1
|
Barker E, Milburn AE, Helassa N, Hammond DE, Sanchez-Soriano N, Morgan A, Barclay JW. Proximity labelling reveals effects of disease-causing mutation on the DNAJC5/cysteine string protein α interactome. Biochem J 2024; 481:BCJ20230319. [PMID: 38193346 PMCID: PMC10903463 DOI: 10.1042/bcj20230319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/10/2024]
Abstract
Cysteine string protein α (CSPα), also known as DNAJC5, is a member of the DnaJ/Hsp40 family of co-chaperones. The name derives from a cysteine-rich domain, palmitoylation of which enables localization to intracellular membranes, notably neuronal synaptic vesicles. Mutations in the DNAJC5 gene that encodes CSPα cause autosomal dominant, adult-onset neuronal ceroid lipofuscinosis (ANCL), a rare neurodegenerative disease. As null mutations in CSP-encoding genes in flies, worms and mice similarly result in neurodegeneration, CSP is evidently an evolutionarily conserved neuroprotective protein. However, the client proteins that CSP chaperones to prevent neurodegeneration remain unclear. Traditional methods for identifying protein-protein interactions such as yeast 2-hybrid and affinity purification approaches are poorly suited to CSP, due to its requirement for membrane anchoring and its tendency to aggregate after cell lysis. Therefore, we employed proximity labelling, which enables identification of interacting proteins in situ in living cells via biotinylation. Neuroendocrine PC12 cell lines stably expressing wild type or L115R ANCL mutant CSP constructs fused to miniTurbo were generated; then the biotinylated proteomes were analysed by liquid chromatographymass spectrometry (LCMS) and validated by western blotting. This confirmed several known CSP-interacting proteins, such as Hsc70 and SNAP-25, but also revealed novel binding proteins, including STXBP1/Munc18-1. Interestingly, some protein interactions (such as Hsc70) were unaffected by the L115R mutation, whereas others (including SNAP-25 and STXBP1/Munc18-1) were inhibited. These results define the CSP interactome in a neuronal model cell line and reveal interactions that are affected by ANCL mutation and hence may contribute to the neurodegeneration seen in patients.
Collapse
Affiliation(s)
- Eleanor Barker
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Amy E. Milburn
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Nordine Helassa
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Dean E. Hammond
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Natalia Sanchez-Soriano
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Alan Morgan
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Jeff W. Barclay
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| |
Collapse
|
2
|
Lee J, Xu Y, Saidi L, Xu M, Zinsmaier K, Ye Y. Abnormal triaging of misfolded proteins by adult neuronal ceroid lipofuscinosis-associated DNAJC5/CSPα mutants causes lipofuscin accumulation. Autophagy 2023; 19:204-223. [PMID: 35506243 PMCID: PMC9809949 DOI: 10.1080/15548627.2022.2065618] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 01/09/2023] Open
Abstract
Mutations in DNAJC5/CSPα are associated with adult neuronal ceroid lipofuscinosis (ANCL), a dominant-inherited neurodegenerative disease featuring lysosome-derived autofluorescent storage materials (AFSMs) termed lipofuscin. Functionally, DNAJC5 has been implicated in chaperoning synaptic proteins and in misfolding-associated protein secretion (MAPS), but how DNAJC5 dysfunction causes lipofuscinosis and neurodegeneration is unclear. Here we report two functionally distinct but coupled chaperoning activities of DNAJC5, which jointly regulate lysosomal homeostasis: While endolysosome-associated DNAJC5 promotes ESCRT-dependent microautophagy, a fraction of perinuclear and non-lysosomal DNAJC5 mediates MAPS. Functional proteomics identifies a previously unknown DNAJC5 interactor SLC3A2/CD98hc that is essential for the perinuclear DNAJC5 localization and MAPS but dispensable for microautophagy. Importantly, uncoupling these two processes, as seen in cells lacking SLC3A2 or expressing ANCL-associated DNAJC5 mutants, generates DNAJC5-containing AFSMs resembling NCL patient-derived lipofuscin and induces neurodegeneration in a Drosophila ANCL model. These findings suggest that MAPS safeguards microautophagy to avoid DNAJC5-associated lipofuscinosis and neurodegeneration.Abbreviations: 3-MA: 3-methyladenine; ACTB: actin beta; AFSM: autofluorescent storage materials; ANCL: adult neuronal ceroid lipofuscinosis; Baf. A1: bafilomycin A1; CLN: ceroid lipofuscinosis neuronal; CLU: clusterin; CS: cysteine string domain of DNAJC5/CSPα; CUPS: compartment for unconventional protein secretion; DN: dominant negative; DNAJC5/CSPα: DnaJ heat shock protein family (Hsp40) member C5; eMI: endosomal microautophagy; ESCRT: endosomal sorting complex required for transport; GFP: green fluorescent protein; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; INCL: infant neuronal ceroid lipofuscinosis; JNCL: juvenile neuronal ceroid lipofuscinosis; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LAPTM4B: lysosomal protein transmembrane 4 beta; LN: linker domain of DNAJC5/CSPα; MAPS: misfolding-associated protein secretion; mCh/Ch: mCherry; mCi/Ci: mCitrine; MTOR: mechanistic target of rapamycin kinase; NCL: neuronal ceroid lipofuscinosis; PPT1: palmitoyl-protein thioesterase 1; PQC: protein quality control; SBP: streptavidin binding protein; SGT: small glutamine-rich tetratricopeptide repeat; shRNA: short hairpin RNA; SLC3A2/CD98hc: solute carrier family 3 member 2; SNCA/α-synuclein: synuclein alpha; TMED10: transmembrane p24 trafficking protein 10; UV: ultraviolet; VPS4: vacuolar protein sorting 4 homolog; WT: wild type.
Collapse
Affiliation(s)
- Juhyung Lee
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yue Xu
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Layla Saidi
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Konrad Zinsmaier
- Departments of Neuroscience and Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Pink D, Donnelier J, Lewis JD, Braun JEA. Cysteine String Protein Controls Two Routes of Export for Misfolded Huntingtin. Front Neurosci 2022; 15:762439. [PMID: 35069097 PMCID: PMC8766765 DOI: 10.3389/fnins.2021.762439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) are secreted vesicles of diverse size and cargo that are implicated in the cell-to-cell transmission of disease-causing-proteins in several neurodegenerative diseases. Mutant huntingtin, the disease-causing entity in Huntington's disease, has an expanded polyglutamine track at the N terminus that causes the protein to misfold and form toxic intracellular aggregates. In Huntington's disease, mutant huntingtin aggregates are transferred between cells by several routes. We have previously identified a cellular pathway that is responsible for the export of mutant huntingtin via extracellular vesicles. Identifying the EV sub-populations that carry misfolded huntingtin cargo is critical to understanding disease progression. In this work we expressed a form of polyglutamine expanded huntingtin (GFP-tagged 72Qhuntingtinexon1) in cells to assess the EVs involved in cellular export. We demonstrate that the molecular chaperone, cysteine string protein (CSPα; DnaJC5), facilitates export of disease-causing-polyglutamine-expanded huntingtin cargo in 180-240 nm vesicles as well as larger 10-30 μm vesicles.
