1
|
Jing F, Jiang L, Cao Y, Tian M, Qiu J, Zhang J, Tang L, Lu R, Hu Y. Plasma Proteomics and Metabolomics of Aromatase Inhibitors-Related Musculoskeletal Syndrome in Early Breast Cancer Patients. Metabolites 2025; 15:153. [PMID: 40137118 PMCID: PMC11943704 DOI: 10.3390/metabo15030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Aromatase inhibitors-related musculoskeletal syndrome (AIMSS) is a common side effect experienced by early breast cancer patients undergoing endocrine therapy. This condition can result in medication discontinuation and a diminished quality of life. The objective of this study was to characterize AIMSS, investigate its pathogenesis, and identify potential biomarkers at both the protein and metabolic levels. METHODS We collected peripheral blood samples from 60 women diagnosed with breast cancer undergoing aromatase inhibitor therapy, of whom 30 had AIMSS and 30 did not. The samples were analyzed using four-dimensional data-independent acquisition (DIA)-based proteomics and untargeted metabolomics, employing liquid chromatography-mass spectrometry (LC-MS) on the latest platform. RESULTS The mean age of participants was 49.2 (11.3) years in the AIMSS group and 50.1 (11.5) years in the non-AIMSS group. There were no statistically significant differences between the two groups in terms of age, BMI, education level, clinical stage, and treatment. In total, we identified 3473 proteins and 1247 metabolites in the samples. The chemokine signaling pathway (p = 0.015), cytokine-cytokine receptor interaction (p = 0.015), complement and coagulation cascades (p = 0.004), neuroactive ligand-receptor interaction (p = 0.004), and the estrogen signaling pathway (p = 0.004) were significant enriched in differentially expressed proteins (DEPs). GnRH secretion (p < 0.001), sphingolipid signaling pathways (p < 0.001), endocrine resistance (p < 0.001), the estrogen signaling pathway (p = 0.001), endocrine and other factor-regulated calcium reabsorption (p = 0.001), dopaminergic synapse (p = 0.003), regulation of lipolysis in adipocytes (p = 0.004), biosynthesis of cofactors (p = 0.004), thyroid hormone synthesis (p = 0.008), aldosterone synthesis and secretion (p = 0.001), taurine and hypotaurine metabolism (p = 0.011), ovarian steroidogenesis (p = 0.011), and the cAMP signaling pathway (p = 0.011) were significantly enriched in differentially expressed metabolites (DEMs). Complement C3 (p = 0.004), platelet factor 4 (p = 0.015), KRT10 (p = 0.004), KRT14 (p = 0.004), beta-estradiol (p = 0.019), testosterone (p = 0.023), sphingosine (p < 0.001), and 1-stearoyl-2-arachidonoyl-sn-glycerol (p = 0.039) could be the monitoring and therapeutic targets for AIMSS. CONCLUSIONS This study offered new insights into the mechanisms underlying musculoskeletal symptoms associated with aromatase inhibitors. It also highlighted potential biomarkers for predicting and addressing these symptoms in breast cancer patients, paving the way for improved intervention strategies.
Collapse
Affiliation(s)
- Feng Jing
- School of Nursing, Fudan University and Fudan University Centre for Evidence-Based Nursing: A Joanna Briggs Institute Centre of Excellence, Shanghai 200032, China; (F.J.); (L.J.); (Y.C.); (M.T.)
| | - Lingyun Jiang
- School of Nursing, Fudan University and Fudan University Centre for Evidence-Based Nursing: A Joanna Briggs Institute Centre of Excellence, Shanghai 200032, China; (F.J.); (L.J.); (Y.C.); (M.T.)
| | - Yuling Cao
- School of Nursing, Fudan University and Fudan University Centre for Evidence-Based Nursing: A Joanna Briggs Institute Centre of Excellence, Shanghai 200032, China; (F.J.); (L.J.); (Y.C.); (M.T.)
| | - Maoting Tian
- School of Nursing, Fudan University and Fudan University Centre for Evidence-Based Nursing: A Joanna Briggs Institute Centre of Excellence, Shanghai 200032, China; (F.J.); (L.J.); (Y.C.); (M.T.)
| | - Jiajia Qiu
- Department of Nursing Administration, Shanghai Cancer Center, Fudan University, Shanghai 200032, China;
| | - Jing Zhang
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai 200032, China;
| | - Lichen Tang
- Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Renquan Lu
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai 200032, China;
| | - Yan Hu
- School of Nursing, Fudan University and Fudan University Centre for Evidence-Based Nursing: A Joanna Briggs Institute Centre of Excellence, Shanghai 200032, China; (F.J.); (L.J.); (Y.C.); (M.T.)
| |
Collapse
|
2
|
Xu M, Legradi J, Leonards P. Using comprehensive lipid profiling to study effects of PFHxS during different stages of early zebrafish development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151739. [PMID: 34848268 DOI: 10.1016/j.scitotenv.2021.151739] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/05/2021] [Accepted: 11/13/2021] [Indexed: 05/26/2023]
Abstract
PFHxS (Perfluorohexane sulfonic acid) is one of the short-chain perfluoroalkyl substances (PFASs) which are widely used in many industrial and consumer applications. However, limited information is available on the molecular mechanism of PFHxS toxicity (e.g. lipid metabolism). This study provides in-depth information on the lipid regulation of zebrafish embryos with and without PFHxS exposure. Lipid changes throughout zebrafish development (4 to 120 h post fertilization (hpf)) were closely associated with lipid species and lipid composition (fatty acyl chains). A comprehensive lipid analysis of four different PFHxS exposures (0, 0.3, 1, 3, and 10 μM) at different zebrafish developmental stages (24, 48, 72, and 120 hpf) was performed. Data on exposure concentration, lipids, and developmental stage showed that all PFHxS concentrations dysregulated the lipid metabolism and these were developmental-dependent. The pattern of significantly changed lipids revealed that PFHxS caused effects related to oxidative stress, inflammation, and impaired fatty acid β-oxidation. Oxidative stress and inflammation caused the remodeling of glycerophospholipid (phosphatidylcholine (PC) and phosphatidylethanolamine (PE)), with increased incorporation of omega-3 PUFA and a decreased incorporation of omega-6 PUFA.
Collapse
Affiliation(s)
- Mengmeng Xu
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands.
| | - Jessica Legradi
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Pim Leonards
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
3
|
Murtaza B, Hichami A, Khan AS, Plesnik J, Sery O, Dietrich A, Birnbaumer L, Khan NA. Implication of TRPC3 channel in gustatory perception of dietary lipids. Acta Physiol (Oxf) 2021; 231:e13554. [PMID: 32882106 DOI: 10.1111/apha.13554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/09/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
AIM The pathogenesis of obesity has been associated with high intake of dietary fat, and some recent studies have explored the cellular mechanisms of oro-sensory detection of dietary fatty acids. We further assessed the role of transient receptor potential canonical (TRPC) channels in oro-sensory perception of dietary lipids. METHODS We determined by RT-qPCR and western blotting the expression of TRPC3/6/7 channels in mouse fungiform taste bud cells (mTBC). Immunocytochemistry was used to explore whether TRPC3 channels were co-expressed with fatty acid receptors. We employed wild-type (WT) mTBC, and those transfected with small interfering RNAs (siRNAs) against TRPC3 or STIM1. Ca2+ signalling was studied in TBC from TRPC3-/- mice and their WT littermates. RESULTS We demonstrate that mouse fungiform taste bud cells (mTBC) express TRPC3, but not TRPC6 or TRPC7 channels, and their inactivation by siRNA or experiments on TBC from TRPC3-/- mice brought about a decrease in fatty acid-induced gustatory Ca2+ signalling, coupled with taste bud CD36 lipid sensor. TRPC3 channel activation was found to be under the control of STIM1 in lingual mTBC. Behavioural studies showed that spontaneous preference for a dietary long-chain fatty acid was abolished in TRPC3-/- mice, and in mice wherein lingual TRPC3 expression was silenced by employing siRNA. CONCLUSION We report that lingual TRPC3 channels are critically involved in fat taste perception.
