1
|
Rapp C, Nidetzky B. Hydride Transfer Mechanism of Enzymatic Sugar Nucleotide C2 Epimerization Probed with a Loose-Fit CDP-Glucose Substrate. ACS Catal 2022; 12:6816-6830. [PMID: 35747200 PMCID: PMC9207888 DOI: 10.1021/acscatal.2c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/12/2022] [Indexed: 11/29/2022]
Abstract
![]()
Transient oxidation–reduction
through hydride transfer with
tightly bound NAD coenzyme is used by a large class of sugar nucleotide
epimerases to promote configurational inversion of carbon stereocenters
in carbohydrate substrates. A requirement for the epimerases to coordinate
hydride abstraction and re-addition with substrate rotation in the
binding pocket poses a challenge for dynamical protein conformational
selection linked to enzyme catalysis. Here, we studied the thermophilic
C2 epimerase from Thermodesulfatator atlanticus (TaCPa2E) in combination with a slow CDP-glucose
substrate (kcat ≈ 1.0 min–1; 60 °C) to explore the sensitivity of the enzymatic hydride
transfer toward environmental fluctuations affected by temperature
(20–80 °C). We determined noncompetitive primary kinetic
isotope effects (KIE) due to 2H at the glucose C2 and showed
that a normal KIE on the kcat (Dkcat) reflects isotope sensitivity of
the hydrogen abstraction to enzyme-NAD+ in a rate-limiting
transient oxidation. The Dkcat peaked at 40 °C was 6.1 and decreased to 2.1 at low (20 °C)
and 3.3 at high temperature (80 °C). The temperature profiles
for kcat with the 1H and 2H substrate showed a decrease in the rate below a dynamically
important breakpoint (∼40 °C), suggesting an equilibrium
shift to an impaired conformational landscape relevant for catalysis
in the low-temperature region. Full Marcus-like model fits of the
rate and KIE profiles provided evidence for a high-temperature reaction
via low-frequency conformational sampling associated with a broad
distribution of hydride donor–acceptor distances (long-distance
population centered at 3.31 ± 0.02 Å), only poorly suitable
for quantum mechanical tunneling. Collectively, dynamical characteristics
of TaCPa2E-catalyzed hydride transfer during transient
oxidation of CDP-glucose reveal important analogies to mechanistically
simpler enzymes such as alcohol dehydrogenase and dihydrofolate reductase.
A loose-fit substrate (in TaCPa2E) resembles structural
variants of these enzymes by extensive dynamical sampling to balance
conformational flexibility and catalytic efficiency.
Collapse
Affiliation(s)
- Christian Rapp
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 10-12/1, 8010 Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 10-12/1, 8010 Graz, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
2
|
Delgado M, Görlich S, Longbotham JE, Scrutton NS, Hay S, Moliner V, Tuñón I. Convergence of theory and experiment on the role of preorganization, quantum tunneling and enzyme motions into flavoenzyme-catalyzed hydride transfer. ACS Catal 2019; 7:3190-3198. [PMID: 31157122 DOI: 10.1021/acscatal.7b00201] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydride transfer is one of the most common reactions catalyzed by enzymatic systems and it has become an object of study due to possible significant quantum tunneling effects. In the present work, we provide a combination of theoretical QM/MM simulations and experimental measurements of the rate constants and kinetic isotopic effects (KIEs) for the hydride transfer reaction catalyzed by morphinone reductase, MR. Quantum mechanical tunneling coefficients, computed in the framework of variational transition-state theory, play a significant role in this reaction, reaching values of 23.8 ± 5.5 for the lightest isotopologue; one of the largest values reported for enzymatic systems. This prediction is supported by the agreement between the theoretically predicted rate constants and the corresponding experimental values. Simulations indicate that the role of protein motions can be satisfactorily described as equilibrium fluctuations along the reaction coordinate, in line with a high degree of preorganization displayed by this enzyme.
Collapse
Affiliation(s)
- Manuel Delgado
- Department
of Physical and Analytical Chemistry, University Jaume I, 12071 Castelló de la Plana, Spain
| | - Stefan Görlich
- Manchester
Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - James E. Longbotham
- Manchester
Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Vicent Moliner
- Department
of Physical and Analytical Chemistry, University Jaume I, 12071 Castelló de la Plana, Spain
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Iñaki Tuñón
- Department
of Physical Chemistry, University of València, 46100 Burjassot, Spain
| |
Collapse
|
3
|
Iorgu AI, Hedison TM, Hay S, Scrutton NS. Selectivity through discriminatory induced fit enables switching of NAD(P)H coenzyme specificity in Old Yellow Enzyme ene-reductases. FEBS J 2019; 286:3117-3128. [PMID: 31033202 PMCID: PMC6767020 DOI: 10.1111/febs.14862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/22/2019] [Accepted: 04/24/2019] [Indexed: 11/30/2022]
Abstract
Most ene‐reductases belong to the Old Yellow Enzyme (OYE) family of flavin‐dependent oxidoreductases. OYEs use nicotinamide coenzymes as hydride donors to catalyze the reduction of alkenes that contain an electron‐withdrawing group. There have been many investigations of the structures and catalytic mechanisms of OYEs. However, the origin of coenzyme specificity in the OYE family is unknown. Structural NMR and X‐ray crystallographic data were used to rationally design variants of two OYEs, pentaerythritol tetranitrate reductase (PETNR) and morphinone reductase (MR), to discover the basis of coenzyme selectivity. PETNR has dual‐specificity and reacts with NADH and NADPH; MR accepts only NADH as hydride donor. Variants of a β‐hairpin motif in an active site loop of both these enzymes were studied using stopped‐flow spectroscopy. Specific attention was placed on the potential role of arginine residues within the β‐hairpin motif. Mutagenesis demonstrated that Arg130 governs the preference of PETNR for NADPH, and that Arg142 interacts with the coenzyme pyrophosphate group. These observations were used to switch coenzyme specificity in MR by replacing either Glu134 or Leu146 with arginine residues. These variants had increased (~15‐fold) affinity for NADH. Mutagenesis enabled MR to accept NADPH as a hydride donor, with E134R MR showing a significant (55‐fold) increase in efficiency in the reductive half‐reaction, when compared to the essentially unreactive wild‐type enzyme. Insight into the question of coenzyme selectivity in OYEs has therefore been addressed through rational redesign. This should enable coenzyme selectivity to be improved and switched in other OYEs.
Collapse
Affiliation(s)
- Andreea I Iorgu
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, UK
| | - Tobias M Hedison
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, UK
| | - Sam Hay
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, UK
| |
Collapse
|
4
|
On the use of noncompetitive kinetic isotope effects to investigate flavoenzyme mechanism. Methods Enzymol 2019; 620:115-143. [PMID: 31072484 DOI: 10.1016/bs.mie.2019.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This account describes the application of kinetic isotope effects (KIEs) to investigate the mechanistic properties of flavin dependent enzymes. Assays can be conducted during steady-state catalytic turnover of the flavoenzyme with its substrate or by using rapid-kinetic techniques to measure either the reductive or oxidative half-reactions of the enzyme. Great care should be taken to ensure that the observed effects are due to isotopic substitution and not other factors such as pH effects or changes in the solvent viscosity of the reaction mixture. Different types of KIEs are described along with a physical description of their origins and the unique information each can provide about the mechanism of an enzyme. Detailed experimental techniques are outlined with special emphasis on the proper controls and data analysis that must be carried out to avoid erroneous conclusions. Examples are provided for each type of KIE measurement from references in the literature. It is our hope that this article will clarify any confusion concerning the utility of KIEs in the study of flavoprotein mechanism and encourage their use by the community.
