmann
- Roland K. Hartmann, Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, Marbacher Weg 6, D-35037 Marburg, Germany.
| |
Collapse
|
6
|
Routh SB, Sankaranarayanan R. Enzyme action at RNA–protein interface in DTD-like fold. Curr Opin Struct Biol 2018; 53:107-114. [DOI: 10.1016/j.sbi.2018.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 02/08/2023]
|
7
|
Mao G, Srivastava AS, Wu S, Kosek D, Lindell M, Kirsebom LA. Critical domain interactions for type A RNase P RNA catalysis with and without the specificity domain. PLoS One 2018; 13:e0192873. [PMID: 29509761 PMCID: PMC5839562 DOI: 10.1371/journal.pone.0192873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/18/2018] [Indexed: 12/17/2022] Open
Abstract
The natural trans-acting ribozyme RNase P RNA (RPR) is composed of two domains in which the catalytic (C-) domain mediates cleavage of various substrates. The C-domain alone, after removal of the second specificity (S-) domain, catalyzes this reaction as well, albeit with reduced efficiency. Here we provide experimental evidence indicating that efficient cleavage mediated by the Escherichia coli C-domain (Eco CP RPR) with and without the C5 protein likely depends on an interaction referred to as the "P6-mimic". Moreover, the P18 helix connects the C- and S-domains between its loop and the P8 helix in the S-domain (the P8/ P18-interaction). In contrast to the "P6-mimic", the presence of P18 does not contribute to the catalytic performance by the C-domain lacking the S-domain in cleavage of an all ribo model hairpin loop substrate while deletion or disruption of the P8/ P18-interaction in full-size RPR lowers the catalytic efficiency in cleavage of the same model hairpin loop substrate in keeping with previously reported data using precursor tRNAs. Consistent with that P18 is not required for cleavage mediated by the C-domain we show that the archaeal Pyrococcus furiosus RPR C-domain, which lacks the P18 helix, is catalytically active in trans without the S-domain and any protein. Our data also suggest that the S-domain has a larger impact on catalysis for E. coli RPR compared to P. furiosus RPR. Finally, we provide data indicating that the absence of the S-domain and P18, or the P8/ P18-interaction in full-length RPR influences the charge distribution near the cleavage site in the RPR-substrate complex to a small but reproducible extent.
Collapse
Affiliation(s)
- Guanzhong Mao
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala, Sweden
| | - Abhishek S. Srivastava
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala, Sweden
- Discovery Sciences, AstraZeneca R&D, Cambridge Science Park, Cambridge, United Kingdom
| | - Shiying Wu
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala, Sweden
| | - David Kosek
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala, Sweden
| | - Magnus Lindell
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala, Sweden
| | - Leif A. Kirsebom
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala, Sweden
| |
Collapse
|
8
|
Liu X, Chen Y, Fierke CA. Inner-Sphere Coordination of Divalent Metal Ion with Nucleobase in Catalytic RNA. J Am Chem Soc 2017; 139:17457-17463. [PMID: 29116782 PMCID: PMC6020041 DOI: 10.1021/jacs.7b08755] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Identification of the function of metal ions and the RNA moieties, particularly nucleobases, that bind metal ions is important in RNA catalysis. Here we combine single-atom and abasic substitutions to probe functions of conserved nucleobases in ribonuclease P (RNase P). Structural and biophysical studies of bacterial RNase P propose direct coordination of metal ions by the nucleobases of conserved uridine and guanosine in helix P4 of the RNA subunit (P RNA). To biochemically probe the function of metal ion interactions, we substituted the universally conserved bulged uridine (U51) in the P4 helix of circularly permuted Bacillus subtilis P RNA with 4-thiouridine, 4-deoxyuridine, and abasic modifications and G378/379 with 2-aminopurine, N7-deazaguanosine, and 6-thioguanosine. The functional group modifications of U51 decrease RNase P-catalyzed phosphodiester bond cleavage 16- to 23-fold, as measured by the single-turnover cleavage rate constant. The activity of the 4-thiouridine RNase P is partially rescued by addition of Cd(II) or Mn(II) ions. This is the first time a metal-rescue experiment provides evidence for inner-sphere divalent metal ion coordination with a nucleobase. Modifications of G379 modestly decrease the cleavage activity of RNase P, suggesting outer-sphere coordination of O6 on G379 to a metal ion. These data provide biochemical evidence for catalytically important interactions of the P4 helix of P RNA with metal ions, demonstrating that the bulged uridine coordinates at least one catalytic metal ion through an inner-sphere interaction. The combination of single-atom and abasic nucleotide substitutions provides a powerful strategy to probe functions of conserved nucleobases in large RNAs.
Collapse
Affiliation(s)
- Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yu Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Carol A. Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
9
|
Mechanistic Insights Into Catalytic RNA-Protein Complexes Involved in Translation of the Genetic Code. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017. [PMID: 28683922 DOI: 10.1016/bs.apcsb.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The contemporary world is an "RNA-protein world" rather than a "protein world" and tracing its evolutionary origins is of great interest and importance. The different RNAs that function in close collaboration with proteins are involved in several key physiological processes, including catalysis. Ribosome-the complex megadalton cellular machinery that translates genetic information encoded in nucleotide sequence to amino acid sequence-epitomizes such an association between RNA and protein. RNAs that can catalyze biochemical reactions are known as ribozymes. They usually employ general acid-base catalytic mechanism, often involving the 2'-OH of RNA that activates and/or stabilizes a nucleophile during the reaction pathway. The protein component of such RNA-protein complexes (RNPCs) mostly serves as a scaffold which provides an environment conducive for the RNA to function, or as a mediator for other interacting partners. In this review, we describe those RNPCs that are involved at different stages of protein biosynthesis and in which RNA performs the catalytic function; the focus of the account is on highlighting mechanistic aspects of these complexes. We also provide a perspective on such associations in the context of proofreading during translation of the genetic code. The latter aspect is not much appreciated and recent works suggest that this is an avenue worth exploring, since an understanding of the subject can provide useful insights into how RNAs collaborate with proteins to ensure fidelity during these essential cellular processes. It may also aid in comprehending evolutionary aspects of such associations.
Collapse
|
10
|
Walczyk D, Gößringer M, Rossmanith W, Zatsepin TS, Oretskaya TS, Hartmann RK. Analysis of the Cleavage Mechanism by Protein-Only RNase P Using Precursor tRNA Substrates with Modifications at the Cleavage Site. J Mol Biol 2016; 428:4917-4928. [PMID: 27769719 DOI: 10.1016/j.jmb.2016.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/28/2016] [Accepted: 10/16/2016] [Indexed: 12/23/2022]
Abstract
Ribonuclease P (RNase P) is the enzyme that endonucleolytically removes 5'-precursor sequences from tRNA transcripts in all domains of life. RNase P activities are either ribonucleoprotein (RNP) or protein-only RNase P (PRORP) enzymes, raising the question about the mechanistic strategies utilized by these architecturally different enzyme classes to catalyze the same type of reaction. Here, we analyzed the kinetics and cleavage-site selection by PRORP3 from Arabidopsis thaliana (AtPRORP3) using precursor tRNAs (pre-tRNAs) with individual modifications at the canonical cleavage site, with either Rp- or Sp-phosphorothioate, or 2'-deoxy, 2'-fluoro, 2'-amino, or 2'-O-methyl substitutions. We observed a small but robust rescue effect of Sp-phosphorothioate-modified pre-tRNA in the presence of thiophilic Cd2+ ions, consistent with metal-ion coordination to the (pro-)Sp-oxygen during catalysis. Sp-phosphorothioate, 2'-deoxy, 2'-amino, and 2'-O-methyl modification redirected the cleavage mainly to the next unmodified phosphodiester in the 5'-direction. Our findings are in line with the 2'-OH substituent at nucleotide -1 being involved in an H-bonding acceptor function. In contrast to bacterial RNase P, AtPRORP3 was found to be able to utilize the canonical and upstream cleavage site with similar efficiency (corresponding to reduced cleavage fidelity), and the two cleavage pathways appear less interdependent than in the bacterial RNA-based system.