Collapse
Affiliation(s)
- Babar Murtaza
- U1231 INSERM/UB/AgroSup Physiologie de la Nutrition & Toxicologie Université de Bourgogne‐Franche Comté (UBFC) Dijon France
| | - Aziz Hichami
- U1231 INSERM/UB/AgroSup Physiologie de la Nutrition & Toxicologie Université de Bourgogne‐Franche Comté (UBFC) Dijon France
| | - Amira S. Khan
- U1231 INSERM/UB/AgroSup Physiologie de la Nutrition & Toxicologie Université de Bourgogne‐Franche Comté (UBFC) Dijon France
| | - Jiri Plesnik
- U1231 INSERM/UB/AgroSup Physiologie de la Nutrition & Toxicologie Université de Bourgogne‐Franche Comté (UBFC) Dijon France
- Laboratory of Neurobiology and Molecular Psychiatry Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
| | - Omar Sery
- Laboratory of Neurobiology and Molecular Psychiatry Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
- Laboratory of Neurobiology and Pathological Physiology Institute of Animal Physiology and Genetics Academy of Sciences of the Czech Republic Brno Czech Republic
| | - Alexander Dietrich
- Walther‐Straub‐Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL) LMU Munich Munich Germany
| | - Lutz Birnbaumer
- Neurobiology Laboratory National Institute of Environmental Health Sciences Research Triangle Park NC USA
- Institute of Biomedical Research (BIOMED) Catholic University of Argentina Buenos Aires Argentina
| | - Naim A. Khan
- U1231 INSERM/UB/AgroSup Physiologie de la Nutrition & Toxicologie Université de Bourgogne‐Franche Comté (UBFC) Dijon France
| |
Collapse
|
4
|
DHA induces Jurkat T-cell arrest in G2/M phase of cell cycle and modulates the plasma membrane expression of TRPC3/6 channels. Biochimie 2020; 181:169-175. [PMID: 33333171 DOI: 10.1016/j.biochi.2020.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/28/2020] [Accepted: 12/12/2020] [Indexed: 12/23/2022]
Abstract
We investigated whether docosahexaenoic acid (DHA), a dietary n-3 fatty acid, modulates calcium (Ca2+) signaling and cell cycle progression in human Jurkat T-cells. Our study demonstrates that DHA inhibited Jurkat T-cell cycle progression by blocking their passage from S phase to G2/M phase. In addition, DHA decreased the plasma membrane expression of TRPC3 and TRPC6 calcium channels during T-cell proliferation. Interestingly, this fatty acid increased plasma membrane expression of TRPC6 after 24 h of mitogenic stimulation by phorbol-13-myristate-12-acetate (PMA) and ionomycin. These variations in the membrane expression of TRPC3 and TRPC6 channels were not directly correlated with the mRNA expression, indicating that it was a post-translational phenomenon. DHA increased free intracellular calcium concentrations, [Ca2+]i, via opening TRPC3 and TRPC6 channels. We conclude that the anti-proliferative effect of DHA might involve the modulation of TRPC3 and TRPC6 channels in human T-cells.
Collapse
|
5
|
Miningou N, Blackwell KT. The road to ERK activation: Do neurons take alternate routes? Cell Signal 2020; 68:109541. [PMID: 31945453 PMCID: PMC7127974 DOI: 10.1016/j.cellsig.2020.109541] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/11/2020] [Accepted: 01/12/2020] [Indexed: 01/29/2023]
Abstract
The ERK cascade is a central signaling pathway that regulates a wide variety of cellular processes including proliferation, differentiation, learning and memory, development, and synaptic plasticity. A wide range of inputs travel from the membrane through different signaling pathway routes to reach activation of one set of output kinases, ERK1&2. The classical ERK activation pathway beings with growth factor activation of receptor tyrosine kinases. Numerous G-protein coupled receptors and ionotropic receptors also lead to ERK through increases in the second messengers calcium and cAMP. Though both types of pathways are present in diverse cell types, a key difference is that most stimuli to neurons, e.g. synaptic inputs, are transient, on the order of milliseconds to seconds, whereas many stimuli acting on non-neural tissue, e.g. growth factors, are longer duration. The ability to consolidate these inputs to regulate the activation of ERK in response to diverse signals raises the question of which factors influence the difference in ERK activation pathways. This review presents both experimental studies and computational models aimed at understanding the control of ERK activation and whether there are fundamental differences between neurons and other cells. Our main conclusion is that differences between cell types are quite subtle, often related to differences in expression pattern and quantity of some molecules such as Raf isoforms. In addition, the spatial location of ERK is critical, with regulation by scaffolding proteins producing differences due to colocalization of upstream molecules that may differ between neurons and other cells.
Collapse
Affiliation(s)
- Nadiatou Miningou
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 22030, United States of America
| | - Kim T Blackwell
- Interdisciplinary Program in Neuroscience and Bioengineering Department, George Mason University, Fairfax, VA 22030, United States of America.
| |
Collapse
|
6
|
Vartanian V, Tumova J, Dobrzyn P, Dobrzyn A, Nakabeppu Y, Lloyd RS, Sampath H. 8-oxoguanine DNA glycosylase (OGG1) deficiency elicits coordinated changes in lipid and mitochondrial metabolism in muscle. PLoS One 2017; 12:e0181687. [PMID: 28727777 PMCID: PMC5519207 DOI: 10.1371/journal.pone.0181687] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/04/2017] [Indexed: 12/04/2022] Open
Abstract
Oxidative stress resulting from endogenous and exogenous sources causes damage to cellular components, including genomic and mitochondrial DNA. Oxidative DNA damage is primarily repaired via the base excision repair pathway that is initiated by DNA glycosylases. 8-oxoguanine DNA glycosylase (OGG1) recognizes and cleaves oxidized and ring-fragmented purines, including 8-oxoguanine, the most commonly formed oxidative DNA lesion. Mice lacking the OGG1 gene product are prone to multiple features of the metabolic syndrome, including high-fat diet-induced obesity, hepatic steatosis, and insulin resistance. Here, we report that OGG1-deficient mice also display skeletal muscle pathologies, including increased muscle lipid deposition and alterations in genes regulating lipid uptake and mitochondrial fission in skeletal muscle. In addition, expression of genes of the TCA cycle and of carbohydrate and lipid metabolism are also significantly altered in muscle of OGG1-deficient mice. These tissue changes are accompanied by marked reductions in markers of muscle function in OGG1-deficient animals, including decreased grip strength and treadmill endurance. Collectively, these data indicate a role for skeletal muscle OGG1 in the maintenance of optimal tissue function.