Collapse
|
5
|
Iorgu AI, Cliff MJ, Waltho JP, Scrutton NS, Hay S. Isotopically labeled flavoenzymes and their uses in probing reaction mechanisms. Methods Enzymol 2019; 620:145-166. [PMID: 31072485 DOI: 10.1016/bs.mie.2019.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The incorporation of stable isotopes into proteins is beneficial or essential for a range of experiments, including NMR, neutron scattering and reflectometry, proteomic mass spectrometry, vibrational spectroscopy and "heavy" enzyme kinetic isotope effect (KIE) measurements. Here, we present detailed protocols for the stable isotopic labeling of pentaerythritol tetranitrate reductase (PETNR) via recombinant expression in E. coli. PETNR is an ene-reductase belonging to the Old Yellow Enzyme (OYE) family of flavoenzymes, and is regarded as a model system for studying hydride transfer reactions. Included is a discussion of how efficient back-exchange of amide protons in the protein core can be achieved and how the intrinsic flavin mononucleotide (FMN) cofactor can be exchanged, allowing the production of isotopologues with differentially labeled protein and cofactor. In addition to a thorough description of labeling strategies, we briefly exemplify how data analysis and interpretation of "heavy" enzyme KIEs can be performed.
Collapse
Affiliation(s)
- Andreea I Iorgu
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Matthew J Cliff
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Jonathan P Waltho
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Sam Hay
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
6
|
Iorgu AI, Baxter NJ, Cliff MJ, Levy C, Waltho JP, Hay S, Scrutton NS. Nonequivalence of Second Sphere "Noncatalytic" Residues in Pentaerythritol Tetranitrate Reductase in Relation to Local Dynamics Linked to H-Transfer in Reactions with NADH and NADPH Coenzymes. ACS Catal 2018; 8:11589-11599. [PMID: 31119061 PMCID: PMC6516726 DOI: 10.1021/acscatal.8b02810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/23/2018] [Indexed: 11/28/2022]
Abstract
![]()
Many enzymes that
catalyze hydride transfer reactions work via
a mechanism dominated by quantum mechanical tunneling. The involvement
of fast vibrational modes of the reactive complex is often inferred
in these reactions, as in the case of the NAD(P)H-dependent pentaerythritol
tetranitrate reductase (PETNR). Herein, we interrogated the H-transfer
mechanism in PETNR by designing conservative (L25I and I107L) and
side chain shortening (L25A and I107A) PETNR variants and using a
combination of experimental approaches (stopped-flow rapid kinetics,
X-ray crystallography, isotope/temperature dependence studies of H-transfer
and NMR spectroscopy). X-ray data show subtle changes in the local
environment of the targeted side chains but no major structural perturbation
caused by mutagenesis of these two second sphere active site residues.
However, temperature dependence studies of H-transfer revealed a coenzyme-specific
and complex thermodynamic equilibrium between different reactive configurations
in PETNR–coenzyme complexes. We find that mutagenesis of these
second sphere “noncatalytic” residues affects differently
the reactivity of PETNR with NADPH and NADH coenzymes. We attribute
this to subtle, dynamic structural changes in the PETNR active site,
the effects of which impact differently in the nonequivalent reactive
geometries of PETNR−NADH and PETNR−NADPH complexes.
This inference is confirmed through changes observed in the NMR chemical
shift data for PETNR complexes with unreactive 1,4,5,6-tetrahydro-NAD(P)
analogues. We show that H-transfer rates can (to some extent) be buffered
through entropy–enthalpy compensation, but that use of integrated
experimental tools reveals hidden complexities that implicate a role
for dynamics in this relatively simple H-transfer reaction. Similar
approaches are likely to be informative in other enzymes to understand
the relative importance of (distal) hydrophobic side chains and dynamics
in controlling the rates of enzymatic H-transfer.
Collapse
Affiliation(s)
- Andreea I. Iorgu
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Nicola J. Baxter
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Matthew J. Cliff
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Colin Levy
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Jonathan P. Waltho
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Sam Hay
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
7
|
Fordwour OB, Wolthers KR. Active site arginine controls the stereochemistry of hydride transfer in cyclohexanone monooxygenase. Arch Biochem Biophys 2018; 659:47-56. [PMID: 30287236 DOI: 10.1016/j.abb.2018.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 12/01/2022]
Abstract
Cyclohexanone monooxygenase (CHMO) uses NADPH and O2 to insert oxygen into an array of (a)cyclic ketones to form esters or lactones. Herein, the role of two conserved active site residues (R327 and D57) in controlling the binding mode of NADP(H) was investigated. Wild type CHMO elicits a kinetic isotope effect (KIE) of 4.7 ± 0.1 and 1.1 ± 0.1 with 4(R)-[4-2H]NADPH and 4(S)-[4-2H]NADPH, respectively, consistent with transfer of the proR hydrogen to FAD. Strikingly, the R327K variant appears to lack stereospecificity for hydride transfer as a KIE of 1.5 ± 0.1 and 2.5 ± 0.1 was observed for the proR and proS deuterated forms of NADPH. 1H NMR of the NADP+ products confirmed that the R327K variant abstracts either the proR or proS hydrogen from NADPH. While the D57A variant retained stereospecificity for the proR hydrogen, this substitution resulted in slow decomposition of the C4a-peroxyflavin intermediate in the presence of cyclohexanone. Based on published structures of a related flavin monooxygenase, we suggest that elimination of the hydrogen bond between D57 and R327 in the D57A variant causes R327 to adopt a substrate-induced conformation that slows substrate access to the active site, thereby prolonging the lifetime of the C4a-peroxyflavin intermediate.
Collapse
Affiliation(s)
- Osei Boakye Fordwour
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Kirsten R Wolthers
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
8
|
Iorgu AI, Baxter NJ, Cliff MJ, Waltho JP, Hay S, Scrutton NS. 1H, 15N and 13C backbone resonance assignments of pentaerythritol tetranitrate reductase from Enterobacter cloacae PB2. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:79-83. [PMID: 29168057 PMCID: PMC5869876 DOI: 10.1007/s12104-017-9791-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
Pentaerythritol tetranitrate reductase (PETNR) is a flavoenzyme possessing a broad substrate specificity and is a member of the Old Yellow Enzyme family of oxidoreductases. As well as having high potential as an industrial biocatalyst, PETNR is an excellent model system for studying hydrogen transfer reactions. Mechanistic studies performed with PETNR using stopped-flow methods have shown that tunneling contributes towards hydride transfer from the NAD(P)H coenzyme to the flavin mononucleotide (FMN) cofactor and fast protein dynamics have been inferred to facilitate this catalytic step. Herein, we report the near-complete 1H, 15N and 13C backbone resonance assignments of PETNR in a stoichiometric complex with the FMN cofactor in its native oxidized form, which were obtained using heteronuclear multidimensional NMR spectroscopy. A total of 97% of all backbone resonances were assigned, with 333 out of a possible 344 residues assigned in the 1H-15N TROSY spectrum. This is the first report of an NMR structural study of a flavoenzyme from the Old Yellow Enzyme family and it lays the foundation for future investigations of functional dynamics in hydride transfer catalytic mechanism.