Collapse
Affiliation(s)
- Dennis Walczyk
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany
| | - Markus Gößringer
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Timofei S Zatsepin
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; Skolkovo Institute of Science and Technology, 3 Nobel street, Innovation Center "Skolkovo", 143026 Skolkovo, Russia
| | - Tatiana S Oretskaya
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany.
| |
Collapse
|
11
|
Abstract
Over the past 2 decades, different types of circular RNAs have been discovered in all kingdoms of life, and apparently, those circular species are more abundant than previously thought. Apart from circRNAs in viroids and viruses, circular transcripts have been discovered in rodents more than 20 y ago and recently have been reported to be abundant in many organisms including humans. Their exact function remains still unknown, although one may expect extensive functional studies to follow the currently dominant research into identification and discovery of circRNA by sophisticated sequencing techniques and bioinformatics. Functional studies require models and as such methods for preparation of circRNA in vitro. Here, we will review current protocols for RNA circularization and discuss future prospects in the field.
Collapse
Affiliation(s)
- Sabine Müller
- a Universität Greifswald, Institut für Biochemie , Greifswald , Germany
| | - Bettina Appel
- a Universität Greifswald, Institut für Biochemie , Greifswald , Germany
| |
Collapse
|
12
|
Cleavage of Model Substrates by Arabidopsis thaliana PRORP1 Reveals New Insights into Its Substrate Requirements. PLoS One 2016; 11:e0160246. [PMID: 27494328 PMCID: PMC4975455 DOI: 10.1371/journal.pone.0160246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/15/2016] [Indexed: 11/19/2022] Open
Abstract
Two broad classes of RNase P trim the 5' leader of precursor tRNAs (pre-tRNAs): ribonucleoprotein (RNP)- and proteinaceous (PRORP)-variants. These two RNase P types, which use different scaffolds for catalysis, reflect independent evolutionary paths. While the catalytic RNA-based RNP form is present in all three domains of life, the PRORP family is restricted to eukaryotes. To obtain insights on substrate recognition by PRORPs, we examined the 5' processing ability of recombinant Arabidopsis thaliana PRORP1 (AtPRORP1) using a panel of pre-tRNASer variants and model hairpin-loop derivatives (pATSer type) that consist of the acceptor-T-stem stack and the T-/D-loop. Our data indicate the importance of the identity of N-1 (the residue immediately 5' to the cleavage site) and the N-1:N+73 base pair for cleavage rate and site selection of pre-tRNASer and pATSer. The nucleobase preferences that we observed mirror the frequency of occurrence in the complete suite of organellar pre-tRNAs in eight algae/plants that we analyzed. The importance of the T-/D-loop in pre-tRNASer for tight binding to AtPRORP1 is indicated by the 200-fold weaker binding of pATSer compared to pre-tRNASer, while the essentiality of the T-loop for cleavage is reflected by the near-complete loss of activity when a GAAA-tetraloop replaced the T-loop in pATSer. Substituting the 2'-OH at N-1 with 2'-H also resulted in no detectable cleavage, hinting at the possible role of this 2'-OH in coordinating Mg2+ ions critical for catalysis. Collectively, our results indicate similarities but also key differences in substrate recognition by the bacterial RNase P RNP and AtPRORP1: while both forms exploit the acceptor-T-stem stack and the elbow region in the pre-tRNA, the RNP form appears to require more recognition determinants for cleavage-site selection.
Collapse
|
13
|
Klemm BP, Wu N, Chen Y, Liu X, Kaitany KJ, Howard MJ, Fierke CA. The Diversity of Ribonuclease P: Protein and RNA Catalysts with Analogous Biological Functions. Biomolecules 2016; 6:biom6020027. [PMID: 27187488 PMCID: PMC4919922 DOI: 10.3390/biom6020027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022] Open
Abstract
Ribonuclease P (RNase P) is an essential endonuclease responsible for catalyzing 5' end maturation in precursor transfer RNAs. Since its discovery in the 1970s, RNase P enzymes have been identified and studied throughout the three domains of life. Interestingly, RNase P is either RNA-based, with a catalytic RNA subunit, or a protein-only (PRORP) enzyme with differential evolutionary distribution. The available structural data, including the active site data, provides insight into catalysis and substrate recognition. The hydrolytic and kinetic mechanisms of the two forms of RNase P enzymes are similar, yet features unique to the RNA-based and PRORP enzymes are consistent with different evolutionary origins. The various RNase P enzymes, in addition to their primary role in tRNA 5' maturation, catalyze cleavage of a variety of alternative substrates, indicating a diversification of RNase P function in vivo. The review concludes with a discussion of recent advances and interesting research directions in the field.
Collapse
Affiliation(s)
- Bradley P Klemm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Nancy Wu
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yu Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Kipchumba J Kaitany
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Michael J Howard
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| |
Collapse
|
14
|
Shepherd J, Ibba M. Bacterial transfer RNAs. FEMS Microbiol Rev 2015; 39:280-300. [PMID: 25796611 DOI: 10.1093/femsre/fuv004] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/21/2015] [Indexed: 11/14/2022] Open
Abstract
Transfer RNA is an essential adapter molecule that is found across all three domains of life. The primary role of transfer RNA resides in its critical involvement in the accurate translation of messenger RNA codons during protein synthesis and, therefore, ultimately in the determination of cellular gene expression. This review aims to bring together the results of intensive investigations into the synthesis, maturation, modification, aminoacylation, editing and recycling of bacterial transfer RNAs. Codon recognition at the ribosome as well as the ever-increasing number of alternative roles for transfer RNA outside of translation will be discussed in the specific context of bacterial cells.
Collapse
Affiliation(s)
- Jennifer Shepherd
- Department of Microbiology and the Center for RNA Biology, Ohio State University, Columbus, Ohio 43210, USA
| | - Michael Ibba
- Department of Microbiology and the Center for RNA Biology, Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
15
|
Wu S, Chen Y, Mao G, Trobro S, Kwiatkowski M, Kirsebom LA. Transition-state stabilization in Escherichia coli ribonuclease P RNA-mediated cleavage of model substrates. Nucleic Acids Res 2014; 42:631-42. [PMID: 24097434 PMCID: PMC3874170 DOI: 10.1093/nar/gkt853] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 01/10/2023] Open
Abstract
We have used model substrates carrying modified nucleotides at the site immediately 5' of the canonical RNase P cleavage site, the -1 position, to study Escherichia coli RNase P RNA-mediated cleavage. We show that the nucleobase at -1 is not essential but its presence and identity contribute to efficiency, fidelity of cleavage and stabilization of the transition state. When U or C is present at -1, the carbonyl oxygen at C2 on the nucleobase contributes to transition-state stabilization, and thus acts as a positive determinant. For substrates with purines at -1, an exocyclic amine at C2 on the nucleobase promotes cleavage at an alternative site and it has a negative impact on cleavage at the canonical site. We also provide new insights into the interaction between E. coli RNase P RNA and the -1 residue in the substrate. Our findings will be discussed using a model where bacterial RNase P cleavage proceeds through a conformational-assisted mechanism that positions the metal(II)-activated H2O for an in-line attack on the phosphorous atom that leads to breakage of the phosphodiester bond.