Collapse
Affiliation(s)
- Desmond Pink
- Nanostics Precision Health, Edmonton, AB, Canada
| | - Julien Donnelier
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - John D. Lewis
- Nanostics Precision Health, Edmonton, AB, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Janice E. A. Braun
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
With or without You: Co-Chaperones Mediate Health and Disease by Modifying Chaperone Function and Protein Triage. Cells 2021; 10:cells10113121. [PMID: 34831344 PMCID: PMC8619055 DOI: 10.3390/cells10113121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Heat shock proteins (HSPs) are a family of molecular chaperones that regulate essential protein refolding and triage decisions to maintain protein homeostasis. Numerous co-chaperone proteins directly interact and modify the function of HSPs, and these interactions impact the outcome of protein triage, impacting everything from structural proteins to cell signaling mediators. The chaperone/co-chaperone machinery protects against various stressors to ensure cellular function in the face of stress. However, coding mutations, expression changes, and post-translational modifications of the chaperone/co-chaperone machinery can alter the cellular stress response. Importantly, these dysfunctions appear to contribute to numerous human diseases. Therapeutic targeting of chaperones is an attractive but challenging approach due to the vast functions of HSPs, likely contributing to the off-target effects of these therapies. Current efforts focus on targeting co-chaperones to develop precise treatments for numerous diseases caused by defects in protein quality control. This review focuses on the recent developments regarding selected HSP70/HSP90 co-chaperones, with a concentration on cardioprotection, neuroprotection, cancer, and autoimmune diseases. We also discuss therapeutic approaches that highlight both the utility and challenges of targeting co-chaperones.
Collapse
|
5
|
SGTA associates with intracellular aggregates in neurodegenerative diseases. Mol Brain 2021; 14:59. [PMID: 33757575 PMCID: PMC7986274 DOI: 10.1186/s13041-021-00770-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/15/2021] [Indexed: 11/24/2022] Open
Abstract
Intracellular aggregates are a common pathological hallmark of neurodegenerative diseases such as polyglutamine (polyQ) diseases, amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and multiple system atrophy (MSA). Aggregates are mainly formed by aberrant disease-specific proteins and are accompanied by accumulation of other aggregate-interacting proteins. Although aggregate-interacting proteins have been considered to modulate the formation of aggregates and to be involved in molecular mechanisms of disease progression, the components of aggregate-interacting proteins remain unknown. In this study, we showed that small glutamine-rich tetratricopeptide repeat-containing protein alfa (SGTA) is an aggregate-interacting protein in neurodegenerative diseases. Immunohistochemistry showed that SGTA interacted with intracellular aggregates in Huntington disease (HD) cell models and neurons of HD model mice. We also revealed that SGTA colocalized with intracellular aggregates in postmortem brains of patients with polyQ diseases including spinocerebellar ataxia (SCA)1, SCA2, SCA3, and dentatorubral–pallidoluysian atrophy. In addition, SGTA colocalized with glial cytoplasmic inclusions in the brains of MSA patients, whereas no accumulation of SGTA was observed in neurons of PD and ALS patients. In vitro study showed that SGTA bound to polyQ aggregates through its C-terminal domain and SGTA overexpression reduced intracellular aggregates. These results suggest that SGTA may play a role in the formation of aggregates and may act as potential modifier of molecular pathological mechanisms of polyQ diseases and MSA.
Collapse
|
6
|
Gundersen CB. Cysteine string proteins. Prog Neurobiol 2020; 188:101758. [DOI: 10.1016/j.pneurobio.2020.101758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/17/2022]
|
7
|
Abstract
OBJECTIVE Neuronal ceroid-lipofuscinoses are a heterogeneous group of inherited disorders in which abnormal lipopigments form lysosomal inclusion bodies in neurons. Kufs disease is rare, and clinical symptoms include seizures, progressive cognitive impairment, and myoclonus. Most cases of Kufs disease are autosomal recessive; however, there have been a few case reports of an autosomal dominant form linked to mutations within the DNAJC5 gene. METHODS We describe a family with Kufs disease in which the proband and three of her four children presented with cognitive impairment, seizures, and myoclonus. RESULTS Genetic testing of all four children was positive for a c.346_348delCTC(p.L116del) mutation in the DNAJC5 gene. The proband brain had an abundance of neuronal lipofuscin in the cerebral cortex, striatum, amygdala, hippocampus, substantia nigra, and cerebellum. There were no amyloid plaques or neurofibrillary tangles. Immunohistochemistry demonstrated that the cholinergic neurons and cholinergic projection fibers were spared, but there was a profound loss of choline acetyltransferase within the caudate, putamen, and basal forebrain. This suggests a loss of choline acetyltransferase as opposed to a loss of the neurons. CONCLUSIONS This report describes the clinical history of autosomal dominant Kufs disease, the genetic mutation within the DNAJC5 gene, and the neuropathological findings demonstrating depletion of choline acetyltransferase in the brain.
Collapse
|
8
|
Chen S, Yu C, Rong L, Li CH, Qin X, Ryu H, Park H. Altered Synaptic Vesicle Release and Ca 2+ Influx at Single Presynaptic Terminals of Cortical Neurons in a Knock-in Mouse Model of Huntington's Disease. Front Mol Neurosci 2018; 11:478. [PMID: 30618623 PMCID: PMC6311661 DOI: 10.3389/fnmol.2018.00478] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by the abnormal expansion of CAG repeats in the huntingtin (HTT) gene, which leads to progressive loss of neurons starting in the striatum and cortex. One possible mechanism for this selective loss of neurons in the early stage of HD is altered neurotransmission at synapses. Despite the recent finding that presynaptic terminals play an important role in HD, neurotransmitter release at synapses in HD remains poorly understood. Here, we measured synaptic vesicle release in real time at single presynaptic terminals during electrical field stimulation. We found the increase in synaptic vesicle release at presynaptic terminals in primary cortical neurons in a knock-in mouse model of HD (zQ175). We also found the increase in Ca2+ influx at presynaptic terminals in HD neurons during the electrical stimulation. Consistent with increased Ca2+-dependent neurotransmission in HD neurons, the increase in vesicle release and Ca2+ influx was rescued with Ca2+ chelators or by blocking N-type voltage-gated Ca2+ channels, suggesting N-type voltage-gated Ca2+ channels play an important role in HD. Taken together, our results suggest that the increased synaptic vesicles release due to increased Ca2+ influx at presynaptic terminals in cortical neurons contributes to the selective neurodegeneration of these neurons in early HD and provide a possible therapeutic target.