Collapse
Affiliation(s)
- Vladimir Vartanian
- From the Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jana Tumova
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Pawel Dobrzyn
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - R. Stephen Lloyd
- From the Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Harini Sampath
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
- Rutgers Center for Lipid Research and Center for Digestive Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, United States of America
| |
Collapse
|
7
|
Wood PL, Medicherla S, Sheikh N, Terry B, Phillipps A, Kaye JA, Quinn JF, Woltjer RL. Targeted Lipidomics of Fontal Cortex and Plasma Diacylglycerols (DAG) in Mild Cognitive Impairment and Alzheimer's Disease: Validation of DAG Accumulation Early in the Pathophysiology of Alzheimer's Disease. J Alzheimers Dis 2016; 48:537-46. [PMID: 26402017 DOI: 10.3233/jad-150336] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Previous studies have demonstrated augmented levels of diacylglycerols (DAG) in the frontal cortex and plasma of Alzheimer's disease (AD) patients. We extended these findings from non-targeted lipidomics studies to design a lipidomics platform to interrogate DAGs and monoacylglycerols (MAG) in the frontal cortex and plasma of MCI subjects. Control subjects included both aged normal controls and controls with normal cognition, but AD pathology at autopsy, individuals termed non-demented AD neuropathology. DAGs with saturated, unsaturated, and polyunsaturated fatty acid substituents were found to be elevated in MCI frontal cortex and plasma. Tandem mass spectrometry of the DAGs did not reveal any differences in the distributions of the fatty acid substitutions between MCI and control subjects. While triacylglycerols were not altered in MCI subjects there were increases in MAG levels both in the frontal cortex and plasma. In toto, increased levels of DAGs and MAGs appear to occur early in AD pathophysiology and require both further validation in a larger patient cohort and elucidation of the lipidomics alteration(s) that lead to the accumulation of DAGs in MCI subjects.
Collapse
Affiliation(s)
- Paul L Wood
- Lipidomics Unit, Department of Physiology and Pharmacology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, USA
| | - Srikanth Medicherla
- Lipidomics Unit, Department of Physiology and Pharmacology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, USA
| | - Naveen Sheikh
- Lipidomics Unit, Department of Physiology and Pharmacology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, USA
| | - Bradley Terry
- Lipidomics Unit, Department of Physiology and Pharmacology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, USA
| | - Aaron Phillipps
- Lipidomics Unit, Department of Physiology and Pharmacology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, USA
| | - Jeffrey A Kaye
- Department of Neurology, Oregon Health Science University and Portland VA Medical Center, Portland, OR, USA
| | - Joseph F Quinn
- Department of Neurology, Oregon Health Science University and Portland VA Medical Center, Portland, OR, USA
| | - Randall L Woltjer
- Department of Neurology, Oregon Health Science University and Portland VA Medical Center, Portland, OR, USA
| |
Collapse
|
8
|
Hichami A, Grissa O, Mrizak I, Benammar C, Khan NA. Role of T-Cell Polarization and Inflammation and Their Modulation by n-3 Fatty Acids in Gestational Diabetes and Macrosomia. J Nutr Metab 2016; 2016:3124960. [PMID: 27313878 PMCID: PMC4897714 DOI: 10.1155/2016/3124960] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 04/10/2016] [Accepted: 05/05/2016] [Indexed: 01/04/2023] Open
Abstract
Th (T helper) cells are differentiated into either Th1 or Th2 phenotype. It is generally considered that Th1 phenotype is proinflammatory, whereas Th2 phenotype exerts anti-inflammatory or protective effects. Gestational diabetes mellitus (GDM) has been associated with a decreased Th1 phenotype, whereas macrosomia is marked with high expression of Th1 cytokines. Besides, these two pathological situations are marked with high concentrations of inflammatory mediators like tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), known to play a pivotal role in insulin resistance. Dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) may exert a beneficial effect by shifting Th1/Th2 balance to a Th2 phenotype and increasing insulin sensitivity. In this paper, we shed light on the role of T-cell malfunction that leads to an inflammatory and pathophysiological state, related to insulin resistance in GDM and macrosomia. We will also discuss the nutritional management of these pathologies by dietary n-3 polyunsaturated fatty acids (PUFAs).
Collapse
Affiliation(s)
- A. Hichami
- INSERM U866, Université de Bourgogne, 21000 Dijon, France
| | - O. Grissa
- INSERM U866, Université de Bourgogne, 21000 Dijon, France
- Service de Physiologie et Explorations Fonctionnelles, Faculté de Médecine de Sousse, 4000 Sousse, Tunisia
| | - I. Mrizak
- INSERM U866, Université de Bourgogne, 21000 Dijon, France
- Service de Physiologie et Explorations Fonctionnelles, Faculté de Médecine de Sousse, 4000 Sousse, Tunisia
| | - C. Benammar
- INSERM U866, Université de Bourgogne, 21000 Dijon, France
- Laboratoire des Produits Naturels (LAPRONA), Département de Biologie Moléculaire et Cellulaire, Faculté des Sciences, Université Abou Bekr Belkaid, 25000 Tlemcen, Algeria
| | - N. A. Khan
- INSERM U866, Université de Bourgogne, 21000 Dijon, France
| |
Collapse
|
9
|
Deng P, Zhong D, Wang X, Dai Y, Zhou L, Leng Y, Chen X. Analysis of diacylglycerols by ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry: Double bond location and isomers separation. Anal Chim Acta 2016; 925:23-33. [PMID: 27188314 DOI: 10.1016/j.aca.2016.04.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/18/2016] [Accepted: 04/22/2016] [Indexed: 02/02/2023]
Abstract
Diacylglycerols (DAGs) are important lipid intermediates and have been implicated in human diseases. Isomerism complicates their mass spectrometric analysis; in particular, it is difficult to identify fatty acid substituents and locate the double bond positions in unsaturated DAGs. We have developed an analytical strategy using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS) in conjunction with dimethyl disulfide (DMDS) derivatization and collision cross-section (CCS) measurement to characterize DAGs in biological samples. The method employs non-aqueous reversed-phase chromatographic separation and profile collision energy (CE) mode for MS(E) and MS/MS analyses. Three types of fragment ions were produced simultaneously. Hydrocarbon ions (m/z 50-200) obtained at high CE helped to distinguish unsaturated and saturated DAGs rapidly. Neutral loss ions and acylium ions (m/z 300-400) produced at low CE were used to identify fatty acid substituents. Informative methyl thioalkane fragment ions were used to locate the double bonds of unsaturated DAGs. Mono-methylthio derivatives were formed mainly by the reaction of DAGs with DMDS, where methyl thiol underwent addition to the first double bond farthest from the ester terminus of unsaturated fatty acid chains. The addition of CCS values maximized the separation of isomeric DAG species and improved the confidence of DAG identification. Fourteen DAGs were identified in mouse myotube cells based on accurate masses, characteristic fragment ions, DMDS derivatization, and CCS values.
