1
|
Fan Y, Lu D. The Ikaros family of zinc-finger proteins. Acta Pharm Sin B 2016; 6:513-521. [PMID: 27818917 PMCID: PMC5071621 DOI: 10.1016/j.apsb.2016.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022] Open
Abstract
Ikaros represents a zinc-finger protein family important for lymphocyte development and certain other physiological processes. The number of family members is large, with alternative splicing producing various additional isoforms from each of the five homologous genes in the family. The functional forms of Ikaros proteins could be even more diverse due to protein–protein interactions readily established between family members. Emerging evidence suggests that targeting Ikaros proteins is feasible and effective in therapeutic applications, although the exact roles of Ikaros proteins remain elusive within the intricate regulatory networks in which they are involved. In this review we collect existing knowledge as to the functions, regulatory pathways, and molecular mechanisms of this family of proteins in an attempt to gain a better understanding through the comparison of activities and interactions among family members.
Collapse
|
2
|
Kwok JC, Perdomo J, Chong BH. Identification of a monopartite sequence in PU.1 essential for nuclear import, DNA-binding and transcription of myeloid-specific genes. J Cell Biochem 2008; 101:1456-74. [PMID: 17340619 DOI: 10.1002/jcb.21264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Ets transcription factor PU.1 is an essential regulator of normal hematopoiesis, especially within the myeloid lineage. As such, endogenous PU.1 predominantly localizes to the nucleus of mammalian cells to facilitate gene regulation. However, to date, little is known regarding the mechanisms of PU.1 nuclear transport. We found, using HeLa and RAW 264.7 macrophage cells, that PU.1 enters the nucleus via passive diffusion and active transport. The latter can be facilitated by: (i) the classical pathway requiring importin alpha and beta; (ii) the non-classical pathway requiring only importin beta; or (iii) direct interaction with nucleoporins. A group of six positively charged lysine or arginine residues within the Ets DNA-binding domain was determined to be crucial in active nuclear import. These residues directly interact with importin beta to facilitate a predominantly non-classical import pathway. Furthermore, luciferase reporter assays demonstrated that these same six amino acids are crucial for PU.1-mediated transcriptional activation of myeloid-specific genes. Indeed, these residues may represent a consensus sequence vital for nuclear import, DNA-binding and transcriptional activity of Ets family members. By identifying and characterizing the mechanisms of PU.1 nuclear import and the specific amino acids involved, this report may provide insights into the molecular basis of diseases.
Collapse
Affiliation(s)
- Juliana C Kwok
- Centre for Thrombosis and Vascular Research, Department of Medicine, St. George Clinical School, University of New South Wales, Sydney, New South Wales, Australia.
| | | | | |
Collapse
|
3
|
Brayer KJ, Segal DJ. Keep your fingers off my DNA: protein-protein interactions mediated by C2H2 zinc finger domains. Cell Biochem Biophys 2008; 50:111-31. [PMID: 18253864 DOI: 10.1007/s12013-008-9008-5] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 12/28/2007] [Indexed: 11/28/2022]
Abstract
Cys2-His2 (C2H2) zinc finger domains (ZFs) were originally identified as DNA-binding domains, and uncharacterized domains are typically assumed to function in DNA binding. However, a growing body of evidence suggests an important and widespread role for these domains in protein binding. There are even examples of zinc fingers that support both DNA and protein interactions, which can be found in well-known DNA-binding proteins such as Sp1, Zif268, and Ying Yang 1 (YY1). C2H2 protein-protein interactions (PPIs) are proving to be more abundant than previously appreciated, more plastic than their DNA-binding counterparts, and more variable and complex in their interactions surfaces. Here we review the current knowledge of over 100 C2H2 zinc finger-mediated PPIs, focusing on what is known about the binding surface, contributions of individual fingers to the interaction, and function. An accurate understanding of zinc finger biology will likely require greater insights into the potential protein interaction capabilities of C2H2 ZFs.