Collapse
Affiliation(s)
- Andreea I Iorgu
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Nicola J Baxter
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Matthew J Cliff
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Jonathan P Waltho
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Sam Hay
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
9
|
Schreiner PR. Tunneling Control of Chemical Reactions: The Third Reactivity Paradigm. J Am Chem Soc 2017; 139:15276-15283. [DOI: 10.1021/jacs.7b06035] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Peter R. Schreiner
- Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
10
|
Pitsawong W, Haynes CA, Koder RL, Rodgers DW, Miller AF. Mechanism-Informed Refinement Reveals Altered Substrate-Binding Mode for Catalytically Competent Nitroreductase. Structure 2017; 25:978-987.e4. [PMID: 28578873 DOI: 10.1016/j.str.2017.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 04/02/2017] [Accepted: 05/05/2017] [Indexed: 01/25/2023]
Abstract
Nitroreductase (NR) from Enterobacter cloacae reduces diverse nitroaromatics including herbicides, explosives, and prodrugs, and holds promise for bioremediation, prodrug activation, and enzyme-assisted synthesis. We solved crystal structures of NR complexes with bound substrate or analog for each of its two half-reactions. We complemented these with kinetic isotope effect (KIE) measurements elucidating H-transfer steps essential to each half-reaction. KIEs indicate hydride transfer from NADH to the flavin consistent with our structure of NR with the NADH analog nicotinic acid adenine dinucleotide (NAAD). The KIE on reduction of p-nitrobenzoic acid (p-NBA) also indicates hydride transfer, and requires revision of prior computational mechanisms. Our mechanistic information provided a structural restraint for the orientation of bound substrate, placing the nitro group closer to the flavin N5 in the pocket that binds the amide of NADH. KIEs show that solvent provides a proton, enabling accommodation of different nitro group placements, consistent with the broad repertoire of NR.
Collapse
Affiliation(s)
- Warintra Pitsawong
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506-0055, USA
| | - Chad A Haynes
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, 741 South Limestone Street, Lexington, KY 40536-0509, USA
| | - Ronald L Koder
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506-0055, USA
| | - David W Rodgers
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, 741 South Limestone Street, Lexington, KY 40536-0509, USA.
| | - Anne-Frances Miller
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506-0055, USA; Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, 741 South Limestone Street, Lexington, KY 40536-0509, USA.
| |
Collapse
|
11
|
Old Yellow Enzyme-Catalysed Asymmetric Hydrogenation: Linking Family Roots with Improved Catalysis. Catalysts 2017. [DOI: 10.3390/catal7050130] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Luk LYP, Loveridge EJ, Allemann RK. Protein motions and dynamic effects in enzyme catalysis. Phys Chem Chem Phys 2016; 17:30817-27. [PMID: 25854702 DOI: 10.1039/c5cp00794a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The role of protein motions in promoting the chemical step of enzyme catalysed reactions remains a subject of considerable debate. Here, a unified view of the role of protein dynamics in dihydrofolate reductase catalysis is described. Recently the role of such motions has been investigated by characterising the biophysical properties of isotopically substituted enzymes through a combination of experimental and computational analyses. Together with previous work, these results suggest that dynamic coupling to the chemical coordinate is detrimental to catalysis and may have been selected against during DHFR evolution. The full catalytic power of Nature's catalysts appears to depend on finely tuning protein motions in each step of the catalytic cycle.
Collapse
Affiliation(s)
- Louis Y P Luk
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| | - E Joel Loveridge
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| | - Rudolf K Allemann
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
13
|
Knaus T, Paul CE, Levy CW, de Vries S, Mutti FG, Hollmann F, Scrutton NS. Better than Nature: Nicotinamide Biomimetics That Outperform Natural Coenzymes. J Am Chem Soc 2016; 138:1033-9. [PMID: 26727612 PMCID: PMC4731831 DOI: 10.1021/jacs.5b12252] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
![]()
The search for affordable, green
biocatalytic processes is a challenge
for chemicals manufacture. Redox biotransformations are potentially
attractive, but they rely on unstable and expensive nicotinamide coenzymes
that have prevented their widespread exploitation. Stoichiometric
use of natural coenzymes is not viable economically, and the instability
of these molecules hinders catalytic processes that employ coenzyme
recycling. Here, we investigate the efficiency of man-made synthetic
biomimetics of the natural coenzymes NAD(P)H in redox biocatalysis.
Extensive studies with a range of oxidoreductases belonging to the
“ene” reductase family show that these biomimetics are
excellent analogues of the natural coenzymes, revealed also in crystal
structures of the ene reductase XenA with selected biomimetics. In
selected cases, these biomimetics outperform the natural coenzymes.
“Better-than-Nature” biomimetics should find widespread
application in fine and specialty chemicals production by harnessing
the power of high stereo-, regio-, and chemoselective redox biocatalysts
and enabling reactions under mild conditions at low cost.
Collapse
Affiliation(s)
- Tanja Knaus
- BBSRC/EPSRC Centre for Synthetic Biology of Fine and Speciality Chemicals, Faculty of Life Sciences, Manchester Institute of Biotechnology , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology , Julianalaan 136, 2628BL Delft, The Netherlands
| | - Colin W Levy
- BBSRC/EPSRC Centre for Synthetic Biology of Fine and Speciality Chemicals, Faculty of Life Sciences, Manchester Institute of Biotechnology , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Simon de Vries
- Department of Biotechnology, Delft University of Technology , Julianalaan 136, 2628BL Delft, The Netherlands
| | - Francesco G Mutti
- BBSRC/EPSRC Centre for Synthetic Biology of Fine and Speciality Chemicals, Faculty of Life Sciences, Manchester Institute of Biotechnology , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology , Julianalaan 136, 2628BL Delft, The Netherlands
| | - Nigel S Scrutton
- BBSRC/EPSRC Centre for Synthetic Biology of Fine and Speciality Chemicals, Faculty of Life Sciences, Manchester Institute of Biotechnology , 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
14
|
Lonsdale R, Reetz MT. Reduction of α,β-Unsaturated Ketones by Old Yellow Enzymes: Mechanistic Insights from Quantum Mechanics/Molecular Mechanics Calculations. J Am Chem Soc 2015; 137:14733-42. [PMID: 26521678 DOI: 10.1021/jacs.5b08687] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Enoate reductases catalyze the reduction of activated C═C bonds with high enantioselectivity. The oxidative half-reaction, which involves the addition of a hydride and a proton to opposite faces of the C═C bond, has been studied for the first time by hybrid quantum mechanics/molecular mechanics (QM/MM). The reduction of 2-cyclohexen-1-one by YqjM from Bacillus subtilis was selected as the model system. Two-dimensional QM/MM (B3LYP-D/OPLS2005) reaction pathways suggest that the hydride and proton are added as distinct steps, with the former step preceding the latter. Furthermore, we present interesting insights into the reactivity of this enzyme, including the weak binding of the substrate in the active site, the role of the two active site histidine residues for polarization of the substrate C═O bond, structural details of the transition states to hydride and proton transfer, and the role of Tyr196 as proton donor. The information presented here will be useful for the future design of enantioselective YqjM mutants for other substrates.