Collapse
Affiliation(s)
- Pan Deng
- Centre for Drug Metabolism and Pharmacokinetics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201210, China
| | - Dafang Zhong
- Centre for Drug Metabolism and Pharmacokinetics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201210, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yulu Dai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Lei Zhou
- Centre for Drug Metabolism and Pharmacokinetics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201210, China
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xiaoyan Chen
- Centre for Drug Metabolism and Pharmacokinetics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201210, China.
| |
Collapse
|
10
|
Long chain n-3 polyunsaturated fatty acids increase the efficacy of docetaxel in mammary cancer cells by downregulating Akt and PKCε/δ-induced ERK pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:380-90. [DOI: 10.1016/j.bbalip.2016.01.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/15/2016] [Accepted: 01/22/2016] [Indexed: 12/21/2022]
|
11
|
Bomba L, Nicolazzi EL, Milanesi M, Negrini R, Mancini G, Biscarini F, Stella A, Valentini A, Ajmone-Marsan P. Relative extended haplotype homozygosity signals across breeds reveal dairy and beef specific signatures of selection. Genet Sel Evol 2015; 47:25. [PMID: 25888030 PMCID: PMC4383072 DOI: 10.1186/s12711-015-0113-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 03/19/2015] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND A number of methods are available to scan a genome for selection signatures by evaluating patterns of diversity within and between breeds. Among these, "extended haplotype homozygosity" (EHH) is a reliable approach to detect genome regions under recent selective pressure. The objective of this study was to use this approach to identify regions that are under recent positive selection and shared by the most representative Italian dairy and beef cattle breeds. RESULTS A total of 3220 animals from Italian Holstein (2179), Italian Brown (775), Simmental (493), Marchigiana (485) and Piedmontese (379) breeds were genotyped with the Illumina BovineSNP50 BeadChip v.1. After standard quality control procedures, genotypes were phased and core haplotypes were identified. The decay of linkage disequilibrium (LD) for each core haplotype was assessed by measuring the EHH. Since accurate estimates of local recombination rates were not available, relative EHH (rEHH) was calculated for each core haplotype. Genomic regions that carry frequent core haplotypes and with significant rEHH values were considered as candidates for recent positive selection. Candidate regions were aligned across to identify signals shared by dairy or beef cattle breeds. Overall, 82 and 87 common regions were detected among dairy and beef cattle breeds, respectively. Bioinformatic analysis identified 244 and 232 genes in these common genomic regions. Gene annotation and pathway analysis showed that these genes are involved in molecular functions that are biologically related to milk or meat production. CONCLUSIONS Our results suggest that a multi-breed approach can lead to the identification of genomic signatures in breeds of cattle that are selected for the same production goal and thus to the localisation of genomic regions of interest in dairy and beef production.
Collapse
Affiliation(s)
- Lorenzo Bomba
- Istituto di Zootecnica, UCSC, via Emilia Parmense 84, Piacenza, 29122, Italy.
| | - Ezequiel L Nicolazzi
- Fondazione Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, Lodi, 26900, Italy.
| | - Marco Milanesi
- Istituto di Zootecnica, UCSC, via Emilia Parmense 84, Piacenza, 29122, Italy.
| | - Riccardo Negrini
- Associazione Italiana Allevatori (AIA), Via Tomassetti 9, Rome, 00161, Italy.
| | - Giordano Mancini
- Center for Computational Chemistry and Cosmology, Scuola Normale Superiore, Via Consoli del Mare 2, Pisa, 56126, Italy.
| | - Filippo Biscarini
- Fondazione Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, Lodi, 26900, Italy.
| | - Alessandra Stella
- Fondazione Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, Lodi, 26900, Italy. .,Istituto di biologia e biotecnologia Agraria (IBBA-CNR), Consiglio Nazionale delle Ricerche, Via Einstein, Cascina Codazza, Lodi, 26900, Italy.
| | - Alessio Valentini
- Dipartimento per l'Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF), via de Lellis, Viterbo, 01100, Italy.
| | - Paolo Ajmone-Marsan
- Istituto di Zootecnica, UCSC, via Emilia Parmense 84, Piacenza, 29122, Italy.
| |
Collapse
|
12
|
Abstract
Long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) are recommended for management of patients with wide-ranging chronic diseases, including coronary heart disease, rheumatoid arthritis, dementia, and depression. Increased consumption of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is recommended by many health authorities to prevent (up to 0.5 g/day) or treat chronic disease (1.0 g/day for coronary heart disease; 1.2–4 g/day for elevated triglyceride levels). Recommendations for dietary intake of LC n-3 PUFAs are often provided for α-linolenic acid, and for the combination of EPA and DHA. However, many studies have also reported differential effects of EPA, DHA and their metabolites in the clinic and at the laboratory bench. The aim of this article is to review studies that have identified divergent responses to EPA and DHA, and to explore reasons for these differences. In particular, we review potential contributing factors such as differential membrane incorporation, modulation of gene expression, activation of signaling pathways and metabolite formation. We suggest that there may be future opportunity to refine recommendations for intake of individual LC n-3 PUFAs.
Collapse
Affiliation(s)
- Fraser D Russell
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4556, Australia.
| | | |
Collapse
|
13
|
Omega-3 fatty acids suppress Th2-associated cytokine gene expressions and GATA transcription factors in mast cells. J Nutr Biochem 2012; 24:868-76. [PMID: 22902330 DOI: 10.1016/j.jnutbio.2012.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 05/02/2012] [Accepted: 05/07/2012] [Indexed: 12/21/2022]
Abstract
Because the interaction between omega-3 fatty acids and mast cells has remained largely unknown in allergies, we investigated whether omega-3 fatty acids affect the activation of mast cells by examining Th2-associated cytokine production and possible molecular mechanisms. Alpha-linolenic acid and its metabolites including eicosapentaenoic acid and decosahexaenoic acid induced a dramatic decrease in the production of interleukin (IL)-4, IL-5 and IL-13 in a dose-dependent manner, as well as mRNA expression of their genes, in activated MC/9 mast cells and bone marrow-derived mast cells. The effects were comparable to those of cyclosporin A (1 μM), a well-known immunosuppressive agent. Nuclear expression of GATA binding protein-1 (GATA-1) and GATA binding protein-2 (GATA-2), essential transcription factors for mast cell activation, was also greatly suppressed. However, their mRNA expressions were not affected. In P815 mast cells, which do not express GATA-1, the suppressive effects on cytokines were abolished. On the contrary, omega-3 fatty acids had less significant effects on IL-4 and IL-5 and resulted in a slight decrease in IL-13 production in EL-4 T cells. Finally, oral administration of fish oil containing high level of omega-3 fatty acids significantly reduced the severity of dermatitis and the thickening of epidermis/dermis in a NC/Nga murine atopic model. The number of cells expressing CD117(+) and FcεRIα(+) was greatly decreased and GATA-1 expression in the cells was also diminished. Taken together, omega-3 fatty acids might target mast cells to a greater extent than T cells to suppress Th2 cytokine expression by inhibiting GATAs for alleviation of allergic disease.