Collapse
Affiliation(s)
- Sidong Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Chenglong Yu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Li Rong
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Chun Hei Li
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Xianan Qin
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Hoon Ryu
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
9
|
Neurons Export Extracellular Vesicles Enriched in Cysteine String Protein and Misfolded Protein Cargo. Sci Rep 2017; 7:956. [PMID: 28424476 PMCID: PMC5430488 DOI: 10.1038/s41598-017-01115-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/27/2017] [Indexed: 12/20/2022] Open
Abstract
The fidelity of synaptic transmission depends on the integrity of the protein machinery at the synapse. Unfolded synaptic proteins undergo refolding or degradation in order to maintain synaptic proteostasis and preserve synaptic function, and buildup of unfolded/toxic proteins leads to neuronal dysfunction. Many molecular chaperones contribute to proteostasis, but one in particular, cysteine string protein (CSPα), is critical for proteostasis at the synapse. In this study we report that exported vesicles from neurons contain CSPα. Extracellular vesicles (EV’s) have been implicated in a wide range of functions. However, the functional significance of neural EV’s remains to be established. Here we demonstrate that co-expression of CSPα with the disease-associated proteins, polyglutamine expanded protein 72Q huntingtinex°n1 or superoxide dismutase-1 (SOD-1G93A) leads to the cellular export of both 72Q huntingtinex°n1 and SOD-1G93A via EV’s. In contrast, the inactive CSPαHPD-AAA mutant does not facilitate elimination of misfolded proteins. Furthermore, CSPα-mediated export of 72Q huntingtinex°n1 is reduced by the polyphenol, resveratrol. Our results indicate that by assisting local lysosome/proteasome processes, CSPα-mediated removal of toxic proteins via EVs plays a central role in synaptic proteostasis and CSPα thus represents a potential therapeutic target for neurodegenerative diseases.
Collapse
|
10
|
Tyebji S, Hannan AJ. Synaptopathic mechanisms of neurodegeneration and dementia: Insights from Huntington's disease. Prog Neurobiol 2017; 153:18-45. [PMID: 28377290 DOI: 10.1016/j.pneurobio.2017.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 03/19/2017] [Accepted: 03/30/2017] [Indexed: 12/20/2022]
Abstract
Dementia encapsulates a set of symptoms that include loss of mental abilities such as memory, problem solving or language, and reduces a person's ability to perform daily activities. Alzheimer's disease is the most common form of dementia, however dementia can also occur in other neurological disorders such as Huntington's disease (HD). Many studies have demonstrated that loss of neuronal cell function manifests pre-symptomatically and thus is a relevant therapeutic target to alleviate symptoms. Synaptopathy, the physiological dysfunction of synapses, is now being approached as the target for many neurological and psychiatric disorders, including HD. HD is an autosomal dominant and progressive degenerative disorder, with clinical manifestations that encompass movement, cognition, mood and behaviour. HD is one of the most common tandem repeat disorders and is caused by a trinucleotide (CAG) repeat expansion, encoding an extended polyglutamine tract in the huntingtin protein. Animal models as well as human studies have provided detailed, although not exhaustive, evidence of synaptic dysfunction in HD. In this review, we discuss the neuropathology of HD and how the changes in synaptic signalling in the diseased brain lead to its symptoms, which include dementia. Here, we review and discuss the mechanisms by which the 'molecular orchestras' and their 'synaptic symphonies' are disrupted in neurodegeneration and dementia, focusing on HD as a model disease. We also explore the therapeutic strategies currently in pre-clinical and clinical testing that are targeted towards improving synaptic function in HD.
Collapse
Affiliation(s)
- Shiraz Tyebji
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
11
|
Burgoyne RD, Morgan A. Cysteine string protein (CSP) and its role in preventing neurodegeneration. Semin Cell Dev Biol 2015; 40:153-9. [PMID: 25800794 PMCID: PMC4447612 DOI: 10.1016/j.semcdb.2015.03.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 11/25/2022]
Abstract
Cysteine string protein (CSP) is a member of the DnaJ/Hsp40 family of co-chaperones that localises to neuronal synaptic vesicles. Its name derives from the possession of a string of 12–15 cysteine residues, palmitoylation of which is required for targeting to post-Golgi membranes. The DnaJ domain of CSP enables it to bind client proteins and recruit Hsc70 chaperones, thereby contributing to the maintenance of protein folding in the presynaptic compartment. Mutation of CSP in flies, worms and mice reduces lifespan and causes synaptic dysfunction and neurodegeneration. Furthermore, recent studies have revealed that the neurodegenerative disease, adult onset neuronal ceroid lipofuscinosis, is caused by mutations in the human CSPα-encoding DNAJC5 gene. Accumulating evidence suggests that the major mechanism by which CSP prevents neurodegeneration is by maintaining the conformation of SNAP-25, thereby facilitating its entry into the membrane-fusing SNARE complex. In this review, we focus on the role of CSP in preventing neurodegeneration and discuss how recent studies of this universal neuroprotective chaperone are being translated into potential novel therapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
- Robert D Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK.
| |
Collapse
|
12
|
Donnelier J, Braun JEA. CSPα-chaperoning presynaptic proteins. Front Cell Neurosci 2014; 8:116. [PMID: 24808827 PMCID: PMC4010753 DOI: 10.3389/fncel.2014.00116] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/09/2014] [Indexed: 12/11/2022] Open
Abstract
Synaptic transmission relies on precisely regulated and exceedingly fast protein-protein interactions that involve voltage-gated channels, the exocytosis/endocytosis machinery as well as signaling pathways. Although we have gained an ever more detailed picture of synaptic architecture much remains to be learned about how synapses are maintained. Synaptic chaperones are “folding catalysts” that preserve proteostasis by regulating protein conformation (and therefore protein function) and prevent unwanted protein-protein interactions. Failure to maintain synapses is an early hallmark of several degenerative diseases. Cysteine string protein (CSPα) is a presynaptic vesicle protein and molecular chaperone that has a central role in preventing synaptic loss and neurodegeneration. Over the past few years, a number of different “client proteins” have been implicated as CSPα substrates including voltage-dependent ion channels, signaling proteins and proteins critical to the synaptic vesicle cycle. Here we review the ion channels and synaptic protein complexes under the influence of CSPα and discuss gaps in our current knowledge.