Collapse
Affiliation(s)
- Shiying Wu
- Department of Cell and Molecular Biology, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA and Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, SE-751 24 Uppsala, Sweden
| | - Yu Chen
- Department of Cell and Molecular Biology, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA and Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, SE-751 24 Uppsala, Sweden
| | - Guanzhong Mao
- Department of Cell and Molecular Biology, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA and Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, SE-751 24 Uppsala, Sweden
| | - Stefan Trobro
- Department of Cell and Molecular Biology, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA and Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, SE-751 24 Uppsala, Sweden
| | - Marek Kwiatkowski
- Department of Cell and Molecular Biology, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA and Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, SE-751 24 Uppsala, Sweden
| | - Leif A. Kirsebom
- Department of Cell and Molecular Biology, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA and Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, SE-751 24 Uppsala, Sweden
| |
Collapse
|
16
|
Kazantsev AV, Rambo RP, Karimpour S, Santalucia J, Tainer JA, Pace NR. Solution structure of RNase P RNA. RNA (NEW YORK, N.Y.) 2011; 17:1159-71. [PMID: 21531920 PMCID: PMC3096047 DOI: 10.1261/rna.2563511] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/30/2011] [Indexed: 05/25/2023]
Abstract
The ribonucleoprotein enzyme ribonuclease P (RNase P) processes tRNAs by cleavage of precursor-tRNAs. RNase P is a ribozyme: The RNA component catalyzes tRNA maturation in vitro without proteins. Remarkable features of RNase P include multiple turnovers in vivo and ability to process diverse substrates. Structures of the bacterial RNase P, including full-length RNAs and a ternary complex with substrate, have been determined by X-ray crystallography. However, crystal structures of free RNA are significantly different from the ternary complex, and the solution structure of the RNA is unknown. Here, we report solution structures of three phylogenetically distinct bacterial RNase P RNAs from Escherichia coli, Agrobacterium tumefaciens, and Bacillus stearothermophilus, determined using small angle X-ray scattering (SAXS) and selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) analysis. A combination of homology modeling, normal mode analysis, and molecular dynamics was used to refine the structural models against the empirical data of these RNAs in solution under the high ionic strength required for catalytic activity.
Collapse
Affiliation(s)
- Alexei V Kazantsev
- Department of MCD Biology, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | | | | | |
Collapse
|
17
|
Cuzic-Feltens S, Weber MHW, Hartmann RK. Investigation of catalysis by bacterial RNase P via LNA and other modifications at the scissile phosphodiester. Nucleic Acids Res 2010; 37:7638-53. [PMID: 19793868 PMCID: PMC2794163 DOI: 10.1093/nar/gkp775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We analyzed cleavage of precursor tRNAs with an LNA, 2'-OCH(3), 2'-H or 2'-F modification at the canonical (c(0)) site by bacterial RNase P. We infer that the major function of the 2'-substituent at nt -1 during substrate ground state binding is to accept an H-bond. Cleavage of the LNA substrate at the c(0) site by Escherichia coli RNase P RNA demonstrated that the transition state for cleavage can in principle be achieved with a locked C3' -endo ribose and without the H-bond donor function of the 2'-substituent. LNA and 2'-OCH(3) suppressed processing at the major aberrant m(-)(1) site; instead, the m(+1) (nt +1/+2) site was utilized. For the LNA variant, parallel pathways leading to cleavage at the c(0) and m(+1) sites had different pH profiles, with a higher Mg(2+) requirement for c(0) versus m(+1) cleavage. The strong catalytic defect for LNA and 2'-OCH(3) supports a model where the extra methylene (LNA) or methyl group (2'-OCH(3)) causes a steric interference with a nearby bound catalytic Mg(2+) during its recoordination on the way to the transition state for cleavage. The presence of the protein cofactor suppressed the ground state binding defects, but not the catalytic defects.
Collapse
Affiliation(s)
| | | | - Roland K. Hartmann
- *To whom correspondence should be addressed. Tel: +49 6421 2825827; Fax +49 6421 2825854;
| |
Collapse
|
18
|
Lai LB, Vioque A, Kirsebom LA, Gopalan V. Unexpected diversity of RNase P, an ancient tRNA processing enzyme: challenges and prospects. FEBS Lett 2009; 584:287-96. [PMID: 19931535 DOI: 10.1016/j.febslet.2009.11.048] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 11/09/2009] [Accepted: 11/13/2009] [Indexed: 12/16/2022]
Abstract
For an enzyme functioning predominantly in a seemingly housekeeping role of 5' tRNA maturation, RNase P displays a remarkable diversity in subunit make-up across the three domains of life. Despite the protein complexity of this ribonucleoprotein enzyme increasing dramatically from bacteria to eukarya, the catalytic function rests with the RNA subunit during evolution. However, the recent demonstration of a protein-only human mitochondrial RNase P has added further intrigue to the compositional variability of this enzyme. In this review, we discuss some possible reasons underlying the structural diversity of the active sites, and use them as thematic bases for elaborating new directions to understand how functional variations might have contributed to the complex evolution of RNase P.
Collapse
Affiliation(s)
- Lien B Lai
- Department of Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
19
|
Abstract
The 2'-hydroxyl group plays an integral role in RNA structure and catalysis. This ubiquitous component of the RNA backbone can participate in multiple interactions essential for RNA function, such as hydrogen bonding and metal ion coordination, but the multifunctional nature of the 2'-hydroxyl renders identification of these interactions a significant challenge. By virtue of their versatile physicochemical properties, such as distinct metal coordination preferences, hydrogen bonding properties, and ability to be protonated, 2'-amino-2'-deoxyribonucleotides can serve as tools for probing local interactions involving 2'-hydroxyl groups within RNA. The 2'-amino group can also serve as a chemoselective site for covalent modification, permitting the introduction of probes for investigation of RNA structure and dynamics. In this chapter, we describe the use of 2'-aminonucleotides for investigation of local interactions within RNA, focusing on interactions involving 2'-hydroxyl groups required for RNA structure, function, and catalysis.
Collapse
|
20
|
Frederiksen JK, Piccirilli JA. Identification of catalytic metal ion ligands in ribozymes. Methods 2009; 49:148-66. [PMID: 19651216 DOI: 10.1016/j.ymeth.2009.07.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 07/20/2009] [Accepted: 07/29/2009] [Indexed: 01/05/2023] Open
Abstract
Site-bound metal ions participate in the catalytic mechanisms of many ribozymes. Understanding these mechanisms therefore requires knowledge of the specific ligands on both substrate and ribozyme that coordinate these catalytic metal ions. A number of different structural and biochemical strategies have been developed and refined for identifying metal ion binding sites within ribozymes, and for assessing the catalytic contributions of the metal ions bound at those sites. We review these approaches and provide examples of their application, focusing in particular on metal ion rescue experiments and their roles in the construction of the transition state models for the Tetrahymena group I and RNase P ribozymes.