Collapse
Affiliation(s)
- Richard Lonsdale
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.,Fachbereich Chemie der Philipps-Universität , Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Manfred T Reetz
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.,Fachbereich Chemie der Philipps-Universität , Hans-Meerwein-Strasse, 35032 Marburg, Germany
| |
Collapse
|
15
|
Johannissen LO, Hay S, Scrutton NS. Nuclear quantum tunnelling in enzymatic reactions – an enzymologist's perspective. Phys Chem Chem Phys 2015; 17:30775-82. [DOI: 10.1039/c5cp00614g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The roles of nuclear quantum tunnelling and dynamics in enzyme reactions are discussed in this perspective on H-transfer reactions.
Collapse
Affiliation(s)
- Linus O. Johannissen
- SYNBIOCHEM
- Manchester Institute of Biotechnology
- Faculty of Life Sciences
- The University of Manchester
- Manchester M1 7DN
| | - Sam Hay
- SYNBIOCHEM
- Manchester Institute of Biotechnology
- Faculty of Life Sciences
- The University of Manchester
- Manchester M1 7DN
| | - Nigel S. Scrutton
- SYNBIOCHEM
- Manchester Institute of Biotechnology
- Faculty of Life Sciences
- The University of Manchester
- Manchester M1 7DN
| |
Collapse
|
16
|
Practical aspects on the use of kinetic isotope effects as probes of flavoprotein enzyme mechanisms. Methods Mol Biol 2014; 1146:161-75. [PMID: 24764092 DOI: 10.1007/978-1-4939-0452-5_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The measurement of kinetic isotope effects (KIEs) has proved useful in many mechanistic studies of enzyme activity, most notably in enzyme-catalyzed hydrogen-transfer reactions. Primary KIEs (1° KIE) greater than unity indicate that transfer of the hydrogen species of interest is partially or fully rate limiting, and studies of the magnitude of the temperature and pressure dependence of these KIEs can inform on the mechanism of transfer. For example, KIE measurements have proved crucial in understanding the role of quantum mechanical tunneling in enzyme systems. The measurement of secondary KIEs (2° KIEs) is also informative and can be used to infer a significant tunneling contribution and details of transition state geometry. Here the deuterium label is introduced next to that of the transferred hydrogen. Measurements of 1° and 2° KIEs are being used increasingly in studies of H-transfer in flavoprotein enzymes and this requires the preparation of high purity and stereospecific labeled isotopologues. Strategies for the synthesis of labeled substrates are dependent on the enzyme system being studied. However, the nicotinamide coenzymes are often used in studies of flavoprotein enzyme mechanisms. Here, we provide practical details for the enzymatic synthesis of high purity deuterated isotopologues of the common biological coenzymes NADH and NADPH as well as the corresponding nonreactive mimics, tetrahydroNAD(P)H. Both forms of the coenzyme have proven useful in the study of mechanisms, particularly in relation to the involvement of quantum mechanical tunneling and dynamics in enzymatic H-transfer chemistry. The focus here is on practical considerations in the synthesis of these compounds. We also provide an abbreviated description of how measurements of KIEs can inform on flavoprotein mechanisms. The aim of this contribution is not to give a detailed description of the underlying theory (which has been reviewed extensively in the literature), but to provide a basic introduction and practical considerations for nonexpert readers who wish to incorporate such measurements in studies of enzyme mechanisms.
Collapse
|
17
|
Trakhtenberg LI. Tunneling transfer of atomic particles in chemical and biological reactions: The role of intermolecular vibrations and media reorganization. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2014. [DOI: 10.1134/s003602441411020x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Dynamics of the active site architecture in plant-type ferredoxin-NADP+ reductases catalytic complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1730-8. [DOI: 10.1016/j.bbabio.2014.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/05/2014] [Accepted: 06/11/2014] [Indexed: 12/24/2022]
|
19
|
Sánchez-Azqueta A, Herguedas B, Hurtado-Guerrero R, Hervás M, Navarro JA, Martínez-Júlvez M, Medina M. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP+ reductase modulates its catalytic efficiency. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:251-63. [DOI: 10.1016/j.bbabio.2013.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/13/2013] [Accepted: 10/23/2013] [Indexed: 10/26/2022]
|
20
|
Experimental and theoretical studies of enzyme-catalyzed hydrogen-transfer reactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012. [PMID: 22607755 DOI: 10.1016/b978-0-12-398312-1.00006-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The mechanisms of enzyme-catalyzed reactions are medicinally important and present a fascinating intellectual challenge. Many experimental and theoretical techniques can shed light on these mechanisms, and here, we shall focus on the utility of kinetic isotope effects (KIEs) to study enzymatic reactions that involve hydrogen transfers. We will provide a short background on the prevailing models to interpret KIEs and then present more detailed reviews of two model enzymes: alcohol dehydrogenase and thymidylate synthase. These two examples provide a context to describe the types of experiments and theoretical calculations that drive this field forward and the kind of information each can furnish. We emphasize the importance of cooperation between experimentalists and theoreticians to continue the progress toward a comprehensive theory of enzyme catalysis.
Collapse
|
21
|
Verkhovskaya M, Bloch DA. Energy-converting respiratory Complex I: on the way to the molecular mechanism of the proton pump. Int J Biochem Cell Biol 2012; 45:491-511. [PMID: 22982742 DOI: 10.1016/j.biocel.2012.08.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 12/16/2022]
Abstract
In respiring organisms the major energy transduction flux employs the transmembrane electrochemical proton gradient as a physical link between exergonic redox reactions and endergonic ADP phosphorylation. Establishing the gradient involves electrogenic, transmembrane H(+) translocation by the membrane-embedded respiratory complexes. Among others, Complex I (NADH:ubiquinone oxidoreductase) is the most structurally complex and functionally enigmatic respiratory enzyme; its molecular mechanism is as yet unknown. Here we highlight recent progress and discuss the catalytic events during Complex I turnover in relation to their role in energy conversion and to the enzyme structure.