Collapse
Affiliation(s)
- Julien Donnelier
- Department of Physiology and Pharmacology, The Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary Calgary, AB, Canada
| | - Janice E A Braun
- Department of Physiology and Pharmacology, The Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary Calgary, AB, Canada
| |
Collapse
|
13
|
The large conductance, calcium-activated K+ (BK) channel is regulated by cysteine string protein. Sci Rep 2014; 3:2447. [PMID: 23945775 PMCID: PMC3744087 DOI: 10.1038/srep02447] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 07/26/2013] [Indexed: 11/08/2022] Open
Abstract
Large-conductance, calcium-activated-K(+) (BK) channels are widely distributed throughout the nervous system, where they regulate action potential duration and firing frequency, along with presynaptic neurotransmitter release. Our recent efforts to identify chaperones that target neuronal ion channels have revealed cysteine string protein (CSPα) as a key regulator of BK channel expression and current density. CSPα is a vesicle-associated protein and mutations in CSPα cause the hereditary neurodegenerative disorder, adult-onset autosomal dominant neuronal ceroid lipofuscinosis (ANCL). CSPα null mice show 2.5 fold higher BK channel expression compared to wild type mice, which is not seen with other neuronal channels (i.e. Cav2.2, Kv1.1 and Kv1.2). Furthermore, mutations in either CSPα's J domain or cysteine string region markedly increase BK expression and current amplitude. We conclude that CSPα acts to regulate BK channel expression, and consequently CSPα-associated changes in BK activity may contribute to the pathogenesis of neurodegenerative disorders, such as ANCL.
Collapse
|
14
|
Hu HY, He L, Fominykh K, Yan Z, Guo S, Zhang X, Taylor MS, Tang L, Li J, Liu J, Wang W, Yu H, Khaitovich P. Evolution of the human-specific microRNA miR-941. Nat Commun 2013; 3:1145. [PMID: 23093182 PMCID: PMC3493648 DOI: 10.1038/ncomms2146] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 09/20/2012] [Indexed: 01/22/2023] Open
Abstract
MicroRNA-mediated gene regulation is important in many physiological processes. Here we explore the roles of a microRNA, miR-941, in human evolution. We find that miR-941 emerged de novo in the human lineage, between six and one million years ago, from an evolutionarily volatile tandem repeat sequence. Its copy-number remains polymorphic in humans and shows a trend for decreasing copy-number with migration out of Africa. Emergence of miR-941 was accompanied by accelerated loss of miR-941-binding sites, presumably to escape regulation. We further show that miR-941 is highly expressed in pluripotent cells, repressed upon differentiation and preferentially targets genes in hedgehog- and insulin-signalling pathways, thus suggesting roles in cellular differentiation. Human-specific effects of miR-941 regulation are detectable in the brain and affect genes involved in neurotransmitter signalling. Taken together, these results implicate miR-941 in human evolution, and provide an example of rapid regulatory evolution in the human linage.
Collapse
Affiliation(s)
- Hai Yang Hu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jin J, Cheng Y, Zhang Y, Wood W, Peng Q, Hutchison E, Mattson MP, Becker KG, Duan W. Interrogation of brain miRNA and mRNA expression profiles reveals a molecular regulatory network that is perturbed by mutant huntingtin. J Neurochem 2012; 123:477-90. [PMID: 22906125 PMCID: PMC3472040 DOI: 10.1111/j.1471-4159.2012.07925.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 08/13/2012] [Accepted: 08/14/2012] [Indexed: 11/27/2022]
Abstract
Emerging evidence indicates that microRNAs (miRNAs) may play an important role in the pathogenesis of Huntington's disease (HD). To identify the individual miRNAs that are altered in HD and may therefore regulate a gene network underlying mutant huntingtin-induced neuronal dysfunction in HD, we performed miRNA array analysis combined with mRNA profiling in the cerebral cortex from N171-82Q HD mice. Expression profiles of miRNAs as well as mRNAs in HD mouse cerebral cortex were analyzed and confirmed at different stages of disease progression; the most significant changes of miRNAs in the cerebral cortex were also detected in the striatum of HD mice. Our results revealed a significant alteration of miR-200 family members, miR-200a, and miR-200c in the cerebral cortex and the striatum, at the early stage of disease progression in N171-82Q HD mice. We used a coordinated approach to integrate miRNA and mRNA profiling, and applied bioinformatics to predict a target gene network potentially regulated by these significantly altered miRNAs that might be involved in HD disease progression. Interestingly, miR-200a and miR-200c are predicted to target genes regulating synaptic function, neurodevelopment, and neuronal survival. Our results suggest that altered expression of miR-200a and miR-200c may interrupt the production of proteins involved in neuronal plasticity and survival, and further investigation of the involvement of perturbed miRNA expression in HD pathogenesis is warranted, and may lead to reveal novel approaches for HD therapy.
Collapse
Affiliation(s)
- Jing Jin
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Yong Cheng
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Yongqing Zhang
- Gene Expression and Genomics Unit Research Resources Branch, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - William Wood
- Gene Expression and Genomics Unit Research Resources Branch, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Qi Peng
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Emmette Hutchison
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Kevin G. Becker
- Gene Expression and Genomics Unit Research Resources Branch, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| |
Collapse
|
16
|
Zhang YQ, Henderson MX, Colangelo CM, Ginsberg SD, Bruce C, Wu T, Chandra SS. Identification of CSPα clients reveals a role in dynamin 1 regulation. Neuron 2012; 74:136-50. [PMID: 22500636 DOI: 10.1016/j.neuron.2012.01.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2012] [Indexed: 01/05/2023]
Abstract
Cysteine string protein α (CSPα), a presynaptic cochaperone for Hsc70, is required for synapse maintenance. Deletion of CSPα leads to neuronal dysfunction, synapse loss, and neurodegeneration. We utilized unbiased, systematic proteomics to identify putative CSPα protein clients. We found 22 such proteins whose levels are selectively decreased in CSPα knockout synapses. Of these putative CSPα protein clients, two directly bind to the CSPα chaperone complex and are bona fide clients. They are the t-SNARE SNAP-25 and the GTPase dynamin 1, which are necessary for synaptic vesicle fusion and fission, respectively. Using hippocampal cultures, we show that CSPα regulates the stability of client proteins and synaptic vesicle number. Our analysis of CSPα-dynamin 1 interactions reveals unexpectedly that CSPα regulates the polymerization of dynamin 1. CSPα, therefore, participates in synaptic vesicle endocytosis and may facilitate exo- and endocytic coupling. These findings advance the understanding of how synapses are functionally and structurally maintained.
Collapse
Affiliation(s)
- Yong-Quan Zhang
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neurology, Yale University, New Haven, CT 06536, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Cysteine-string protein (CSP), a member of the DnaJ/Hsp40 family of cochaperones, is critical for maintaining neurotransmitter release and preventing neurodegeneration. CSP likely forms a chaperone complex on synaptic vesicles together with the 70-kDa heat shock cognate (Hsc70) and the small glutamine-rich tetratricopeptide repeat (TPR)-containing protein (SGT) that may control or protect the assembly and activity of SNARE proteins and various other protein substrates. Here, the author summarizes studies that elucidated CSP's neuroprotective role.