Collapse
Affiliation(s)
- John K Frederiksen
- The Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
21
|
Pinjari RV, Kaptan SS, Gejji SP. Alkali metals (Li, Na, and K) in methyl phosphodiester hydrolysis. Phys Chem Chem Phys 2009; 11:5253-62. [PMID: 19551192 DOI: 10.1039/b812000e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The phosphodiester linkage central to biological systems has been modeled by methyl phosphodiester (MPDE) in various theoretical and experimental studies. Under physiological conditions, hydrolysis of the phosphodiester is negligible, however this process can be catalyzed in the presence of metal ions. To understand the role of alkali metals in MPDE hydrolysis and, in particular, how it influences the reaction pathway and the associated energetics, density functional calculations employing the 6-31+G(d,p) basis set have been carried out. Different pathways that include the reactant, intermediates and the products have been investigated for MPDE hydrolysis catalyzed by one or two lithium ions, characterized as stationary point geometries on the potential energy surface. The pathways A and B incorporate a single lithium ion bonded to different oxygens of the diester functionality. In pathway C, a six-membered ring was noticed wherein the nucleophile bridges two lithium ions interacting with different oxygens of the phosphoryl group. Furthermore, in the pathway (D) incorporating two lithium ions, one of the lithium ions interacts with the hydroxyl group and another with the methoxy oxygen; both metal ions are coordinated by the same phosphoryl oxygen. In addition to this, yet another pathway (E), where the metal ions are bound to different oxygens of the phosphoryl group, has also been dealt with. The calculations have shown that the A and B pathways lead to a single step reaction. A three-step mechanism including the nucleophilic (hydroxyl) attack, rotation of a methyl group and, finally, departure of the methoxy group has been predicted for the D and E profiles. Both D and E pathways are favored equally (with a marginal difference of 0.3 kJ mol(-1) in their activation energies) in the gas phase and a transition state corresponding to nucleophilic attack with an energy barrier of 32.5 kJ mol(-1) was located when lithium was used. A penta-coordinated phosphorous intermediate on the potential energy surface was characterized along these pathways. MPDE hydrolysis yielded a lower energy barrier for lithium than those for the remaining alkali metal ions. This agrees well with the experimentally observed trend for the hydrolysis rates: Li > Na > K. Self consistent reaction field (SCRF) calculations reveal the lower energy barrier between the reactant and the transition state for the nucleophilic attack in nonpolar solvents. The extent of bond formation (or cleavage) in different stationary point structures along the reaction path as estimated from the electron density at the bond critical point in the molecular electron density topography, has proven useful in distinguishing the associative or dissociative reaction pathways.
Collapse
Affiliation(s)
- Rahul V Pinjari
- Department of Chemistry, University of Pune, Ganeshkhind, Pune 411007, India
| | | | | |
Collapse
|
22
|
|
23
|
Kazantsev AV, Krivenko AA, Pace NR. Mapping metal-binding sites in the catalytic domain of bacterial RNase P RNA. RNA (NEW YORK, N.Y.) 2009; 15:266-76. [PMID: 19095619 PMCID: PMC2648716 DOI: 10.1261/rna.1331809] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein enzyme that contains a universally conserved, catalytically active RNA component. RNase P RNA requires divalent metal ions for folding, substrate binding, and catalysis. Despite recent advances in understanding the structure of RNase P RNA, no comprehensive analysis of metal-binding sites has been reported, in part due to the poor crystallization properties of this large RNA. We have developed an abbreviated yet still catalytic construct, Bst P7Delta RNA, which contains the catalytic domain of the bacterial RNase P RNA and has improved crystallization properties. We use this mutant RNA as well as the native RNA to map metal-binding sites in the catalytic core of the bacterial RNase P RNA, by anomalous scattering in diffraction analysis. The results provide insight into the interplay between RNA structure and focalization of metal ions, and a structural basis for some previous biochemical observations with RNase P. We use electrostatic calculations to extract the potential functional significance of these metal-binding sites with respect to binding Mg(2+). The results suggest that with at least one important exception of specific binding, these sites mainly map areas of diffuse association of magnesium ions.
Collapse
Affiliation(s)
- Alexei V Kazantsev
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, 80309, USA
| | | | | |
Collapse
|
24
|
Hougland JL, Sengupta RN, Dai Q, Deb SK, Piccirilli JA. The 2'-hydroxyl group of the guanosine nucleophile donates a functionally important hydrogen bond in the tetrahymena ribozyme reaction. Biochemistry 2008; 47:7684-94. [PMID: 18572927 DOI: 10.1021/bi8000648] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the first step of self-splicing, group I introns utilize an exogenous guanosine nucleophile to attack the 5'-splice site. Removal of the 2'-hydroxyl of this guanosine results in a 10 (6)-fold loss in activity, indicating that this functional group plays a critical role in catalysis. Biochemical and structural data have shown that this hydroxyl group provides a ligand for one of the catalytic metal ions at the active site. However, whether this hydroxyl group also engages in hydrogen-bonding interactions remains unclear, as attempts to elaborate its function further usually disrupt the interactions with the catalytic metal ion. To address the possibility that this 2'-hydroxyl contributes to catalysis by donating a hydrogen bond, we have used an atomic mutation cycle to probe the functional importance of the guanosine 2'-hydroxyl hydrogen atom. This analysis indicates that, beyond its role as a ligand for a catalytic metal ion, the guanosine 2'-hydroxyl group donates a hydrogen bond in both the ground state and the transition state, thereby contributing to cofactor recognition and catalysis by the intron. Our findings continue an emerging theme in group I intron catalysis: the oxygen atoms at the reaction center form multidentate interactions that function as a cooperative network. The ability to delineate such networks represents a key step in dissecting the complex relationship between RNA structure and catalysis.
Collapse
Affiliation(s)
- James L Hougland
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
25
|
Cuzic S, Heidemann KA, Wöhnert J, Hartmann RK. Escherichia coli RNase P RNA: substrate ribose modifications at G+1, but not nucleotide -1/+73 base pairing, affect the transition state for cleavage chemistry. J Mol Biol 2008; 379:1-8. [PMID: 18452950 DOI: 10.1016/j.jmb.2008.03.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 03/06/2008] [Accepted: 03/19/2008] [Indexed: 11/16/2022]
Abstract
The temperature dependence of processing of precursor tRNA(Gly) (ptRNA(Gly)) variants carrying a single 2'-OCH(3) or locked nucleic acid (LNA) modification at G+1 by Escherichia coli endoribonuclease P RNA was studied at rate-limiting chemistry. We show, for the first time, that these ribose modifications at nucleotide +1 increase the activation energy and alter the activation parameters for the transition state of hydrolysis at the canonical (c(0)) cleavage site (between nucleotides -1 and +1). The modified substrates, particularly the one with LNA at G+1, caused an increase in the activation enthalpy Delta H(double dagger), which was partly compensated for by a simultaneous increase in the activation entropy DeltaS(double dagger). NMR imino proton spectra of model acceptor stems derived from the same ptRNA variants unveiled that a riboT or U at -1 forms two hydrogen bonds with U+73, thus extending the acceptor stem by 1 bp. The non-canonical base pair is substantially stabilized by LNA substitution at nucleotides -1 or +1. To address if the activation energy increase owing to LNA at G+1 stems from dissociation of the U(-1)-U(+73) base pair as a prerequisite for interaction of U(+73) with U294 in endoribonuclease P RNA, we tested a ptRNA(Gly) variant that is capable of forming an extra C(-1)-G(+73) Watson-Crick base pair. However, compared with a control ptRNA (C at -1, U at +73), no significant change in activation parameters was observed for this ptRNA. Thus, our results argue against the possibility that breaking of an additional base pair at the end of the acceptor stem may present an energetic barrier for reaching the transition state of the chemical step for cleavage at the canonical (c(0)) phosphodiester.