Collapse
|
14
|
Carrillo C, Hichami A, Andreoletti P, Cherkaoui-Malki M, del Mar Cavia M, Abdoul-Azize S, Alonso-Torre SR, Khan NA. Diacylglycerol-containing oleic acid induces increases in [Ca2+]i via TRPC3/6 channels in human T-cells. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:618-26. [DOI: 10.1016/j.bbalip.2012.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 01/06/2012] [Accepted: 01/10/2012] [Indexed: 10/14/2022]
|
15
|
Abstract
Ras guanyl nucleotide releasing proteins (RasGRPs) are guanyl nucleotide exchange factors that activate Ras and related GTPases such as Rap. Like Sos proteins, RasGRPs have a catalytic region composed of a Ras exchange motif (REM) and a CDC25 domain. RasGRPs also possess a pair of atypical EF hands that may bind calcium in vivo and a C1 domain resembling the diacylglycerol (DAG)-binding domain of protein kinase C. DAG directly activates RasGRPs by a membrane recruitment mechanism as well as indirectly by PKC-mediated phosphorylation. RasGRPs are prominently expressed in blood cells. RasGRP1 acts downstream of TCR, while RasGRP1 and RasGRP3 both act downstream of BCR. Together, they regulate Ras in adaptive immune cells. RasGRP2, through Rap, plays a role in controlling platelet adhesion, while RasGRP4 controls Ras activation in mast cells. RasGRP malfunction likely contributes to autoimmunity and may contribute to blood malignancies. RasGRPs might prove to be viable drug targets. The intracellular site of RasGRP action and the relationship between RasGRPs and other Ras regulatory mechanisms are subjects of lively debate.
Collapse
Affiliation(s)
- James C Stone
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Kim W, Khan NA, McMurray DN, Prior IA, Wang N, Chapkin RS. Regulatory activity of polyunsaturated fatty acids in T-cell signaling. Prog Lipid Res 2010; 49:250-61. [PMID: 20176053 PMCID: PMC2872685 DOI: 10.1016/j.plipres.2010.01.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 01/06/2010] [Accepted: 01/19/2010] [Indexed: 12/25/2022]
Abstract
n-3 Polyunsaturated fatty acids (PUFA) are considered to be authentic immunosuppressors and appear to exert beneficial effects with respect to certain immune-mediated diseases. In addition to promoting T-helper 1 (Th1) cell to T-helper 2 (Th2) cell effector T-cell differentiation, n-3 PUFA may also exert anti-inflammatory actions by inducing apoptosis in Th1 cells. With respect to mechanisms of action, effects range from the modulation of membrane receptors to gene transcription via perturbation of a number of second messenger cascades. In this review, the putative targets of anti-inflammatory n-3 PUFA, activated during early and late events of T-cell activation will be discussed. Studies have demonstrated that these fatty acids alter plasma membrane micro-organization (lipid rafts) at the immunological synapse, the site where T-cells and antigen-presenting cells (APC) form a physical contact for antigen initiated T-cell signaling. In addition, the production of diacylglycerol and the activation of different isoforms of protein kinase C (PKC), mitogen-activated protein kinase (MAPK), calcium signaling, and nuclear translocation/activation of transcriptional factors, can be modulated by n-3 PUFA. Advantages and limitations of diverse methodologies to study the membrane lipid raft hypothesis, as well as apparent contradictions regarding the effect of n-3 PUFA on lipid rafts will be critically presented.
Collapse
Affiliation(s)
- Wooki Kim
- Program in Integrative Nutrition and Complex Diseases, Center for Environmental and Rural Health, Texas A&M University, USA
| | | | | | | | | | | |
Collapse
|
17
|
Akhtar Khan N. Polyunsaturated fatty acids in the modulation of T-cell signalling. Prostaglandins Leukot Essent Fatty Acids 2010; 82:179-87. [PMID: 20189788 DOI: 10.1016/j.plefa.2010.02.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Indexed: 11/25/2022]
Abstract
n-3 polyunsaturated fatty acids (PUFA) have been shown to modulate immune responses. These agents, being considered as adjuvant immunosuppressants, have been used in the treatment of various inflammatory and autoimmune diseases. However, the molecular mechanisms of action of n-3 PUFA-induced immunosuppressive effects are not well-understood. Since exogenous n-3 PUFA, under in vitro and in vivo conditions, are efficiently incorporated into T-cell plasma membranes, a number of recent studies have demonstrated that these agents may modulate T-cell signalling. In this review, the interactions of n-3 PUFA with the second messenger cascade initiated during early and late events of T-cell activation are discussed. We particularly focus on how these fatty acids can modulate the production of diacylglycerol and the activation of protein kinase C, mitogen activated protein kinase, calcium signalling and translocation of transcriptional factors, implicated in the regulation of gene transcription in T-cells.
Collapse
Affiliation(s)
- Naim Akhtar Khan
- University of Burgundy, Department of Physiology, UPRES EA4183 Lipids and Cell Signalling, Faculty of Life Sciences, Dijon, France.
| |
Collapse
|
18
|
Stamatov SD, Stawinski J. O-Silylated C3-halohydrins as a novel class of protected building blocks for total, regio- and stereocontrolled synthesis of glycerolipid frameworks. Org Biomol Chem 2010; 8:463-77. [DOI: 10.1039/b915533c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Enteral Nutrition with Anti-inflammatory Lipids in ALI/ARDS. Intensive Care Med 2009. [DOI: 10.1007/978-0-387-92278-2_64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Khan NA. Role of lipids and fatty acids in macrosomic offspring of diabetic pregnancy. Cell Biochem Biophys 2007; 48:79-88. [PMID: 17709877 DOI: 10.1007/s12013-007-0019-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/21/2022]
Abstract
Diabetic pregnancy frequently results in macrosomia or fetal obesity. It seems that the anomalies in carbohydrate and lipid metabolism in macrosomic infants of diabetic mothers are due to maternal hyperglycemia, which leads to fetal hyperinsulinemia. We have developed a rat model of macrosomic offspring and assessed the onset of obesity in these animals. The macrosomic offspring born to diabetic mothers are prone to the development of glucose intolerance and obesity as a function of age. It seems that in utero programming during diabetic pregnancy creates a "metabolic memory" which is responsible for the development of obesity in macrosomic offspring. We have demonstrated that the metabolism of lipids, and altered anti-oxidant status and immune system are implicated in the etiopathology of obesity in these animals. We have reported beneficial effects of n-3 polyunsaturated fatty acids (PUFAs) in obese animals, born to diabetic dams.
Collapse
Affiliation(s)
- Naim Akhtar Khan
- Department of Physiology, UPRES Lipides & Signalisation Cellulaire, Université de Bourgogne, Dijon, France.
| |
Collapse
|
21
|
Aires V, Hichami A, Boulay G, Khan NA. Activation of TRPC6 calcium channels by diacylglycerol (DAG)-containing arachidonic acid: A comparative study with DAG-containing docosahexaenoic acid. Biochimie 2007; 89:926-37. [PMID: 17532549 DOI: 10.1016/j.biochi.2006.10.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Accepted: 10/27/2006] [Indexed: 11/29/2022]
Abstract
We synthesized a diacylglycerol (DAG)-containing arachidonic acid, i.e., 1-stearoyl-2-arachidonyl-sn-glycerol (SAG), and studied its implication in the modulation of canonical transient receptor potential sub-type 6 (TRPC6) channels in stably-transfected HEK-293 cells. SAG induced the influx of Ca(2+), and also of other bivalent cations like Ba(2+) and Sr(2+), in these cells. SAG-evoked Ca(2+) influx was not due to its metabolites as inhibitors of DAG-lipase (RHC80267) and DAG-kinase (R50922) failed to inhibit the response of the same. To emphasise that SAG exerts its action via its DAG configuration, but not due to the presence of stearic acid at sn-1 position, we synthesized 1-palmitoyl-2-arachidonyl-sn-glycerol (PAG). PAG-induced increases in [Ca(2+)](i) were not significantly different from those induced by SAG. For the comparative studies, we also synthesized the DAG-containing docosahexaenoic acid, i.e., 1-stearoyl-2-docosahexaenoyl-sn-glycerol (SDG). We observed that SDG and 1,2-dioctanoyl-sn-glycerol (DOG), a DAG analogue, also evoked increases in [Ca(2+)](i), which were lesser than those evoked by SAG. However, activation of TRPC6 channels by all the DAG molecular species (SAG, DOG and SDG) required Src kinases as the tyrosine kinase inhibitors, PP2 and SU6656, significantly attenuated the increases in [Ca(2+)](i) evoked by these agents. Moreover, disruption of lipid rafts with methyl-beta-cyclodextrin completely abolished SAG-, DOG- and SDG-induced increases in [Ca(2+)](i). The present study shows that SAG as well as SDG and DOG stimulate Ca(2+) influx through the activation of TRPC6 calcium channels which are regulated by Src kinases and intact lipid raft domains.