Collapse
Affiliation(s)
- Konrad E Zinsmaier
- Department of Neuroscience and Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721-0077, USA.
| |
Collapse
|
18
|
Increased neurotransmitter release at the neuromuscular junction in a mouse model of polyglutamine disease. J Neurosci 2011; 31:1106-13. [PMID: 21248135 DOI: 10.1523/jneurosci.2011-10.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In Huntington's disease (HD), the expansion of polyglutamine (polyQ) repeats at the N terminus of the ubiquitous protein huntingtin (htt) leads to neurodegeneration in specific brain areas. Neurons degenerating in HD develop synaptic dysfunctions. However, it is unknown whether mutant htt impacts synaptic function in general. To investigate that, we have focused on the nerve terminals of motor neurons that typically do not degenerate in HD. Here, we have studied synaptic transmission at the neuromuscular junction of transgenic mice expressing a mutant form of htt (R6/1 mice). We have found that the size and frequency of miniature endplate potentials are similar in R6/1 and control mice. In contrast, the amplitude of evoked endplate potentials in R6/1 mice is increased compared to controls. Consistent with a presynaptic increase of release probability, synaptic depression under high-frequency stimulation is higher in R6/1 mice. In addition, no changes were detected in the size and dynamics of the recycling synaptic vesicle pool. Moreover, we have found increased amounts of the synaptic vesicle proteins synaptobrevin 1,2/VAMP 1,2 and cysteine string protein-α, and the SNARE protein SNAP-25, concomitant with normal levels of other synaptic vesicle markers. Our results reveal that the transgenic expression of a mutant form of htt leads to an unexpected gain of synaptic function. That phenotype is likely not secondary to neurodegeneration and might be due to a primary deregulation in synaptic protein levels. Our findings could be relevant to understand synaptic toxic effects of proteins with abnormal polyQ repeats.
Collapse
|
19
|
Johnson JN, Ahrendt E, Braun JEA. CSPalpha: the neuroprotective J protein. Biochem Cell Biol 2010; 88:157-65. [PMID: 20453918 DOI: 10.1139/o09-124] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cysteine string protein (CSPalpha, also called DnaJC5) is unique among J proteins. Similar to other J proteins, CSPalpha interacts with and activates the ATPase of Hsc70s (heat shock proteins of 70 kDa), thereby harnessing the ATPase activity for conformational work on client proteins. In contrast to other J proteins, CSPalpha is anchored to synaptic vesicles, as well as to exocrine, endocrine and neuroendocrine secretory granules, and has been shown to have an essential anti-neurodegenerative role. CSPalpha-null organisms exhibit progressive neurodegeneration, behavioural deficits, and premature death, most likely due to the progressive misfolding of one or more client proteins. Here we highlight recent advances in our understanding of the critical role that CSPalpha plays in governing exocytotic secretory functions.
Collapse
Affiliation(s)
- Jadah N Johnson
- Department of Physiology and Pharmacology and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | | |
Collapse
|
20
|
Hammad MM, Dupré DJ. Chaperones contribute to G protein coupled receptor oligomerization, but do not participate in assembly of the G protein with the receptor signaling complex. J Mol Signal 2010; 5:16. [PMID: 20868491 PMCID: PMC2954983 DOI: 10.1186/1750-2187-5-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 09/24/2010] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Previous studies have demonstrated that seven transmembrane receptors (7TM-Rs) can associate with various chaperones to control their maturation and export. It has been shown for a few years now that 7TM-Rs can form homo or heterooligomeric complexes. Due to the difficulty to study heterooligomers in a context devoid of homooligomers signaling, very little is known on heterooligomerization. β2AR-AT1R receptor complexes have been found on cells and ligand activation of one receptor affects signaling of the partner. Yet, very little is known about the mechanisms linking those receptors together. We propose to examine the role of chaperones in the maturation of homo- and heterodimers of the β2AR and AT1R. It would not be surprising that strict cellular mechanisms exist to ensure that only properly folded receptors are inserted into the plasma membrane. RESULTS Our goal is to understand the process whereby the adrenergic and angiotensin receptors attain their proper mature conformation. We determined whether any of the common chaperones are physically associated with the fully and/or immature β2AR and AT1R receptors forms and if they play any role in the selective recruitment of G proteins subunits to receptor complexes. Our results suggest that when a pair of receptors is expressed in such way that one is retained in the endoplasmic reticulum (ER), this immature receptor will dictate the chaperones interacting with the receptor complex. We showed that ERp57 is important for receptor dimerization of AT1R homo and β2AR/AT1R receptor dimers, but plays no role in the β2AR homodimerization. Then, we verified if some of those chaperones could play a role in the assembly of the heterotrimeric G protein subunits with the receptor complex, but none appeared to be essential. CONCLUSIONS Overall, our results suggest that variations among receptor oligomers occur early in the synthesis/maturation processes, and that chaperones will interact more specifically with some receptor pairs than others to allow the formation of certain receptor pairs, while others will contribute to the folding and maturation of receptors without any effect on receptor assembly within a signaling complex.
Collapse
Affiliation(s)
- Maha M Hammad
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| | | |
Collapse
|
21
|
Abstract
HD (Huntington's disease) is produced by the expression of mutant forms of the protein htt (huntingtin) containing a pathologically expanded poly-glutamine repeat. For unknown reasons, in HD patients and HD mouse models, neurons from the striatum and cerebral cortex degenerate and lead to motor dysfunction and dementia. Synaptic transmission in those neurons becomes progressively altered during the course of the disease. However, the relationship between synaptic dysfunction and neurodegeneration in HD is not yet clear. Are there early specific functional synaptic changes preceding symptoms and neurodegeneration? What is the role of those changes in neuronal damage? Recent experiments in a Drosophila model of HD have showed that abnormally increased neurotransmitter release might be a leading cause of neurodegeneration. In the present review, we summarize recently described synaptic alterations in HD animal models and discuss potential underlying molecular mechanisms.