Collapse
Affiliation(s)
- Simona Cuzic
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, D-35037 Marburg, Germany
| | | | | | | |
Collapse
|
26
|
Li D, Willkomm DK, Schön A, Hartmann RK. RNase P of the Cyanophora paradoxa cyanelle: A plastid ribozyme. Biochimie 2007; 89:1528-38. [PMID: 17881113 DOI: 10.1016/j.biochi.2007.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 08/04/2007] [Indexed: 11/23/2022]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein enzyme that generates the mature 5' ends of tRNAs. Ubiquitous across all three kingdoms of life, the composition and functional contributions of the RNA and protein components of RNase P differ between the kingdoms. RNA-alone catalytic activity has been reported throughout bacteria, but only for some archaea, and only as trace activity for eukarya. Available information for RNase P from photosynthetic organelles points to large differences to bacterial as well as to eukaryotic RNase P: for spinach chloroplasts, protein-alone activity has been discussed; for RNase P from the cyanelle of the glaucophyte Cyanophora paradoxa, a type of organelle sharing properties of both cyanobacteria and chloroplasts, the proportion of protein was found to be around 80% rather than the usual 10% in bacteria. Furthermore, the latter RNase P was previously found catalytically inactive in the absence of protein under a variety of conditions; however, the RNA could be activated by a cyanobacterial protein, but not by the bacterial RNase P protein from Escherichia coli. Here we demonstrate that, under very high enzyme concentrations, the RNase P RNA from the cyanelle of C. paradoxa displays RNA-alone activity well above the detection level. Moreover, the RNA can be complemented to a functional holoenzyme by the E. coli RNase P protein, further supporting its overall bacterial-like architecture. Mutational analysis and domain swaps revealed that this A,U-rich cyanelle RNase P RNA is globally optimized but conformationally unstable, since changes as little as a single point mutation or a base pair identity switch at positions that are not part of the universally conserved catalytic core led to a complete loss of RNA-alone activity. Likely related to this low robustness, extensive structural changes towards an E. coli-type P5-7/P15-17 subdomain as a canonical interaction site for tRNA 3'-CCA termini could not be coaxed into increased ribozyme activity.
Collapse
MESH Headings
- Base Sequence
- Cyanobacteria/enzymology
- Enzyme Activation
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Holoenzymes/genetics
- Holoenzymes/metabolism
- Kinetics
- Nucleic Acid Conformation
- Organelles/enzymology
- Plasmids
- Plastids/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Catalytic/chemistry
- RNA, Catalytic/isolation & purification
- RNA, Catalytic/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Recombinant Proteins/metabolism
- Ribonuclease P/genetics
- Ribonuclease P/metabolism
- Templates, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- Dan Li
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35037 Marburg, Germany
| | | | | | | |
Collapse
|
27
|
Brännvall M, Kikovska E, Wu S, Kirsebom LA. Evidence for Induced Fit in Bacterial RNase P RNA-mediated Cleavage. J Mol Biol 2007; 372:1149-64. [PMID: 17719605 DOI: 10.1016/j.jmb.2007.07.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/06/2007] [Accepted: 07/09/2007] [Indexed: 11/26/2022]
Abstract
RNase P with its catalytic RNA subunit is involved in the processing of a number of RNA precursors with different structures. However, precursor tRNAs are the most abundant substrates for RNase P. Available data suggest that a tRNA is folded into its characteristic structure already at the precursor state and that RNase P recognizes this structure. The tRNA D-/T-loop domain (TSL-region) is suggested to interact with the specificity domain of RNase P RNA while residues in the catalytic domain interact with the cleavage site. Here, we have studied the consequences of a productive interaction between the TSL-region and its binding site (TBS) in the specificity domain using tRNA precursors and various hairpin-loop model substrates. The different substrates were analyzed with respect to cleavage site recognition, ground-state binding, cleavage as a function of the concentration of Mg(2+) and the rate of cleavage under conditions where chemistry is suggested to be rate limiting using wild-type Escherichia coli RNase P RNA, M1 RNA, and M1 RNA variants with structural changes in the TBS-region. On the basis of our data, we conclude that a productive TSL/TBS interaction results in a conformational change in the M1 RNA substrate complex that has an effect on catalysis. Moreover, it is likely that this conformational change comprises positioning of chemical groups (and Mg(2+)) at and in the vicinity of the cleavage site. Hence, our findings are consistent with an induced-fit mechanism in RNase P RNA-mediated cleavage.
Collapse
Affiliation(s)
- Mathias Brännvall
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
28
|
Sun L, Harris ME. Evidence that binding of C5 protein to P RNA enhances ribozyme catalysis by influencing active site metal ion affinity. RNA (NEW YORK, N.Y.) 2007; 13:1505-15. [PMID: 17652407 PMCID: PMC1950769 DOI: 10.1261/rna.571007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The RNA subunit (P RNA) of the bacterial RNase P ribonucleoprotein is a ribozyme that catalyzes the Mg-dependent hydrolysis of pre-tRNA, but it requires an essential protein cofactor (P protein) in vivo that enhances substrate binding affinities and catalytic rates in a substrate dependent manner. Previous studies of Bacillus subtilis RNase P, containing a Type B RNA subunit, showed that its cognate protein subunit increases the affinity of metal ions important for catalysis, but the functional role of these ions is unknown. Here, we demonstrate that the Mg2+ dependence of the catalytic step for Escherichia coli RNase P, which contains a more common Type A RNA subunit, is also modulated by its cognate protein subunit (C5), indicating that this property is fundamental to P protein. To monitor specifically the binding of active site metal ions, we analyzed quantitatively the rescue by Cd2+ of an inhibitory Rp phosphorothioate modification at the pre-tRNA cleavage site. The results show that binding of C5 protein increases the apparent affinity of the rescuing Cd2+, providing evidence that C5 protein enhances metal ion affinity in the active site, and thus is likely to contribute significantly to rate enhancement at physiological metal ion concentrations.