Collapse
Affiliation(s)
- Virginie Aires
- Département de Physiologie, UPRES Lipides and Nutrition, Université de Bourgogne, Faculté des Sciences de la Vie, 6 Boulevard Gabriel, 2100 Dijon, France
| | | | | | | |
Collapse
|
22
|
Beaulieu N, Zahedi B, Goulding RE, Tazmini G, Anthony KV, Omeis SL, de Jong DR, Kay RJ. Regulation of RasGRP1 by B cell antigen receptor requires cooperativity between three domains controlling translocation to the plasma membrane. Mol Biol Cell 2007; 18:3156-68. [PMID: 17567957 PMCID: PMC1949348 DOI: 10.1091/mbc.e06-10-0932] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
RasGRP1 is a Ras-activating exchange factor that is positively regulated by translocation to membranes. RasGRP1 contains a diacylglycerol-binding C1 domain, and it has been assumed that this domain is entirely responsible for RasGRP1 translocation. We found that the C1 domain can contribute to plasma membrane-targeted translocation of RasGRP1 induced by ligation of the B cell antigen receptor (BCR). However, this reflects cooperativity of the C1 domain with the previously unrecognized Plasma membrane Targeter (PT) domain, which is sufficient and essential for plasma membrane targeting of RasGRP1. The adjacent suppressor of PT (SuPT) domain attenuates the plasma membrane-targeting activity of the PT domain, thus preventing constitutive plasma membrane localization of RasGRP1. By binding to diacylglycerol generated by BCR-coupled phospholipase Cgamma2, the C1 domain counteracts the SuPT domain and enables efficient RasGRP1 translocation to the plasma membrane. In fibroblasts, the PT domain is inactive as a plasma membrane targeter, and the C1 domain specifies constitutive targeting of RasGRP1 to internal membranes where it can be activated and trigger oncogenic transformation. Selective use of the C1, PT, and SuPT domains may contribute to the differential targeting of RasGRP1 to the plasma membrane versus internal membranes, which has been observed in lymphocytes and other cell types.
Collapse
Affiliation(s)
- Nadine Beaulieu
- Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, BC, Canada V5Z 1L3
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Almost three decades after the discovery of protein kinase C (PKC), we still have only a partial understanding of how this family of serine/threonine kinases is involved in tumour promotion. PKC isozymes - effectors of diacylglycerol (DAG) and the main targets of phorbol-ester tumour promoters - have important roles in cell-cycle regulation, cellular survival, malignant transformation and apoptosis. How do PKC isozymes regulate these diverse cellular processes and what are their contributions to carcinogenesis? Moreover, what is the contribution of all phorbol-ester effectors, which include PKCs and small G-protein regulators? We now face the challenge of dissecting the relative contribution of each DAG signal to cancer progression.
Collapse
Affiliation(s)
- Erin M Griner
- Department of Pharmacology and Institute for Translational Medicine and Therapeutics (ITMAT), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160, USA
| | | |
Collapse
|
24
|
Han S, Knoepp SM, Hallman MA, Meier KE. RasGRP1 confers the phorbol ester-sensitive phenotype to EL4 lymphoma cells. Mol Pharmacol 2007; 71:314-22. [PMID: 17065239 DOI: 10.1124/mol.106.028639] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The murine EL4 lymphoma cell line exists in variants that are either sensitive or resistant to the tumor promoter phorbol 12-myristate 13-acetate (PMA). In sensitive EL4 cells, PMA causes robust Erk mitogen-activated protein kinase activation that results in growth arrest. In resistant cells, PMA induces minimal Erk activation, without growth arrest. PMA stimulates IL-2 production in sensitive, but not resistant, cells. The role of RasGRP1, a PMA-activated guanine nucleotide exchange factor for Ras, in EL4 phenotype was examined. Endogenous RasGRP1 protein is expressed at much higher levels in sensitive than in resistant cells. PMA-induced Ras activation is observed in sensitive cells but not in resistant cells lacking Ras-GRP1. PMA induces down-regulation of RasGRP1 protein in sensitive cells but increases RasGRP1 in resistant cells. Transfection of RasGRP1 into resistant cells enhances PMA-induced Erk activation. In the reverse experiment, introduction of small interfering RNA (siRNA) for RasGRP1 suppresses PMA-induced Ras and Erk activations in sensitive cells. Sensitive cells incubated with siRNA for RasGRP1 exhibit the PMA-resistant phenotype, in that they are able to proliferate in the presence of PMA and do not secrete IL-2 when stimulated with PMA. These studies indicate that the PMA-sensitive phenotype, as previously defined for the EL4 cell line, is conferred by endogenous expression of RasGRP1 protein.
Collapse
Affiliation(s)
- Shujie Han
- Department of Pharmaceutical Sciences, Washington State University, Pullman, WA 99164-6534, USA
| | | | | | | |
Collapse
|
25
|
Khan NA, Nishimura K, Aires V, Yamashita T, Oaxaca-Castillo D, Kashiwagi K, Igarashi K. Docosahexaenoic acid inhibits cancer cell growth via p27Kip1, CDK2, ERK1/ERK2, and retinoblastoma phosphorylation. J Lipid Res 2006; 47:2306-13. [PMID: 16847309 DOI: 10.1194/jlr.m600269-jlr200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Docosahexaenoic acid (DHA), a PUFA of the n-3 family, inhibited the growth of FM3A mouse mammary cancer cells by arresting their progression from the late-G(1) to the S phase of the cell cycle. DHA upregulated p27(Kip1) levels by inhibiting phosphorylation of mitogen-activated protein (MAP) kinases, i.e., ERK1/ERK2. Indeed, inhibition of ERK1/ERK2 phosphorylation by DHA, U0126 [chemical MAPK extracellularly signal-regulated kinase kinase (MEK) inhibitor], and MEK(SA) (cells expressing dominant negative constructs of MEK) resulted in the accumulation of p27(Kip1). MAP kinase (MAPK) inhibition by DHA did not increase p27(Kip1) mRNA levels. Rather, this fatty acid stabilized p27(Kip1) contents and inhibited MAPK-dependent proteasomal degradation of this protein. DHA also diminished cyclin E phosphorylation, cyclin-dependent kinase-2 (CDK2) activity, and phosphorylation of retinoblastoma protein in these cells. Our study shows that DHA arrests cell growth by modulating the phosphorylation of cell cycle-related proteins.