Collapse
|
22
|
Da Cruz S, De Marchi U, Frieden M, Parone PA, Martinou JC, Demaurex N. SLP-2 negatively modulates mitochondrial sodium-calcium exchange. Cell Calcium 2009; 47:11-8. [PMID: 19944461 DOI: 10.1016/j.ceca.2009.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 10/27/2009] [Accepted: 10/30/2009] [Indexed: 12/18/2022]
Abstract
Mitochondria play a major role in cellular calcium homeostasis. Despite decades of studies, the molecules that mediate and regulate the transport of calcium ions in and out of the mitochondrial matrix remain unknown. Here, we investigate whether SLP-2, an inner membrane mitochondrial protein of unknown function, modulates the activity of mitochondrial Ca(2+) transporters. In HeLa cells depleted of SLP-2, the amplitude and duration of mitochondrial Ca(2+) elevations evoked by agonists were decreased compared to control cells. SLP-2 depletion increased the rates of calcium extrusion from mitochondria. This effect disappeared upon Na(+) removal or addition of CGP-37157, an inhibitor of the mitochondrial Na(+)/Ca(2+) exchanger, and persisted in permeabilized cells exposed to a fixed cytosolic Na(+) and Ca(2+) concentration. The rates of mitochondrial Ca(2+) extrusion were prolonged in SLP-2 over-expressing cells, independently of the amplitude of mitochondrial Ca(2+) elevations. The amplitude of cytosolic Ca(2+) elevations was increased by SLP-2 depletion and decreased by SLP-2 over-expression. These data show that SLP-2 modulates mitochondrial calcium extrusion, thereby altering the ability of mitochondria to buffer Ca(2+) and to shape cytosolic Ca(2+) signals.
Collapse
|
23
|
Dupré DJ, Robitaille M, Rebois RV, Hébert TE. The role of Gbetagamma subunits in the organization, assembly, and function of GPCR signaling complexes. Annu Rev Pharmacol Toxicol 2009; 49:31-56. [PMID: 18834311 DOI: 10.1146/annurev-pharmtox-061008-103038] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The role of Gbetagamma subunits in cellular signaling has become well established in the past 20 years. Not only do they regulate effectors once thought to be the sole targets of Galpha subunits, but it has become clear that they also have a unique set of binding partners and regulate signaling pathways that are not always localized to the plasma membrane. However, this may be only the beginning of the story. Gbetagamma subunits interact with G protein-coupled receptors, Galpha subunits, and several different effector molecules during assembly and trafficking of receptor-based signaling complexes and not simply in response to ligand stimulation at sites of receptor cellular activity. Gbetagamma assembly itself seems to be tightly regulated via the action of molecular chaperones and in turn may serve a similar role in the assembly of specific signaling complexes. We propose that specific Gbetagamma subunits have a broader role in controlling the architecture, assembly, and activity of cellular signaling pathways.
Collapse
Affiliation(s)
- Denis J Dupré
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | |
Collapse
|
24
|
Rosales-Hernandez A, Beck KE, Zhao X, Braun AP, Braun JEA. RDJ2 (DNAJA2) chaperones neural G protein signaling pathways. Cell Stress Chaperones 2009; 14:71-82. [PMID: 18595009 PMCID: PMC2673899 DOI: 10.1007/s12192-008-0056-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 05/28/2008] [Indexed: 12/11/2022] Open
Abstract
A number of structurally divergent proteins with J domains, called J proteins, interact with and activate the ATPase of Hsp70s, thereby harnessing the ATPase activity for conformational work on target proteins. The precise role of most mammalian J proteins remains undefined. In this paper, we demonstrate that transient expression of the J protein, Rdj2, in HEK 293 cells increased cellular cyclic adenosine monophosphate (cAMP) levels in the presence of the beta-adrenergic agonist isoproterenol. In CNS-derived catecholaminergic neuronal cell line (CAD) neuroblastoma cells, expression of Rdj2 increased isoproterenol-stimulated phosphorylation of cAMP response element binding protein (CREB). Moreover, we have characterized the binding properties of Rdj2 and observed a direct interaction between Rdj2 and receptor-coupled trimeric GTP-binding proteins (G proteins). We further show that the composition of the Rdj2-chaperone complex and the cysteine string protein (CSPalpha)-chaperone complex, another J protein, is distinct. Our data demonstrate that Rdj2 modulates G protein signaling and further suggest that chaperoning G proteins is an emerging theme of the J protein network.
Collapse
Affiliation(s)
- Alma Rosales-Hernandez
- Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, AB Canada T2N 4N1
| | - Katy E. Beck
- Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, AB Canada T2N 4N1
| | - Xiaoxi Zhao
- Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, AB Canada T2N 4N1
| | - Andrew P. Braun
- Libin Cardiovascular Institute of Alberta, Department of Pharmacology and Therapeutics, University of Calgary, Calgary, AB Canada T2N 4N1
| | - Janice E. A. Braun
- Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, AB Canada T2N 4N1
| |
Collapse
|
25
|
Dupré DJ, Robitaille M, Richer M, Ethier N, Mamarbachi AM, Hébert TE. Dopamine Receptor-interacting Protein 78 Acts as a Molecular Chaperone for Gγ Subunits before Assembly with Gβ. J Biol Chem 2007; 282:13703-15. [PMID: 17363375 DOI: 10.1074/jbc.m608846200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heterotrimeric G proteins play a central role in intracellular communication mediated by extracellular signals, and both Galpha and Gbetagamma subunits regulate effectors downstream of activated receptors. The particular constituents of the G protein heterotrimer affect both specificity and efficiency of signal transduction. However, little is known about mechanistic aspects of G protein assembly in the cell that would certainly contribute to formation of heterotrimers of specific composition. It was recently shown that phosducin-like protein (PhLP) modulated both Gbetagamma expression and subsequent signaling by chaperoning nascent Gbeta and facilitating heterodimer formation with Ggamma subunits (Lukov, G. L., Hu, T., McLaughlin, J. N., Hamm, H. E., and Willardson, B. M. (2005) EMBO J. 24, 1965-1975; Humrich, J., Bermel, C., Bunemann, M., Harmark, L., Frost, R., Quitterer, U., and Lohse, M. J. (2005) J. Biol. Chem. 280, 20042-20050). Here we demonstrate using a variety of techniques that DRiP78, an endoplasmic reticulum resident protein known to regulate the trafficking of several seven transmembrane receptors, interacts specifically with the Ggamma subunit but not Gbeta or Galpha subunits. Furthermore, we demonstrate that DRiP78 and the Gbeta subunit can compete for the Ggamma subunit. DRiP78 also protects Ggamma from degradation until a stable partner such as Gbeta is provided. Furthermore, DRiP78 interaction may represent a mechanism for assembly of specific Gbetagamma heterodimers, as selectivity was observed among Ggamma isoforms for interaction with DRiP78 depending on the presence of particular Gbeta subunits. Interestingly, we could detect an interaction between DRiP78 and PhLP, suggesting a role of DRiP78 in the assembly of Gbetagamma by linking Ggamma to PhLP.Gbeta complexes. Our results, therefore, suggest a role of DRiP78 as a chaperone in the assembly of Gbetagamma subunits of the G protein.