Collapse
Affiliation(s)
- Lei Sun
- Center for RNA Molecular Biology, Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
29
|
Cuzic S, Hartmann RK. A 2'-methyl or 2'-methylene group at G+1 in precursor tRNA interferes with Mg2+ binding at the enzyme-substrate interface in E-S complexes of E. coli RNase P. Biol Chem 2007; 388:717-26. [PMID: 17570824 DOI: 10.1515/bc.2007.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We analyzed processing of precursor tRNAs carrying a single 2'-deoxy, 2'-OCH(3), or locked nucleic acid (LNA) modification at G+1 by Escherichia coli RNase P RNA in the absence and presence of its protein cofactor. The extra methyl or methylene group caused a substrate binding defect, which was rescued at higher divalent metal ion (M(2+)) concentrations (more efficiently with Mn(2+) than Mg(2+)), and had a minor effect on cleavage chemistry at saturating M(2+) concentrations. The 2'-OCH(3) and LNA modification at G+1 resulted in higher metal ion cooperativity for substrate binding to RNase P RNA without affecting cleavage site selection. This indicates disruption of an M(2+) binding site in enzyme-substrate complexes, which is compensated for by occupation of alternative M(2+) binding sites of lower affinity. The 2'-deoxy modification at G+1 caused at most a two-fold decrease in the cleavage rate; this mild defect relative to 2'-OCH(3) and LNA at G+1 indicates that the defect caused by the latter two is steric in nature. We propose that the 2'-hydroxyl at G+1 in the substrate is in the immediate vicinity of the M(2+) cluster at the phosphates of A67 to U69 in helix P4 of E. coli RNase P RNA.
Collapse
Affiliation(s)
- Simona Cuzic
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | | |
Collapse
|
30
|
Abstract
Major progress in the study of RNase P has resulted from crystallography of bacterial catalytic subunits and the discovery of catalytic activity in eukaryotes. Several new substrates have also been identified, primarily in bacteria but also in yeast. Our current world should be called the "RNA-protein world" rather than the "protein world".
Collapse
Affiliation(s)
- Sidney Altman
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue, CT 06511, USA.
| |
Collapse
|
31
|
Dai Q, Lea CR, Lu J, Piccirilli JA. Syntheses of (2')3'-15N-amino-(2')3'-deoxyguanosine and determination of their pKa values by 15N NMR spectroscopy. Org Lett 2007; 9:3057-60. [PMID: 17629287 DOI: 10.1021/ol071129h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
2'-Amino-2'-deoxyguanosine and 3'-amino-3'-deoxyguanosine are valuable probes for investigating the metal ion interactions at the active site of the group I ribozyme. However, these experiments require a thorough understanding of the protonation state of the amino group at a specific pH. Here, we describe the first syntheses of 2'-15N-amino-2'-deoxyadenosine, 2'-15N-amino-2'-deoxyguanosine, and 3'-15N-amino-3'-deoxyguanosine. The 15N-enriched nucleus allows convenient and accurate determination of the amine pKa by 15N NMR.
Collapse
Affiliation(s)
- Qing Dai
- Department of Biochemistry & Molecular Biology, The University of Chicago, 929 East 57th Street, MC 1028, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Ribonuclease P (RNase P) is a ubiquitous endonuclease that catalyses the maturation of the 5' end of transfer RNA (tRNA). Although it carries out a biochemically simple reaction, RNase P is a complex ribonucleoprotein particle composed of a single large RNA and at least one protein component. In bacteria and some archaea, the RNA component of RNase P can catalyse tRNA maturation in vitro in the absence of proteins. The discovery of the catalytic activity of the bacterial RNase P RNA triggered numerous mechanistic and biochemical studies of the reactions catalysed by the RNA alone and by the holoenzyme and, in recent years, structures of individual components of the RNase P holoenzyme have been determined. The goal of the present review is to summarize what is known about the bacterial RNase P, and to bring together the recent structural results with extensive earlier biochemical and phylogenetic findings.
Collapse
Affiliation(s)
- Alexei V Kazantsev
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | |
Collapse
|
33
|
Kikovska E, Brännvall M, Kirsebom LA. The exocyclic amine at the RNase P cleavage site contributes to substrate binding and catalysis. J Mol Biol 2006; 359:572-84. [PMID: 16638615 DOI: 10.1016/j.jmb.2006.03.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 03/14/2006] [Accepted: 03/18/2006] [Indexed: 10/24/2022]
Abstract
Most tRNAs carry a G at their 5' termini, i.e. at position +1. This position corresponds to the position immediately downstream of the site of cleavage in tRNA precursors. Here we studied RNase P RNA-mediated cleavage of substrates carrying substitutions/modifications at position +1 in the absence of the RNase P protein, C5, to investigate the role of G at the RNase P cleavage site. We present data suggesting that the exocyclic amine (2NH2) of G+1 contributes to cleavage site recognition, ground state binding and catalysis by affecting the rate of cleavage. This is in contrast to O6, N7 and 2'OH that are suggested to affect ground state binding and rate of cleavage to significantly lesser extent. We also provide evidence that the effects caused by the absence of 2NH2 at position +1 influenced the charge distribution and conceivably Mg2+ binding at the RNase P cleavage site. These findings are consistent with models where the 2NH2 at the cleavage site (when present) interacts with RNase P RNA and/or influences the positioning of Mg2+ in the vicinity of the cleavage site. Moreover, our data suggest that the presence of the base at +1 is not essential for cleavage but its presence suppresses miscleavage and dramatically increases the rate of cleavage. Together our findings provide reasons why most tRNAs carry a guanosine at their 5' end.
Collapse
Affiliation(s)
- Ema Kikovska
- Department of Cell and Molecular Biology, Uppsala University, Box 596, Biomedical Centre, SE-751 24 Uppsala, Sweden
| | | | | |
Collapse
|
34
|
Kikovska E, Mikkelsen NE, Kirsebom LA. The naturally trans-acting ribozyme RNase P RNA has leadzyme properties. Nucleic Acids Res 2005; 33:6920-30. [PMID: 16332695 PMCID: PMC1310964 DOI: 10.1093/nar/gki993] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Divalent metal ions promote hydrolysis of RNA backbones generating 5′OH and 2′;3′P as cleavage products. In these reactions, the neighboring 2′OH act as the nucleophile. RNA catalyzed reactions also require divalent metal ions and a number of different metal ions function in RNA mediated cleavage of RNA. In one case, the LZV leadzyme, it was shown that this catalytic RNA requires lead for catalysis. So far, none of the naturally isolated ribozymes have been demonstrated to use lead to activate the nucleophile. Here we provide evidence that RNase P RNA, a naturally trans-acting ribozyme, has leadzyme properties. But, in contrast to LZV RNA, RNase P RNA mediated cleavage promoted by Pb2+ results in 5′ phosphate and 3′OH as cleavage products. Based on our findings, we infer that Pb2+ activates H2O to act as the nucleophile and we identified residues both in the substrate and RNase P RNA that most likely influenced the positioning of Pb2+ at the cleavage site. Our data suggest that Pb2+ can promote cleavage of RNA by activating either an inner sphere H2O or a neighboring 2′OH to act as nucleophile.