Collapse
Affiliation(s)
- Marina Verkhovskaya
- Helsinki Bioenergetics Group, Institute of Biotechnology, PO Box 65 (Viikinkaari 1) FIN-00014 University of Helsinki, Finland.
| | | |
Collapse
|
22
|
Trakhtenberg LI, Nadtochenko VA. Tunneling proton transfer in biological systems. Role of temperature and pressure. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2012. [DOI: 10.1134/s0036024412090142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Hay S, Johannissen LO, Hothi P, Sutcliffe MJ, Scrutton NS. Pressure Effects on Enzyme-Catalyzed Quantum Tunneling Events Arise from Protein-Specific Structural and Dynamic Changes. J Am Chem Soc 2012; 134:9749-54. [DOI: 10.1021/ja3024115] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sam Hay
- Manchester
Interdisciplinary Biocentre, ‡Faculty of Life Sciences, and §School of Chemical Engineering and
Analytical Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Linus O. Johannissen
- Manchester
Interdisciplinary Biocentre, ‡Faculty of Life Sciences, and §School of Chemical Engineering and
Analytical Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Parvinder Hothi
- Manchester
Interdisciplinary Biocentre, ‡Faculty of Life Sciences, and §School of Chemical Engineering and
Analytical Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Michael J. Sutcliffe
- Manchester
Interdisciplinary Biocentre, ‡Faculty of Life Sciences, and §School of Chemical Engineering and
Analytical Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Nigel S. Scrutton
- Manchester
Interdisciplinary Biocentre, ‡Faculty of Life Sciences, and §School of Chemical Engineering and
Analytical Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
24
|
Ley D, Gerbig D, Schreiner PR. Tunnelling control of chemical reactions – the organic chemist's perspective. Org Biomol Chem 2012; 10:3781-90. [DOI: 10.1039/c2ob07170c] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
MINCER JOSHUAS, NUÑEZ SARA, SCHWARTZ STEVEND. COUPLING PROTEIN DYNAMICS TO REACTION CENTER ELECTRON DENSITY IN ENZYMES: AN ELECTRONIC PROTEIN PROMOTING VIBRATION IN HUMAN PURINE NUCLEOSIDE PHOSPHORYLASE. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633604001215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The notable three oxygen stacking that occurs upon binding of ribonucleoside substrate and phosphate nucleophile by human purine nucleoside phosphorylase (hPNP) enables the coupling of protein dynamic modes to compress this stack, squeezing the ribosyl O4' between ribosyl O5' and the nuclophilic O P . Created primarily by the motion of active site residue H257, this compression dynamically lowers the barrier height for N9–C1' ribosidic bond cleavage by as much as 20%. As such, this compression constitutes a protein promoting vibration (PPV) (S. Nuñez et al.). Presently, we demonstrate charge fluctuations in the ribose and purine components of the ribonucleoside substrate, as well as specifically across the N9–C1' ribosidic bond, that are correlated with the PPV and can explain the decrease in reaction barrier height due to their facilitating cleavage of the ribosidic bond. hPNP apparently employs protein dynamics to push electrons, a finding that suggests that this coupling may be found more generally in enzymes that catalyze substitution and elimination reactions.
Collapse
Affiliation(s)
- JOSHUA S. MINCER
- Department of Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - SARA NUÑEZ
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - STEVEN D. SCHWARTZ
- Department of Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| |
Collapse
|
26
|
Brala CJ, Pilepić V, Sajenko I, Karković A, Uršić S. Ions Can Move a Proton-Coupled Electron-Transfer Reaction into Tunneling Regime. Helv Chim Acta 2011. [DOI: 10.1002/hlca.201100035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Loveridge EJ, Allemann RK. Effect of pH on hydride transfer by Escherichia coli dihydrofolate reductase. Chembiochem 2011; 12:1258-62. [PMID: 21506230 DOI: 10.1002/cbic.201000794] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Indexed: 11/07/2022]
Abstract
The kinetic isotope effect (KIE) on hydride transfer in the reaction catalysed by dihydrofolate reductase from Escherichia coli (EcDHFR) is known to be temperature dependent at pH 7, but essentially independent of temperature at elevated pH. Here, we show that the transition from the temperature-dependent regime to the temperature-independent regime occurs sharply between pH 7.5 and 8. The activation energy for hydride transfer is independent of pH. The mechanism leading to the change in behaviour of the KIEs is not clear, but probably involves a conformational change in the enzyme brought about by deprotonation of a key residue (or residues) at high pH. The KIE on hydride transfer at low pH suggests that the rate constant for the reaction is not limited by a conformational change to the enzyme under these conditions. The effect of pH on the temperature dependence of the rate constants and KIEs for hydride transfer catalysed by EcDHFR suggests that enzyme motions and conformational changes do not directly influence the chemistry, but that the reaction conditions affect the conformational ensemble of the enzyme prior to reaction and control the reaction though this route.
Collapse
Affiliation(s)
- E Joel Loveridge
- School of Chemistry, Cardiff University, Park Place, Cardiff, UK
| | | |
Collapse
|
28
|
Johannissen LO, Scrutton NS, Sutcliffe MJ. How Does Pressure Affect Barrier Compression and Isotope Effects in an Enzymatic Hydrogen Tunneling Reaction? Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Johannissen LO, Scrutton NS, Sutcliffe MJ. How does pressure affect barrier compression and isotope effects in an enzymatic hydrogen tunneling reaction? Angew Chem Int Ed Engl 2011; 50:2129-32. [PMID: 21344567 DOI: 10.1002/anie.201006668] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Indexed: 11/05/2022]
Affiliation(s)
- Linus O Johannissen
- School of Chemical Engineering and Analytical Science, Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester M1 7DN, UK.