Collapse
Affiliation(s)
- Denis J Dupré
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Swayne LA, Braun JEA. Aggregate-centered redistribution of proteins by mutant huntingtin. Biochem Biophys Res Commun 2007; 354:39-44. [PMID: 17208201 DOI: 10.1016/j.bbrc.2006.12.129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Accepted: 12/13/2006] [Indexed: 11/30/2022]
Abstract
Huntingtin is a widely expressed 350-kDa cytosolic multidomain of unknown function. Aberrant expansion of the polyglutamine tract located in the N-terminal region of huntingtin results in Huntington's disease. The presence of insoluble huntingtin inclusions in the brains of patients is one of the hallmarks of Huntington's disease. Experimentally, both full-length huntingtin and N-terminal fragments of huntingtin with expanded polyglutamine tracts trigger aggregate formation. Here, we report that upon the formation of huntingtin aggregates; endogenous cytosolic huntingtin, Hsc70/Hsp70 (heat shock protein and cognate protein of 70kDa) and syntaxin 1A become aggregate-centered. This redistribution suggests that these proteins are eventually depleted and become unavailable for normal cellular function. These results indicate that the cellular targeting of several key proteins are altered in the presence of mutant huntingtin and suggest that aggregate depletion of these proteins may underlie, in part, the sequence of disease progression.
Collapse
Affiliation(s)
- Leigh Anne Swayne
- Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, Alta., Canada T2N 4N1
| | | |
Collapse
|
27
|
Bai L, Swayne LA, Braun JEA. The CSPα/G protein complex in PC12 cells. Biochem Biophys Res Commun 2007; 352:123-9. [PMID: 17113038 DOI: 10.1016/j.bbrc.2006.10.178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 10/27/2006] [Indexed: 11/28/2022]
Abstract
Cysteine string proteinalpha (CSPalpha) is a regulated vesicle protein and molecular chaperone that has been found to be critical for continuous synaptic transmission and is implicated in the defense against neurodegeneration. Previous work has revealed links between CSPalpha and heterotrimeric GTP binding protein (G protein) signal transduction pathways. We have shown that CSPalpha is a guanine nucleotide exchange factor (GEF) for Galphas. In vitro Hsc70 (70 kDa heat shock cognate protein) and SGT (small glutamine-rich tetratricopeptide repeat domain protein) switch CSPalpha from an inactive GEF to an active GEF. Here we have examined the cellular distribution of the CSPalpha system in the PC12 neuroendocrine cell line. CSPalpha, an established secretory vesicle protein, was found to concentrate in the processes of NGF-differentiated PC12 cells as expected. Gbeta subunits co-localized and Galphas subunits partially co-localized with CSPalpha. However, under the conditions examined, the GEF activity of CSPalpha is expected to be inactive, in that Hsc70 was not found in PC12 processes. These results indicate that CSPalpha activity is subject to regulation by factors that alter Hsc70 distribution and translocation within the cell.
Collapse
Affiliation(s)
- Liping Bai
- Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, Alta., Canada T2N 4N1
| | | | | |
Collapse
|
28
|
Burré J, Beckhaus T, Schägger H, Corvey C, Hofmann S, Karas M, Zimmermann H, Volknandt W. Analysis of the synaptic vesicle proteome using three gel-based protein separation techniques. Proteomics 2006; 6:6250-62. [PMID: 17080482 DOI: 10.1002/pmic.200600357] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Synaptic vesicles are key organelles in neurotransmission. Their functions are governed by a unique set of integral and peripherally associated proteins. To obtain a complete protein inventory, we immunoisolated synaptic vesicles from rat brain to high purity and performed a gel-based analysis of the synaptic vesicle proteome. Since the high hydrophobicity of integral membrane proteins hampers their resolution by gel electrophoretic techniques, we applied in parallel three different gel electrophoretic methods for protein separation prior to MS. Synaptic vesicle proteins were subjected to either 1-D SDS-PAGE along with nano-LC ESI-MS/MS or to the 2-D gel electrophoretic techniques benzyldimethyl-n-hexadecylammonium chloride (BAC)/SDS-PAGE, and double SDS (dSDS)-PAGE in combination with MALDI-TOF-MS. We demonstrate that the combination of all three methods provides a comprehensive survey of the proteinaceous inventory of the synaptic vesicle membrane compartment. The identified synaptic vesicle proteins include transporters, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), synapsins, rab and rab-interacting proteins, additional guanine nucleotide triphosphate (GTP) binding proteins, cytoskeletal proteins, and proteins modulating synaptic vesicle exo- and endocytosis. In addition, we identified novel proteins of unknown function. Our results demonstrate that the parallel application of three different gel-based approaches in combination with mass spectrometry permits a comprehensive analysis of the synaptic vesicle proteome that is considerably more complex than previously anticipated.
Collapse
Affiliation(s)
- Jacqueline Burré
- Department of Neurochemistry, Johann Wolfgang Goethe-University, Frankfurt/Main, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Swayne LA, Beck KE, Braun JEA. The cysteine string protein multimeric complex. Biochem Biophys Res Commun 2006; 348:83-91. [PMID: 16875662 DOI: 10.1016/j.bbrc.2006.07.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 07/05/2006] [Indexed: 12/15/2022]
Abstract
Cysteine string protein (CSPalpha) is a member of the cellular folding machinery that is located on regulated secretory vesicles. We have previously shown that CSPalpha in association with Hsc70 (70kDa heat shock cognate protein) and SGT (small glutamine-rich tetratricopeptide repeat domain protein) is a guanine nucleotide exchange factor (GEF) for G(alphas). Association of this CSPalpha complex with N-type calcium channels, a channel key in coupling calcium influx with synaptic vesicle exocytosis, triggers tonic G protein inhibition of the channels. Syntaxin 1A, a plasma membrane SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) critical for neurotransmission, coimmunoprecipitates with the CSPalpha/G protein/N-type calcium channel complex, however the significance of syntaxin 1A as a component of this complex remains unknown. In this report, we establish that syntaxin 1A interacts with CSPalpha, Hsc70 as well as the synaptic protein interaction (synprint) region of N-type channels. We demonstrate that huntingtin(exon1), a putative biologically active fragment of huntingtin, displaces both syntaxin 1A and CSPalpha from N-type channels. Identification of the protein components of the CSPalpha/GEF system is essential in establishing its precise role in synaptic transmission.