Collapse
Affiliation(s)
| | - Nils-Egil Mikkelsen
- Department of Molecular Biology, Swedish Agricultural UniversityBox 590, Biomedical Centre, SE-751 23 Uppsala, Sweden
| | - Leif A. Kirsebom
- To whom correspondence should be addressed. Tel: +46 18 471 4068; Fax: +46 18 53 03 96;
| |
Collapse
|
35
|
Dai Q, Deb SK, Hougland JL, Piccirilli JA. Improved synthesis of 2'-amino-2'-deoxyguanosine and its phosphoramidite. Bioorg Med Chem 2005; 14:705-13. [PMID: 16202607 DOI: 10.1016/j.bmc.2005.08.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 08/25/2005] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
2'-Amino-2'-deoxynucleosides and oligonucleotides containing them have proven highly effective for an array of biochemical applications. The guanosine analogue and its phosphoramidite derivatives have been accessed previously from 2'-amino-2'-deoxyuridine by transglycosylation, but with limited overall efficiency and convenience. Using simple modifications of known reaction types, we have developed useful protocols to obtain 2'-amino-2'-deoxyguanosine and two of its phosphoramidite derivatives with greater convenience, fewer steps, and higher yields than reported previously. These phosphoramidites provide effective synthons for the incorporation of 2'-amino-2'-deoxyguanosine into oligonucleotides.
Collapse
Affiliation(s)
- Qing Dai
- Howard Hughes Medical Institute, The University of Chicago, MC 1028, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
36
|
Brännvall M, Kirsebom LA. Complexity in orchestration of chemical groups near different cleavage sites in RNase P RNA mediated cleavage. J Mol Biol 2005; 351:251-7. [PMID: 16005891 DOI: 10.1016/j.jmb.2005.06.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 06/09/2005] [Accepted: 06/10/2005] [Indexed: 11/23/2022]
Abstract
RNase P mediated cleavage of the tRNA(His) precursor does not rely on the formation of the "+73/294 interaction" to give the correct cleavage product, i.e. cleavage at -1, while other tRNA precursors that are cleaved at the canonical site +1 do. A previous model, here referred to as the "2'OH-model", predicts that the 2'OH at the canonical cleavage site would affect cleavage at -1. Here we used model RNA hairpin substrates mimicking the structural architecture of the tRNA(His) precursor cleavage site to investigate the role of 2'OH with respect to ground state binding and rate of cleavage in the presence and absence of the +73/294 interaction. Our data emphasize the importance of the 2'OH in the immediate vicinity of the scissile bond. Moreover, introduction of 2'H at the cleavage site did not affect cleavage at an alternative cleavage site to any significant extent. Our findings are therefore inconsistent with the 2'OH model. We favor a model where the 2'OH at the cleavage site influence Mg2+ binding in its vicinity, however we do not exclude the possibility that the 2'OH at the cleavage site interacts with RNase P RNA. Studying the importance of the 2'OH at different cleavage sites also indicated a higher dependence on the 2'OH at the cleavage site in the absence of the +73/294 interaction than in its presence. Finally, we provide data suggesting that N3 of U at position -1 in the substrate is most likely not involved in an interaction with RNase P RNA.
Collapse
Affiliation(s)
- Mathias Brännvall
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24 Uppsala, Sweden
| | | |
Collapse
|
37
|
Cuzic S, Hartmann RK. Studies on Escherichia coli RNase P RNA with Zn2+ as the catalytic cofactor. Nucleic Acids Res 2005; 33:2464-74. [PMID: 15867194 PMCID: PMC1088067 DOI: 10.1093/nar/gki540] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We demonstrate, for the first time, catalysis by Escherichia coli ribonuclease P (RNase P) RNA with Zn2+ as the sole divalent metal ion cofactor in the presence of ammonium, but not sodium or potassium salts. Hill analysis suggests a role for two or more Zn2+ ions in catalysis. Whereas Zn2+ destabilizes substrate ground state binding to an extent that precludes reliable Kd determination, Co(NH3)63+ and Sr2+ in particular, both unable to support catalysis by themselves, promote high-substrate affinity. Zn2+ and Co(NH3)63+ substantially reduce the fraction of precursor tRNA molecules capable of binding to RNase P RNA. Stimulating and inhibitory effects of Sr2+ on the ribozyme reaction with Zn2+ as cofactor could be rationalized by a model involving two Sr2+ ions (or two classes of Sr2+ ions). Both ions improve substrate affinity in a cooperative manner, but one of the two inhibits substrate conversion in a non-competitive mode with respect to the substrate and the Zn2+. A single 2′-fluoro modification at nt −1 of the substrate substantially weakened the inhibitory effect of Sr2+. Our results demonstrate that the studies on RNase P RNA with metal cofactors other than Mg2+ entail complex effects on structural equilibria of ribozyme and substrate RNAs as well as E·S formation apart from the catalytic performance.
Collapse
Affiliation(s)
| | - Roland K. Hartmann
- To whom correspondence should be addressed. Tel: +49 6421 28 25827; Fax: +49 6421 28 25854;
| |
Collapse
|
38
|
Gruic-Sovulj I, Uter N, Bullock T, Perona JJ. tRNA-dependent aminoacyl-adenylate hydrolysis by a nonediting class I aminoacyl-tRNA synthetase. J Biol Chem 2005; 280:23978-86. [PMID: 15845536 DOI: 10.1074/jbc.m414260200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutaminyl-tRNA synthetase generates Gln-tRNA(Gln) 10(7)-fold more efficiently than Glu-tRNA(Gln) and requires tRNA to synthesize the activated aminoacyl adenylate in the first step of the reaction. To examine the role of tRNA in amino acid activation more closely, several assays employing a tRNA analog in which the 2'-OH group at the 3'-terminal A76 nucleotide is replaced with hydrogen (tRNA(2'HGln)) were developed. These experiments revealed a 10(4)-fold reduction in kcat/Km in the presence of the analog, suggesting a direct catalytic role for tRNA in the activation reaction. The catalytic importance of the A76 2'-OH group in aminoacylation mirrors a similar role for this moiety that has recently been demonstrated during peptidyl transfer on the ribosome. Unexpectedly, tracking of Gln-AMP formation utilizing an alpha-32P-labeled ATP substrate in the presence of tRNA(2'HGln) showed that AMP accumulates 5-fold more rapidly than Gln-AMP. A cold-trapping experiment revealed that the nonenzymatic rate of Gln-AMP hydrolysis is too slow to account for the rapid AMP formation; hence, the hydrolysis of Gln-AMP to form glutamine and AMP must be directly catalyzed by the GlnRS x tRNA(2'HGln) complex. This hydrolysis of glutaminyl adenylate represents a novel reaction that is directly analogous to the pre-transfer editing hydrolysis of noncognate aminoacyl adenylates by editing synthetases such as isoleucyl-tRNA synthetase. Because glutaminyl-tRNA synthetase does not possess a spatially separate editing domain, these data demonstrate that a pre-transfer editing-like reaction can occur within the synthetic site of a class I tRNA synthetase.