| | | | | |
Collapse
|
30
|
McGeagh JD, Ranaghan KE, Mulholland AJ. Protein dynamics and enzyme catalysis: insights from simulations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:1077-92. [PMID: 21167324 DOI: 10.1016/j.bbapap.2010.12.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 11/25/2010] [Accepted: 12/03/2010] [Indexed: 10/18/2022]
Abstract
The role of protein dynamics in enzyme catalysis is one of the most active and controversial areas in enzymology today. Some researchers claim that protein dynamics are at the heart of enzyme catalytic efficiency, while others state that dynamics make no significant contribution to catalysis. What is the biochemist - or student - to make of the ferocious arguments in this area? Protein dynamics are complex and fascinating, as molecular dynamics simulations and experiments have shown. The essential question is: do these complex motions have functional significance? In particular, how do they affect or relate to chemical reactions within enzymes, and how are chemical and conformational changes coupled together? Biomolecular simulations can analyse enzyme reactions and dynamics in atomic detail, beyond that achievable in experiments: accurate atomistic modelling has an essential part to play in clarifying these issues. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- John D McGeagh
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS, United Kingdom
| | | | | |
Collapse
|
31
|
Wang Z, Kohen A. Thymidylate synthase catalyzed H-transfers: two chapters in one tale. J Am Chem Soc 2010; 132:9820-5. [PMID: 20575541 DOI: 10.1021/ja103010b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Examination of the nature of different bond activations along the same catalytic path is of general interest in chemistry and biology. In this report, we compare the physical nature of two sequential H-transfers in the same enzymatic reaction. Thymidylate synthase (TSase) catalyzes a complex reaction that involves many chemical transformations including two different C-H bond cleavages, a rate-limiting C-H-C hydride transfer and a non-rate-limiting C-H-O proton transfer. Although the large kinetic complexity imposes difficulties in studying the proton transfer catalyzed by TSase, we are able to experimentally extract the intrinsic kinetic isotope effects (KIEs) on both steps. In contrast with the hydride transfer, the intrinsic KIEs of the proton transfer are temperature dependent. The results are interpreted within the framework of the Marcus-like model. This interpretation suggests that TSase optimizes the donor-acceptor geometries for the slower and overall rate-limiting hydride transfer but not for the faster proton transfer.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
32
|
Xu Q, Eguchi T, Mathews II, Rife CL, Chiu HJ, Farr CL, Feuerhelm J, Jaroszewski L, Klock HE, Knuth MW, Miller MD, Weekes D, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Wilson IA. Insights into substrate specificity of geranylgeranyl reductases revealed by the structure of digeranylgeranylglycerophospholipid reductase, an essential enzyme in the biosynthesis of archaeal membrane lipids. J Mol Biol 2010; 404:403-17. [PMID: 20869368 DOI: 10.1016/j.jmb.2010.09.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/24/2010] [Accepted: 09/15/2010] [Indexed: 11/20/2022]
Abstract
Archaeal membrane lipids consist of branched, saturated hydrocarbons distinct from those found in bacteria and eukaryotes. Digeranylgeranylglycerophospholipid reductase (DGGR) catalyzes the hydrogenation process that converts unsaturated 2,3-di-O-geranylgeranylglyceryl phosphate to saturated 2,3-di-O-phytanylglyceryl phosphate as a critical step in the biosynthesis of archaeal membrane lipids. The saturation of hydrocarbon chains confers the ability to resist hydrolysis and oxidation and helps archaea withstand extreme conditions. DGGR is a member of the geranylgeranyl reductase family that is also widely distributed in bacteria and plants, where the family members are involved in the biosynthesis of photosynthetic pigments. We have determined the crystal structure of DGGR from the thermophilic heterotrophic archaea Thermoplasma acidophilum at 1.6 Å resolution, in complex with flavin adenine dinucleotide (FAD) and a bacterial lipid. The DGGR structure can be assigned to the well-studied, p-hydroxybenzoate hydroxylase (PHBH) SCOP superfamily of flavoproteins that include many aromatic hydroxylases and other enzymes with diverse functions. In the DGGR complex, FAD adopts the IN conformation (closed) previously observed in other PHBH flavoproteins. DGGR contains a large substrate-binding site that extends across the entire ligand-binding domain. Electron density corresponding to a bacterial lipid was found within this cavity. The cavity consists of a large opening that tapers down to two, narrow, curved tunnels that closely mimic the shape of the preferred substrate. We identified a sequence motif, PxxYxWxFP, that defines a specificity pocket in the enzyme and precisely aligns the double bond of the geranyl group with respect to the FAD cofactor, thus providing a structural basis for the substrate specificity of geranylgeranyl reductases. DGGR is likely to share a common mechanism with other PHBH enzymes in which FAD switches between two conformations that correspond to the reductive and oxidative half cycles. The structure provides evidence that substrate binding likely involves conformational changes, which are coupled to the two conformational states of the FAD.
Collapse
Affiliation(s)
- Qingping Xu
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pudney CR, Johannissen LO, Sutcliffe MJ, Hay S, Scrutton NS. Direct Analysis of Donor−Acceptor Distance and Relationship to Isotope Effects and the Force Constant for Barrier Compression in Enzymatic H-Tunneling Reactions. J Am Chem Soc 2010; 132:11329-35. [DOI: 10.1021/ja1048048] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Christopher R. Pudney
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, and School of Chemical Engineering and Analytical Science, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Linus O. Johannissen
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, and School of Chemical Engineering and Analytical Science, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Michael J. Sutcliffe
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, and School of Chemical Engineering and Analytical Science, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Sam Hay
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, and School of Chemical Engineering and Analytical Science, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, and School of Chemical Engineering and Analytical Science, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
34
|
Toogood H, Gardiner J, Scrutton N. Biocatalytic Reductions and Chemical Versatility of the Old Yellow Enzyme Family of Flavoprotein Oxidoreductases. ChemCatChem 2010. [DOI: 10.1002/cctc.201000094] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Peregrina JR, Sánchez-Azqueta A, Herguedas B, Martínez-Júlvez M, Medina M. Role of specific residues in coenzyme binding, charge-transfer complex formation, and catalysis in Anabaena ferredoxin NADP+-reductase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1638-46. [PMID: 20471952 DOI: 10.1016/j.bbabio.2010.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/04/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
Two transient charge-transfer complexes (CTC) form prior and upon hydride transfer (HT) in the reversible reaction of the FAD-dependent ferredoxin-NADP+ reductase (FNR) with NADP+/H, FNR(ox)-NADPH (CTC-1), and FNR(rd)-NADP+ (CTC-2). Spectral properties of both CTCs, as well as the corresponding interconversion HT rates, are here reported for several Anabaena FNR site-directed mutants. The need for an adequate initial interaction between the 2'P-AMP portion of NADP+/H and FNR that provides subsequent conformational changes leading to CTC formation is further confirmed. Stronger interactions between the isoalloxazine and nicotinamide rings might relate with faster HT processes, but exceptions are found upon distortion of the active centre. Thus, within the analyzed FNR variants, there is no strict correlation between the stability of the transient CTCs formation and the rate of the subsequent HT. Kinetic isotope effects suggest that, while in the WT, vibrational enhanced modulation of the active site contributes to the tunnel probability of HT; complexes of some of the active site mutants with the coenzyme hardly allow the relative movement of isoalloxazine and nicotinamide rings along the HT reaction. The architecture of the WT FNR active site precisely contributes to reduce the stacking probability between the isoalloxazine and nicotinamide rings in the catalytically competent complex, modulating the angle and distance between the N5 of the FAD isoalloxazine and the C4 of the coenzyme nicotinamide to values that ensure efficient HT processes.