Collapse
Affiliation(s)
- Leigh Anne Swayne
- Department of Physiology and Biophysics, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | |
Collapse
|
30
|
Bronk P, Nie Z, Klose MK, Dawson-Scully K, Zhang J, Robertson RM, Atwood HL, Zinsmaier KE. The multiple functions of cysteine-string protein analyzed at Drosophila nerve terminals. J Neurosci 2006; 25:2204-14. [PMID: 15745946 PMCID: PMC6726096 DOI: 10.1523/jneurosci.3610-04.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The synaptic vesicle-associated cysteine-string protein (CSP) is important for synaptic transmission. Previous studies revealed multiple defects at neuromuscular junctions (NMJs) of csp null-mutant Drosophila, but whether these defects are independent of each other or mechanistically linked through J domain mediated-interactions with heat-shock cognate protein 70 (Hsc70) has not been established. To resolve this issue, we genetically dissected the individual functions of CSP by an in vivo structure/function analysis. Expression of mutant CSP lacking the J domain at csp null-mutant NMJs fully restored normal thermo-tolerance of evoked transmitter release but did not completely restore evoked release at room temperature and failed to reverse the abnormal intraterminal Ca2+ levels. This suggests that J domain-mediated functions are essential for the regulation of intraterminal Ca2+ levels but only partially required for regulating evoked release and not required for protecting evoked release against thermal stress. Hence, CSP can also act as an Hsc70-independent chaperone protecting evoked release from thermal stress. Expression of mutant CSP lacking the L domain restored neurotransmission and partially reversed the abnormal intraterminal Ca2+ levels, suggesting that the L domain is important, although not essential, for the role of CSP in regulating intraterminal Ca2+ levels. We detected no effects of csp mutations on individual presynaptic Ca2+ signals triggered by action potentials, suggesting that presynaptic Ca2+ entry is not primarily impaired. Both the J and L domains were also required for the role of CSP in synaptic growth. Together, these results suggest that CSP has several independent synaptic functions, affecting synaptic growth, evoked release, thermal protection of evoked release, and intraterminal Ca2+ levels at rest and during stimulation.
Collapse
Affiliation(s)
- Peter Bronk
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, Arizona 85721-0077, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Smith R, Petersén A, Bates GP, Brundin P, Li JY. Depletion of rabphilin 3A in a transgenic mouse model (R6/1) of Huntington's disease, a possible culprit in synaptic dysfunction. Neurobiol Dis 2005; 20:673-84. [PMID: 15967669 DOI: 10.1016/j.nbd.2005.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 04/08/2005] [Accepted: 05/02/2005] [Indexed: 01/15/2023] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by progressive psychiatric, cognitive, and motor disturbances. We studied the expression of synaptic vesicle proteins in the R6/1 transgenic mouse model of HD. We observed that the levels of rabphilin 3A, a protein involved in exocytosis, is substantially decreased in synapses of most brain regions in R6/1 mice. The appearance of the reduction coincides with the onset of motor deficits and behavioral disturbances. Double immunohistochemistry did not show colocalization between rabphilin 3A and huntingtin aggregates in the HD mice. Using in situ hybridization, we demonstrated that rabphilin 3A mRNA expression was substantially reduced in the R6/1 mouse cortex compared to wild-type mice. Our results indicate that a decrease in mRNA levels underlie the depletion of protein levels of rabphilin 3A, and we suggest that this reduction may be involved in causing impaired synaptic transmission in R6/1 mice.
Collapse
Affiliation(s)
- Ruben Smith
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 221 84 Lund, Sweden
| | | | | | | | | |
Collapse
|
32
|
Swayne LA, Chen L, Hameed S, Barr W, Charlesworth E, Colicos MA, Zamponi GW, Braun JEA. Crosstalk between huntingtin and syntaxin 1A regulates N-type calcium channels. Mol Cell Neurosci 2005; 30:339-51. [PMID: 16162412 DOI: 10.1016/j.mcn.2005.07.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 06/20/2005] [Accepted: 07/28/2005] [Indexed: 11/19/2022] Open
Abstract
We have identified a novel interaction between huntingtin (htt) and N-type calcium channels, a channel key in coupling calcium influx with synaptic vesicle exocytosis. Htt is a widely expressed 350-kDa cytosolic protein bearing an N-terminal polyglutamine tract. Htt is proteolytically cleaved by calpains and caspases and the resultant htt N-terminal fragments have been proposed to be biologically active; however, the cellular function of htt and/or the htt fragments remains enigmatic. We show that N-terminal fragments of htt (consisting of exon1) and full-length htt associate with the synaptic protein interaction (synprint) region of the N-type calcium channel. Given that synprint has previously been shown to bind syntaxin 1A and that this association elicits inhibition of N-type calcium channels, we tested whether htt(exon1) affects the modulation of these channels. Our data indicate that htt(exon1) enhances calcium influx by blocking syntaxin 1A inhibition of N-type calcium channels and attributes a key role for htt N-terminal fragments in the fine tuning of neurotransmission.
Collapse
Affiliation(s)
- Leigh Anne Swayne
- Department of Physiology and Biophysics, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Natochin M, Campbell TN, Barren B, Miller LC, Hameed S, Artemyev NO, Braun JEA. Characterization of the G alpha(s) regulator cysteine string protein. J Biol Chem 2005; 280:30236-41. [PMID: 15972823 DOI: 10.1074/jbc.m500722200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteine string protein (CSP) is an abundant regulated secretory vesicle protein that is composed of a string of cysteine residues, a linker domain, and an N-terminal J domain characteristic of the DnaJ/Hsp40 co-chaperone family. We have shown previously that CSP associates with heterotrimeric GTP-binding proteins (G proteins) and promotes G protein inhibition of N-type Ca2+ channels. To elucidate the mechanisms by which CSP modulates G protein signaling, we examined the effects of CSP(1-198) (full-length), CSP(1-112), and CSP(1-82) on the kinetics of guanine nucleotide exchange and GTP hydrolysis. In this report, we demonstrate that CSP selectively interacts with G alpha(s) and increases steady-state GTP hydrolysis. CSP(1-198) modulation of G alpha(s) was dependent on Hsc70 (70-kDa heat shock cognate protein) and SGT (small glutamine-rich tetratricopeptide repeat domain protein), whereas modulation by CSP(1-112) was Hsc70-SGT-independent. CSP(1-112) preferentially associated with the inactive GDP-bound conformation of G alpha(s). Consistent with the stimulation of GTP hydrolysis, CSP(1-112) increased guanine nucleotide exchange of G alpha(s). The interaction of native G alpha(s) and CSP was confirmed by coimmunoprecipitation and showed that G alpha(s) associates with CSP. Furthermore, transient expression of CSP in HEK cells increased cellular cAMP levels in the presence of the beta2 adrenergic agonist isoproterenol. Together, these results demonstrate that CSP modulates G protein function by preferentially targeting the inactive GDP-bound form of G alpha(s) and promoting GDP/GTP exchange. Our results show that the guanine nucleotide exchange activity of full-length CSP is, in turn, regulated by Hsc70-SGT.
Collapse
Affiliation(s)
- Michael Natochin
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | |
Collapse
|