Collapse
Affiliation(s)
- Ita Gruic-Sovulj
- Department of Chemistry and Biochemistry & Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106-9510, USA
| | | | | | | |
Collapse
|
39
|
Kikovska E, Brännvall M, Kufel J, Kirsebom LA. Substrate discrimination in RNase P RNA-mediated cleavage: importance of the structural environment of the RNase P cleavage site. Nucleic Acids Res 2005; 33:2012-21. [PMID: 15817565 PMCID: PMC1074746 DOI: 10.1093/nar/gki344] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Like the translational elongation factor EF-Tu, RNase P interacts with a large number of substrates where RNase P with its RNA subunit generates tRNAs with matured 5' termini by cleaving tRNA precursors immediately 5' of the residue at +1, i.e. at the position that corresponds to the first residue in tRNA. Most tRNAs carry a G+1C+72 base pair at the end of the aminoacyl acceptor-stem whereas in tRNA(Gln) G+1C+72 is replaced with U+1A+72. Here, we investigated RNase P RNA-mediated cleavage as a function of having G+1C+72 versus U+1A+72 in various substrate backgrounds, two full-size tRNA precursors (pre-tRNA(Gln) and pre-tRNA(Tyr)Su3) and a model RNA hairpin substrate (pATSer). Our data showed that replacement of G+1C+72 with U+1A+72 influenced ground state binding, cleavage efficiency under multiple and single turnover conditions in a substrate-dependent manner. Interestingly, we observed differences both in ground state binding and rate of cleavage comparing two full-size tRNA precursors, pre-tRNA(Gln) and pre-tRNA(Tyr)Su3. These findings provide evidence for substrate discrimination in RNase P RNA-mediated cleavage both at the level of binding, as previously observed for EF-Tu, as well as at the catalytic step. In our experiments where we used model substrate derivatives further indicated the importance of the +1/+72 base pair in substrate discrimination by RNase P RNA. Finally, we provide evidence that the structural architecture influences Mg2+ binding, most likely in its vicinity.
Collapse
Affiliation(s)
| | | | | | - Leif A. Kirsebom
- To whom correspondence should be addressed. Tel: +46 18 471 4068; Fax: +46 18 53 03 96;
| |
Collapse
|
40
|
Zahler NH, Sun L, Christian EL, Harris ME. The pre-tRNA nucleotide base and 2'-hydroxyl at N(-1) contribute to fidelity in tRNA processing by RNase P. J Mol Biol 2004; 345:969-85. [PMID: 15644198 DOI: 10.1016/j.jmb.2004.10.080] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 10/20/2004] [Accepted: 10/27/2004] [Indexed: 10/26/2022]
Abstract
Fidelity in tRNA processing by the RNase P RNA from Escherichia coli depends, in part, on interactions with the nucleobase and 2' hydroxyl group of N(-1), the nucleotide immediately upstream of the site of RNA strand cleavage. Here, we report a series of biochemical and structure-function studies designed to address how these interactions contribute to cleavage site selection. We find that simultaneous disruption of cleavage site nucleobase and 2' hydroxyl interactions results in parallel reactions leading to correct cleavage and mis-cleavage one nucleotide upstream (5') of the correct site. Changes in Mg(2+) concentration and pH can influence the fraction of product that is incorrectly processed, with pH effects attributable to differences in the rate-limiting steps for the correct and mis-cleavage reaction pathways. Additionally, we provide evidence that interactions with the 2' hydroxyl group adjacent to the reactive phosphate group also contribute to catalysis at the mis-cleavage site. Finally, disruption of the adjacent 2'-hydroxyl contact has a greater effect on catalysis when pairing between the ribozyme and N(-1) is also disrupted, and the effects of simultaneously disrupting these contacts on binding are also non-additive. One implication of these results is that mis-cleavage will result from any combination of active site modifications that decrease the rate of correct cleavage beyond a certain threshold. Indeed, we find that inhibition of correct cleavage and corresponding mis-cleavage also results from disruption of any combination of active site contacts including metal ion interactions and conserved pairing interactions with the 3' RCCA sequence. Such redundancy in interactions needed for maintaining fidelity may reflect the necessity for multiple substrate recognition in vivo. These studies provide a framework for interpreting effects of substrate modifications on RNase P cleavage fidelity and provide evidence for interactions with the nucleobase and 2' hydroxyl group adjacent to the reactive phosphate group in the transition state.
Collapse
Affiliation(s)
- Nathan H Zahler
- Department of Biochemistry, Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4973, USA
| | | | | | | |
Collapse
|
41
|
Brännvall M, Kikovska E, Kirsebom LA. Cross talk between the +73/294 interaction and the cleavage site in RNase P RNA mediated cleavage. Nucleic Acids Res 2004; 32:5418-29. [PMID: 15477392 PMCID: PMC524293 DOI: 10.1093/nar/gkh883] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To monitor functionally important metal ions and possible cross talk in RNase P RNA mediated cleavage we studied cleavage of substrates, where the 2'OH at the RNase P cleavage site (at -1) and/or at position +73 had been replaced with a 2' amino group (or 2'H). Our data showed that the presence of 2' modifications at these positions affected cleavage site recognition, ground state binding of substrate and/or rate of cleavage. Cleavage of 2' amino substituted substrates at different pH showed that substitution of Mg2+ by Mn2+ (or Ca2+), identity of residues at and near the cleavage site, and addition of C5 protein influenced the frequency of miscleavage at -1 (cleavage at the correct site is referred to as +1). From this we infer that these findings point at effects mediated by protonation/deprotonation of the 2' amino group, i.e. an altered charge distribution, at the site of cleavage. Moreover, our data suggested that the structural architecture of the interaction between the 3' end of the substrate and RNase P RNA influence the charge distribution at the cleavage site as well as the rate of cleavage under conditions where the chemistry is suggested to be rate limiting. Thus, these data provide evidence for cross talk between the +73/294 interaction and the cleavage site in RNase P RNA mediated cleavage. We discuss the role metal ions might play in this cross talk and the likelihood that at least one functionally important metal ion is positioned in the vicinity of, and use the 2'OH at the cleavage site as an inner or outer sphere ligand.
Collapse
Affiliation(s)
- Mathias Brännvall
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24 Uppsala, Sweden
| | | | | |
Collapse
|
42
|
Day-Storms JJ, Niranjanakumari S, Fierke CA. Ionic interactions between PRNA and P protein in Bacillus subtilis RNase P characterized using a magnetocapture-based assay. RNA (NEW YORK, N.Y.) 2004; 10:1595-608. [PMID: 15337847 PMCID: PMC1370646 DOI: 10.1261/rna.7550104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein complex that catalyzes the cleavage of the 5' end of precursor tRNA. To characterize the interface between the Bacillus subtilis RNA (PRNA) and protein (P protein) components, the intraholoenzyme KD is determined as a function of ionic strength using a magnetocapture-based assay. Three distinct phases are evident. At low ionic strength, the affinity of PRNA for P protein is enhanced as the ionic strength increases mainly due to stabilization of the PRNA structure by cations. Lithium substitution in lieu of potassium enhances the affinity at low ionic strength, whereas the addition of ATP, known to stabilize the structure of P protein, does not affect the affinity. At high ionic strength, the observed affinity decreases as the ionic strength increases, consistent with disruption of ionic interactions. These data indicate that three to four ions are released on formation of holoenzyme, reflecting the number of ion pairs that occur between the P protein and PRNA. At moderate ionic strength, the two effects balance so that the apparent KD is not dependent on the ionic strength. The KD between the catalytic domain (C domain) and P protein has a similar triphasic dependence on ionic strength. Furthermore, the intraholoenzyme KD is identical to or tighter than that of full-length PRNA, demonstrating that the P protein binds solely to the C domain. Finally, pre-tRNAasp (but not tRNAasp) stabilizes the PRNA*P protein complex, as predicted by the direct interaction between the P protein and pre-tRNA leader.
Collapse
Affiliation(s)
- Jeremy J Day-Storms
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|