Collapse
Affiliation(s)
- José Ramón Peregrina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, and Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, E-50009 Zaragoza, Spain
| | | | | | | | | |
Collapse
|
36
|
Ouchi A, Nagaoka SI, Mukai K. Tunneling Effect in Regeneration Reaction of Vitamin E by Ubiquinol. J Phys Chem B 2010; 114:6601-7. [DOI: 10.1021/jp910856m] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Aya Ouchi
- Department of Chemistry, Faculty of Science, Ehime University, Matsuyama 790-8577, Japan
| | - Shin-ichi Nagaoka
- Department of Chemistry, Faculty of Science, Ehime University, Matsuyama 790-8577, Japan
| | - Kazuo Mukai
- Department of Chemistry, Faculty of Science, Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
37
|
Hay S, Johannissen LO, Sutcliffe MJ, Scrutton NS. Barrier compression and its contribution to both classical and quantum mechanical aspects of enzyme catalysis. Biophys J 2010; 98:121-8. [PMID: 20085724 DOI: 10.1016/j.bpj.2009.09.045] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 09/23/2009] [Accepted: 09/24/2009] [Indexed: 12/01/2022] Open
Abstract
It is generally accepted that enzymes catalyze reactions by lowering the apparent activation energy by transition state stabilization or through destabilization of ground states. A more controversial proposal is that enzymes can also accelerate reactions through barrier compression-an idea that has emerged from studies of H-tunneling reactions in enzyme systems. The effects of barrier compression on classical (over-the-barrier) reactions, and the partitioning between tunneling and classical reaction paths, have largely been ignored. We performed theoretical and computational studies on the effects of barrier compression on the shape of potential energy surfaces/reaction barriers for model (malonaldehyde and methane/methyl radical anion) and enzymatic (aromatic amine dehydrogenase) proton transfer systems. In all cases, we find that barrier compression is associated with an approximately linear decrease in the activation energy. For partially nonadiabatic proton transfers, we show that barrier compression enhances, to similar extents, the rate of classical and proton tunneling reactions. Our analysis suggests that barrier compression-through fast promoting vibrations, or other means-could be a general mechanism for enhancing the rate of not only tunneling, but also classical, proton transfers in enzyme catalysis.
Collapse
Affiliation(s)
- Sam Hay
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, United Kingdom
| | | | | | | |
Collapse
|
38
|
Hay S, Pudney CR, Sutcliffe MJ, Scrutton NS. Probing active site geometry using high pressure and secondary isotope effects in an enzyme-catalysed 'deep' H-tunnelling reaction. J PHYS ORG CHEM 2010; 23:696-701. [PMID: 20890464 DOI: 10.1002/poc.1653] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We report the first study of the effects of hydrostatic pressure on α-2° KIEs for an enzyme-catalysed H-transfer reaction that occurs by 'deep' tunnelling. High pressure causes a significant decrease in the observed α-2° KIE on the pre-steady-state hydride transfer from NADH to FMN in the flavoprotein morphinone reductase. We have recently shown that high pressure causes a reduction in macroscopic reaction barrier width for this reaction. Using DFT vibrational analysis of a simple active site model, we posit that the decrease in α-2° KIE with pressure may arise due to a decrease in the vibrational coupling between the NADH primary (transferred) and secondary hydrogens in the 'tunnelling ready configuration', which more closely resembles the reactant state than the transition state.
Collapse
Affiliation(s)
- Sam Hay
- Manchester Interdisciplinary Biocentre and Faculty of Life Science, University of Manchester, 131 Princess Street, Manchester M1 7ND, UK
| | | | | | | |
Collapse
|
39
|
Computer simulations of quantum tunnelling in enzyme-catalysed hydrogen transfer reactions. Interdiscip Sci 2010; 2:78-97. [DOI: 10.1007/s12539-010-0093-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/04/2009] [Accepted: 12/06/2009] [Indexed: 10/19/2022]
|
40
|
Pudney CR, Hay S, Levy C, Pang J, Sutcliffe MJ, Leys D, Scrutton NS. Evidence to support the hypothesis that promoting vibrations enhance the rate of an enzyme catalyzed H-tunneling reaction. J Am Chem Soc 2010; 131:17072-3. [PMID: 19891489 DOI: 10.1021/ja908469m] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In recent years there has been a shift away from transition state theory models for H-transfer reactions. Models that incorporate tunneling as the mechanism of H-transfer are now recognized as a better description of such reactions. Central to many models of H-tunneling is the notion that specific vibrational modes of the protein and/or substrate can increase the probability of a H-tunneling reaction, modes that are termed promoting vibrations. Thus far there has been limited evidence that promoting vibrations can increase the rate of H-transfer. In the present communication we examine the single hydride transfer from both NADPH and NADH to FMN in the reductive half-reaction of pentaerythritol tetranitrate reductase (PETNR). We find that there is a significant promoting vibration with NADPH but not with NADH and that the observed rate of hydride transfer is significantly (approximately 15x) faster with NADPH. We rule out differences in rate due to variation in driving force and the donor-acceptor distance, suggesting it is the promoting vibration with NADPH that is the origin of the increased observed rate. This study therefore provides direct evidence that promoting vibrations can lead to an increase in rate.
Collapse
Affiliation(s)
- Christopher R Pudney
- Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Hay S, Pudney CR, Hothi P, Scrutton NS. Correction of pre-steady-state KIEs for isotopic impurities and the consequences of kinetic isotope fractionation. J Phys Chem A 2009; 112:13109-15. [PMID: 18847184 DOI: 10.1021/jp805107n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We show, both experimentally and by kinetic modeling, that enzymatic single-turnover (pre-steady-state) H-transfer reactions can be significantly complicated by kinetic isotope fractionation. This fractionation results in the formation of more protiated than deuterated product and is a unique problem for pre-steady-state reactions. When observed rate constants are measured using rapid-mixing (e.g., stopped flow) methodologies, kinetic isotope fractionation can lead to a large underestimation of both the magnitude and temperature dependence of kinetic isotope effects (KIEs). This fractionation is related to the isotopic purity of the substrates used and highlights a major problem with experimental studies which measure KIEs with substrates that are not isotopically pure. As it is not always possible to prepare isotopically pure substrates, we describe two general methods for the correction, for known isotope impurities, of KIEs calculated from pre-steady-state measurements.
Collapse
Affiliation(s)
- Sam Hay
- Manchester Interdisciplinary Biocentre and Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | | | | | | |
Collapse
|
42
|
Hay S, Evans RM, Levy C, Loveridge EJ, Wang X, Leys D, Allemann RK, Scrutton NS. Are the Catalytic Properties of Enzymes from Piezophilic Organisms Pressure Adapted? Chembiochem 2009; 10:2348-53. [DOI: 10.1002/cbic.200900367] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Quaye O, Gadda G. Effect of a conservative mutation of an active site residue involved in substrate binding on the hydride tunneling reaction catalyzed by choline oxidase. Arch Biochem Biophys 2009; 489:10-4. [DOI: 10.1016/j.abb.2009.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 07/30/2009] [Accepted: 07/30/2009] [Indexed: 11/29/2022]
|
44
|
Hay S, Pudney CR, Scrutton NS. Structural and mechanistic aspects of flavoproteins: probes of hydrogen tunnelling. FEBS J 2009; 276:3930-41. [DOI: 10.1111/j.1742-4658.2009.07121.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Pudney CR, Hay S, Scrutton NS. Bipartite recognition and conformational sampling mechanisms for hydride transfer from nicotinamide coenzyme to FMN in pentaerythritol tetranitrate reductase. FEBS J 2009; 276:4780-9. [PMID: 19664062 DOI: 10.1111/j.1742-4658.2009.07179.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Elucidating the origin of substrate and coenzyme specificity has been the focus of much work relating to enzyme engineering. Many enzymes exhibit tight specificity for particular substrates despite a close structural relationship to other nonreactive compounds. This tight specificity is especially remarkable and important biologically for the coenzymes NADH and NADPH. In the present study, we examined the preference of pentaerythritol tetranitrate reductase, an 'old yellow enzyme' family member, for the coenzymes NADPH over NADH. Using structural and mutagenesis studies, we have previously established that the coenzyme nicotinamide group is the key binding determinant in old yellow enzymes [Khan H et al. (2005) FEBS J 272, 4660-4671]. We have now performed detailed transient-state studies using NAD(P)H and the nonreactive analogues 1,4,5,6-tetrahydroNAD(P)H [NAD(P)H4], leading us to uncover an additional binding step in the reductive half-reaction of pentaerythritol tetranitrate reductase. We suggest that this initial binding step may primarily reflect binding of the adenine ribophosphate portion of the coenzyme, and that the second step reflects a rearrangement of the nicotinamide. Bipartite recognition, in which the adenine ribophosphate moiety localizes the coenzyme in the active site region, enables subsequent and localized searches of configurational space by the nicotinamide moiety to form the catalytically relevant charge-transfer complex. We suggest that this localized search contributes to catalytic efficiency via the principle of 'reduction in dimensionality'.