Collapse
Affiliation(s)
- Naim A Khan
- Unité Propre de Recherche de l'Enseignement Supérieure-Lipides & Nutrition, Faculty of Life Sciences, University of Burgundy, Dijon, France.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW The aim of this paper is to describe recent relevant literature concerning the role of n-3 lipids derived from fish oil in clinical nutrition in an intensive care setting. RECENT FINDINGS N-3 fatty acids compete with arachidonic acid for metabolism to lipid mediators and exert profound effects on second mediator generation and dependent cellular functions. In experimental models, dietary and parenteral use of fish oil was shown to protect the gut by increasing its perfusion. In contrast, use of immunonutrition including fish oil in critical ill patients or patients with severe sepsis may exert an excess mortality. Using parenteral fish oil in surgical patients promising data became available. In septic patients, immunologic effects of fish oil-based lipid emulsions have been found and intravenous supplementation with fish oil may have a beneficial impact on mortality and length of stay. For both patient groups, however, prospective data from randomized trials are lacking. SUMMARY N-3 lipids exhibit strong immunologic properties. They offer the possibility to counterbalance the negative effects of conventional n-6 fatty acids. Recent studies exhibit positive effects of intravenous use of fish oil on immunologic functions and clinical parameters in surgical and septic patients.
Collapse
Affiliation(s)
- Konstantin Mayer
- Lung Center, Department of Internal Medicine II, University of Giessen, Giessen, Germany.
| | | | | |
Collapse
|
27
|
Jackson MF, Konarski JZ, Weerapura M, Czerwinski W, MacDonald JF. Protein kinase C enhances glycine-insensitive desensitization of NMDA receptors independently of previously identified protein kinase C sites. J Neurochem 2006; 96:1509-18. [PMID: 16417568 DOI: 10.1111/j.1471-4159.2006.03651.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein kinase C (PKC) phosphorylates the NR1 and NR2A subunits of NMDARs at consensus sites located within their intracellular C-terminal tails. However, the functional consequences of these biochemical events are not well understood. In HEK293 cells expressing NR1/NR2A, activation of endogenous PKC by 4beta-phorbol 12-myristate 13-acetate (PMA) increased NMDAR desensitization as evidenced by a reduced steady-state current without any change in peak. The effects of PMA on NMDAR-mediated responses were prevented by specific PKC inhibitors and were not mimicked by an inactive enantiomer of PMA. The effects of PMA were preserved despite mutagenesis of the major PKC sites on the NR1 subunit (S889A, S890A, S896A and S897A) or removal of the entire NR1 C-terminal tail (NR1(stop838)). When co-expressing NR1(stop838)/NR2A the effects of PMA could only be observed with agonist concentrations sufficient to induce glycine-insensitive desensitization. Moreover, the effects of PMA were observed in receptors composed of NR1/NR2A and NR1/NR2B, but not NR1/NR2C, a subunit combination in which desensitization is absent. The NR2 subunit dependence suggested that the actions of PMA might require specific PKC sites previously identified within NR2A. However, a C-terminal truncated form of NR2A (NR2A(stop905)) remained responsive to PMA. We conclude that activation of PKC increases NMDAR glycine-insensitive desensitization independently of previously identified sites located within the NR1 C-terminus and distal segment of the NR2A C-terminus.
Collapse
|
28
|
Wyke SM, Tisdale MJ. Induction of protein degradation in skeletal muscle by a phorbol ester involves upregulation of the ubiquitin-proteasome proteolytic pathway. Life Sci 2005; 78:2898-910. [PMID: 16343552 DOI: 10.1016/j.lfs.2005.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 11/09/2005] [Indexed: 10/25/2022]
Abstract
Although muscle atrophy is common to a number of disease states there is incomplete knowledge of the cellular mechanisms involved. In this study murine myotubes were treated with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) to evaluate the role of protein kinase C (PKC) as an upstream intermediate in protein degradation. TPA showed a parabolic dose-response curve for the induction of total protein degradation, with an optimal effect at a concentration of 25 nM, and an optimal incubation time of 3 h. Protein degradation was attenuated by co-incubation with the proteasome inhibitor lactacystin (5 microM), suggesting that it was mediated through the ubiquitin-proteasome proteolytic pathway. TPA induced an increased expression and activity of the ubiquitin-proteasome pathway, as evidenced by an increased functional activity, and increased expression of the 20S proteasome alpha-subunits, the 19S subunits MSS1 and p42, as well as the ubiquitin conjugating enzyme E2(14k), also with a maximal effect at a concentration of 25 nM and with a 3 h incubation time. There was also a reciprocal decrease in the cellular content of the myofibrillar protein myosin. TPA induced activation of PKC maximally at a concentration of 25 nM and this effect was attenuated by the PKC inhibitor calphostin C (300 nM), as was also total protein degradation. These results suggest that stimulation of PKC in muscle cells initiates protein degradation through the ubiquitin-proteasome pathway. TPA also induced degradation of the inhibitory protein, I-kappaBalpha, and increased nuclear accumulation of nuclear factor-kappaB (NF-kappaB) at the same time and concentrations as those inducing proteasome expression. In addition inhibition of NF-kappaB activation by resveratrol (30 microM) attenuated protein degradation induced by TPA. These results suggest that the induction of proteasome expression by TPA may involve the transcription factor NF-kappaB.
Collapse
Affiliation(s)
- S M Wyke
- Biomedicinal Chemistry Research Group, School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | | |
Collapse
|
29
|
Hichami A, Morin C, Rousseau E, Khan NA. Diacylglycerol-Containing Docosahexaenoic Acid in Acyl Chain Modulates Airway Smooth Muscle Tone. Am J Respir Cell Mol Biol 2005; 33:378-86. [PMID: 15961724 DOI: 10.1165/rcmb.2005-0136oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We synthesized and assessed the role of a diacylglycerol (DAG)-containing docosahexaenoic acid (DHA), that is, 1-stearoyl-2-docosahexaenoyl-sn-glycerol (SDHG), in the contraction of guinea pig airway smooth muscle (ASM). We compared its action with 1-stearoyl-2-arachidonoyl-sn-glycerol (SAG) and 1,2-dioctanoyl-sn-glycerol (1,2-DiC8), a stable DAG analog. The three DAGs (SAG, SDHG, and 1,2-DiC8) induced reversible concentration-dependent contraction of ASM. SDHG induced higher guinea pig ASM contraction than did SAG and 1,2-DiC8. The effects of SDHG were blocked, to different extents, by nifedipine (L-type Ca2+ channel blocker). By employing GF-109203X (protein kinase C [PKC] inhibitor) and lanthanum (La3+), a nonselective cation channel blocker, we observed that SDHG evoked ASM contractile response via PKC-dependent and PKC-independent (but Ca2+-dependent) pathways. Interestingly, SAG exerted its action only by increasing [Ca2+]i and did not require PKC activation. To probe the implication of calcium mobilization, we employed thapsigargin (TG), which also induced ASM contraction in a calcium-dependent manner. SDHG and 1,2-DiC8, in a PKC-dependent manner, induced the phosphorylation of CPI-17 (myosin light chain phosphatase inhibitor of 17 kD). Furthermore, SAG and TG failed to phosphorylate CPI-17 in ASM cells. Our results suggest that different DAG species, produced during a dietary supplementation with fatty acids, could modulate the reactivity of airway smooth muscles in a PKC-dependent and -independent manner, and hence, may play a critical role in health and disease.