Collapse
Affiliation(s)
- Christopher R Pudney
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, UK
| | | | | |
Collapse
|
46
|
Pudney CR, McGrory T, Lafite P, Pang J, Hay S, Leys D, Sutcliffe MJ, Scrutton NS. Parallel pathways and free-energy landscapes for enzymatic hydride transfer probed by hydrostatic pressure. Chembiochem 2009; 10:1379-84. [PMID: 19405065 DOI: 10.1002/cbic.200900071] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mutation of an active-site residue in morphinone reductase leads to a conformationally rich landscape that enhances the rate of hydride transfer from NADH to FMN at standard pressure (1 bar). Increasing the pressure causes interconversion between different conformational substates in the mutant enzyme. While high pressure reduces the donor-acceptor distance in the wild-type enzyme, increased conformational freedom "dampens" its effect in the mutant.We show that hydride transfer from NADH to FMN catalysed by the N189A mutant of morphinone reductase occurs along parallel "chemical" pathways in a conformationally rich free-energy landscape. We have developed experimental kinetic and spectroscopic tools by using hydrostatic pressure to explore this free-energy landscape. The crystal structure of the N189A mutant enzyme in complex with the unreactive coenzyme analogue NADH(4) indicates that the nicotinamide moiety of the analogue is conformationally less restrained than the corresponding structure of the wild-type NADH(4) complex. This increased degree of conformational freedom in the N189A enzyme gives rise to the concept of multiple reactive configurations (MRCs), and we show that the relative population of these states across the free-energy landscape can be perturbed experimentally as a function of pressure. Specifically, the amplitudes of individual kinetic phases that were observed in stopped-flow studies of the hydride transfer reaction are sensitive to pressure; this indicates that pressure drives an altered distribution across the energy landscape. We show by absorbance spectroscopy that the loss of charge-transfer character of the enzyme-coenzyme complex is attributed to the altered population of MRCs on the landscape. The existence of a conformationally rich landscape in the N189A mutant is supported by molecular dynamics simulations at low and high pressure. The work provides firm experimental and computational support for the existence of parallel pathways arising from multiple conformational states of the enzyme-coenzyme complex. Hydrostatic pressure is a powerful and general probe of multidimensional energy landscapes that can be used to analyse experimentally parallel pathways for enzyme-catalysed reactions. We suggest that this is especially the case following directed mutation of a protein, which can lead to increased population of reactant states that are essentially inaccessible in the free-energy landscape of wild-type enzyme.
Collapse
Affiliation(s)
- Christopher R Pudney
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Stojković V, Kohen A. Enzymatic H Transfers: Quantum Tunneling and Coupled Motion from Kinetic Isotope Effect Studies. Isr J Chem 2009. [DOI: 10.1560/ijc.49.2.163] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Loveridge EJ, Rodriguez RJ, Swanwick RS, Allemann RK. Effect of Dimerization on the Stability and Catalytic Activity of Dihydrofolate Reductase from the Hyperthermophile Thermotoga maritima. Biochemistry 2009; 48:5922-33. [DOI: 10.1021/bi900411a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- E. Joel Loveridge
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Robert J. Rodriguez
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Richard S. Swanwick
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Rudolf K. Allemann
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
49
|
Quaye O, Cowins S, Gadda G. Contribution of flavin covalent linkage with histidine 99 to the reaction catalyzed by choline oxidase. J Biol Chem 2009; 284:16990-16997. [PMID: 19398559 DOI: 10.1074/jbc.m109.003715] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The FAD-dependent choline oxidase has a flavin cofactor covalently attached to the protein via histidine 99 through an 8alpha-N(3)-histidyl linkage. The enzyme catalyzes the four-electron oxidation of choline to glycine betaine, forming betaine aldehyde as an enzyme-bound intermediate. The variant form of choline oxidase in which the histidine residue has been replaced with asparagine was used to investigate the contribution of the 8alpha-N(3)-histidyl linkage of FAD to the protein toward the reaction catalyzed by the enzyme. Decreases of 10-fold and 30-fold in the k(cat)/K(m) and k(cat) values were observed as compared with wild-type choline oxidase at pH 10 and 25 degrees C, with no significant effect on k(cat)/K(O) using choline as substrate. Both the k(cat)/K(m) and k(cat) values increased with increasing pH to limiting values at high pH consistent with the participation of an unprotonated group in the reductive half-reaction and the overall turnover of the enzyme. The pH independence of both (D)(k(cat)/K(m)) and (D)k(cat), with average values of 9.2 +/- 3.3 and 7.4 +/- 0.5, respectively, is consistent with absence of external forward and reverse commitments to catalysis, and the chemical step of CH bond cleavage being rate-limiting for both the reductive half-reaction and the overall enzyme turnover. The temperature dependence of the (D)k(red) values suggests disruption of the preorganization in the asparagine variant enzyme. Altogether, the data presented in this study are consistent with the FAD-histidyl covalent linkage being important for the optimal positioning of the hydride ion donor and acceptor in the tunneling reaction catalyzed by choline oxidase.
Collapse
Affiliation(s)
- Osbourne Quaye
- From the Departments of Chemistry, Atlanta, Georgia 30302-4098
| | - Sharonda Cowins
- From the Departments of Chemistry, Atlanta, Georgia 30302-4098; Department of Chemistry, Albany State University, Albany, Georgia 31705
| | - Giovanni Gadda
- From the Departments of Chemistry, Atlanta, Georgia 30302-4098; Biology, Atlanta, Georgia 30302-4098; The Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098.
| |
Collapse
|
50
|
Hay S, Sutcliffe MJ, Scrutton NS. Probing Coupled Motions in Enzymatic Hydrogen Tunnelling Reactions: Beyond Temperature-Dependence Studies of Kinetic Isotope Effects. QUANTUM TUNNELLING IN ENZYME-CATALYSED REACTIONS 2009. [DOI: 10.1039/9781847559975-00199] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Sam Hay
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Michael J. Sutcliffe
- School of Chemical Engineering and Analytical Science, Manchester Interdisciplinary Biocentre, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Nigel S. Scrutton
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|