Collapse
Affiliation(s)
- Aziz Hichami
- Département-Physiologie, Immunologie et Neurosciences, UPRES Lipides et Nutrition, Faculté des Sciences de la Vie, 21000 Dijon, France
| | | | | | | |
Collapse
|
30
|
Abstract
Research in the past decade has revealed that many cytosolic proteins are recruited to different cellular membranes to form protein-protein and lipid-protein interactions during cell signaling and membrane trafficking. Membrane recruitment of these peripheral proteins is mediated by a growing number of modular membrane-targeting domains, including C1, C2, PH, FYVE, PX, ENTH, ANTH, BAR, FERM, and tubby domains, that recognize specific lipid molecules in the membranes. Structural studies of these membrane-targeting domains demonstrate how they specifically recognize their cognate lipid ligands. However, the mechanisms by which these domains and their host proteins are recruited to and interact with various cell membranes are only beginning to unravel with recent computational studies, in vitro membrane binding studies using model membranes, and cellular translocation studies using fluorescent protein-tagged proteins. This review summarizes the recent progress in our understanding of how the kinetics and energetics of membrane-protein interactions are regulated during the cellular membrane targeting and activation of peripheral proteins.
Collapse
Affiliation(s)
- Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607-7061, USA.
| | | |
Collapse
|
31
|
Madsen L, Petersen RK, Kristiansen K. Regulation of adipocyte differentiation and function by polyunsaturated fatty acids. Biochim Biophys Acta Mol Basis Dis 2005; 1740:266-86. [PMID: 15949694 DOI: 10.1016/j.bbadis.2005.03.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 02/23/2005] [Accepted: 03/02/2005] [Indexed: 12/11/2022]
Abstract
A diet enriched in PUFAs, in particular of the n-3 family, decreases adipose tissue mass and suppresses development of obesity in rodents. Although several nuclear hormone receptors are identified as PUFA targets, the precise molecular mechanisms underlying the effects of PUFAs still remain to be elucidated. Here we review research aimed at elucidating molecular mechanisms governing the effects of PUFAs on the differentiation and function of white fat cells. This review focuses on dietary PUFAs as signaling molecules, with special emphasis on agonistic and antagonistic effects on transcription factors currently implicated as key players in adipocyte differentiation and function, including peroxisome proliferator activated receptors (PPARs) (alpha, beta and gamma), sterol regulatory element binding proteins (SREBPs) and liver X receptors (LXRs). We review evidence that dietary n-3 PUFAs decrease adipose tissue mass and suppress the development of obesity in rodents by targeting a set of key regulatory transcription factors involved in both adipogensis and lipid homeostasis in mature adipocytes. The same set of factors are targeted by PUFAs of the n-6 family, but the cellular/physiological responses are dependent on the experimental setting as n-6 PUFAs may exert either an anti- or a proadipogenic effect. Feeding status and hormonal background may therefore be of particular importance in determining the physiological effects of PUFAs of the n-6 family.
Collapse
Affiliation(s)
- Lise Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | | | | |
Collapse
|
32
|
Verlengia R, Gorjão R, Kanunfre CC, Bordin S, de Lima TM, Martins EF, Newsholme P, Curi R. Effects of EPA and DHA on proliferation, cytokine production, and gene expression in Raji cells. Lipids 2004; 39:857-64. [PMID: 15669761 DOI: 10.1007/s11745-004-1307-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of EPA and DHA on the function and gene expression of a B-lymphocyte cell line (Raji) were investigated. Proliferation; production of interleukin-10 (IL-10), tumor necrosis factor (TNF)-alpha, and interferon (INF)-gamma; and expression of pleiotropic genes were evaluated. Cell proliferation was increased in the presence of 12.5 microM EPA (approximately twofold) and 12.5 microM DHA (approximately 1.5-fold). EPA and DHA (25 microM) also decreased production of the key immunoregulatory cytokines IL-10, TNF-alpha, and INF-gamma. EPA and DHA changed the expression of specific genes, but this effect was more marked for EPA (25.9% of genes investigated) compared with DHA (8.4% of genes investigated). EPA and DHA affected the expression of genes clustered as: cytokines, signal transduction, transcription, cell cycle, defense and repair, apoptosis, cell adhesion, cytoskeleton, and hormones. The most remarkable changes were observed in the genes of signal transduction and transcription. These results led us to conclude that the mechanism of DHA and EPA effects on B-lymphocyte functions includes regulation of gene expression. Thus, the ingestion of fish oil, a rich source of EPA and DHA, may have a strong effect on B-lymphocyte function in vivo. However, remarkable differences were observed between DHA and EPA, demonstrating that specific effects of these FA may be responsible for the marked differences in edible oil effects on immune function in vivo reported by others.
Collapse
Affiliation(s)
- Rozangela Verlengia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Denys A, Aires V, Hichami A, Khan NA. Thapsigargin-stimulated MAP kinase phosphorylation via CRAC channels and PLD activation: inhibitory action of docosahexaenoic acid. FEBS Lett 2004; 564:177-82. [PMID: 15094063 DOI: 10.1016/s0014-5793(04)00361-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 03/09/2004] [Accepted: 03/11/2004] [Indexed: 11/17/2022]
Abstract
This study was conducted on human Jurkat T-cells to investigate the role of depletion of intracellular Ca(2+) stores in the phosphorylation of two mitogen-activated protein kinases (MAPKs), i.e. extracellular signal-regulated kinase (ERK) 1 and ERK2, and their modulation by a polyunsaturated fatty acid, docosahexaenoic acid (DHA). We observed that thapsigargin (TG) stimulated MAPK activation by store-operated calcium (SOC) influx via opening of calcium release-activated calcium (CRAC) channels as tyrphostin-A9, a CRAC channel blocker, and two SOC influx inhibitors, econazole and SKF-96365, diminished the action of the former. TG-stimulated ERK1/ERK2 phosphorylation was also diminished in buffer containing EGTA, a calcium chelator, further suggesting the implication of calcium influx in MAPK activation in these cells. Moreover, TG stimulated the production of diacylglycerol (DAG) by activating phospholipase D (PLD) as propranolol (PROP) (a PLD inhibitor), but not U73122 (a phospholipase C inhibitor), inhibited TG-evoked DAG production in these cells. DAG production and protein kinase C (PKC) activation were involved upstream of MAPK activation as PROP and GF109203X, a PKC inhibitor, abolished the action of TG on ERK1/ERK2 phosphorylation. Furthermore, DHA seems to act by inhibiting PKC activation as this fatty acid diminished TG- and phorbol 12-myristate 13-acetate-induced ERK1/ERK2 phosphorylation in these cells. Together these results suggest that Ca(2+) influx via CRAC channels is implicated in PLD/PKC/MAPK activation which may be a target of physiological agents such as DHA.
Collapse
Affiliation(s)
- Anne Denys
- Département de Physiologie, UPRES Lipides et Nutrition, Université de Bourgogne, Faculté des Sciences de la Vie, 6 Boulevard Gabriel, 21000 Dijon, France
| | | | | | | |
Collapse
|