Collapse
Affiliation(s)
- Kathryn J Brayer
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
4
|
Sridharan R, Smale ST. Predominant interaction of both Ikaros and Helios with the NuRD complex in immature thymocytes. J Biol Chem 2007; 282:30227-38. [PMID: 17681952 DOI: 10.1074/jbc.m702541200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ikaros is the founding member of a small family of C2H2 zinc-finger DNA-binding proteins that carry out critical functions during lymphocyte development. Although interactions between Ikaros and various proteins have been reported, Ikaros-containing complexes have not been purified to determine their composition and identify the predominant interacting partners. In this study, a tandem affinity purification-mass spectrometry strategy was developed for the isolation of complexes formed by Ikaros and by Helios, a T-cell-restricted member of the Ikaros family that remains largely uncharacterized. This strategy, which appears to be well suited for general use in mammalian cells, relies on an N-terminal polypeptide containing a double FLAG epitope, followed by a tobacco etch virus protease cleavage site and calmodulin binding peptide. In extracts from a murine thymocyte line, Ikaros and Helios associated under moderate stringency conditions only with other members of the Ikaros family. However, under low stringency conditions, both tagged proteins assembled into higher molecular weight complexes. Mass spectrometry revealed that both proteins associated predominantly with subunits of NuRD, an ATP-dependent nucleosome remodeling complex implicated in transcriptional repression and activation and previously reported to associate with Ikaros. Further analysis of the affinity-purified Ikaros revealed that several serines and threonines are phosphorylated in the thymocyte line, with apparent changes upon thymocyte maturation. These results support the hypothesis that the NuRD complex makes major contributions to the functions of both Ikaros and Helios and that the activities of these proteins may be regulated in part by changes in phosphorylation.
Collapse
Affiliation(s)
- Rupa Sridharan
- Howard Hughes Medical Institute and Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, California 90095, USA
| | | |
Collapse
|
5
|
Zhang Z, Swindle CS, Bates JT, Ko R, Cotta CV, Klug CA. Expression of a non-DNA-binding isoform of Helios induces T-cell lymphoma in mice. Blood 2006; 109:2190-7. [PMID: 17110463 PMCID: PMC1801072 DOI: 10.1182/blood-2005-01-031930] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Helios is a zinc-finger protein belonging to the Ikaros family of transcriptional regulators. It is expressed, along with Ikaros, throughout early stages of thymocyte development where it quantitatively associates with Ikaros through C-terminal zinc-finger domains that mediate heterodimerization between Ikaros family members. To understand the role of Helios in T-cell development, we used a retroviral vector to express full-length Helios or a Helios isoform that lacked the N-terminal DNA-binding domain in hematopoietic progenitor cells of reconstituted mice. Constitutive expression of full-length Helios resulted in an inhibition of T-cell development at the double-negative stage within the thymus. Although expression of the DNA-binding mutant of Helios did not contribute to developmental abnormalities at early times after transplantation, 60% of animals that expressed the Helios DNA-binding mutant developed an aggressive and transplantable T-cell lymphoma 4 to 10 months after transplantation. These results demonstrate a vital function for Helios in maintaining normal homeostasis of developing T cells and formally show that non-DNA-binding isoforms of Helios are lymphomagenic if aberrantly expressed within the T-cell lineage.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- DNA-Binding Proteins/classification
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression
- Killer Cells, Natural/cytology
- Killer Cells, Natural/metabolism
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Mice
- Mice, Inbred C57BL
- Mutation/genetics
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Thymus Gland/cytology
- Thymus Gland/metabolism
- Transcription Factors/classification
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Microbiology, Division of Developmental and Clinical Immunology, University of Alabama at Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
6
|
Giesecke AV, Fang R, Joung JK. Synthetic protein-protein interaction domains created by shuffling Cys2His2 zinc-fingers. Mol Syst Biol 2006; 2:2006.2011. [PMID: 16732192 PMCID: PMC1681485 DOI: 10.1038/msb4100053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 01/20/2006] [Indexed: 11/24/2022] Open
Abstract
Cys2His2 zinc-fingers (C2H2 ZFs) mediate a wide variety of protein–DNA and protein–protein interactions. DNA-binding C2H2 ZFs can be shuffled to yield artificial proteins with different DNA-binding specificities. Here we demonstrate that shuffling of C2H2 ZFs from transcription factor dimerization zinc-finger (DZF) domains can also yield two-finger DZFs with novel protein–protein interaction specificities. We show that these synthetic protein–protein interaction domains can be used to mediate activation of a single-copy reporter gene in bacterial cells and of an endogenous gene in human cells. In addition, the synthetic two-finger domains we constructed can also be linked together to create more extended, four-finger interfaces. Our results demonstrate that shuffling of C2H2 ZFs can yield artificial protein-interaction components that should be useful for applications in synthetic biology.
Collapse
Affiliation(s)
- Astrid V Giesecke
- Molecular Pathology Unit, Department of Pathology, Massachusetts General Hospital, Charlestown, MA, USA
- Universität Regensburg, Institut für Zoologie, Regensburg, Germany
| | - Rui Fang
- Molecular Pathology Unit, Department of Pathology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - J Keith Joung
- Molecular Pathology Unit, Department of Pathology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Molecular Pathology Unit, Department of Pathology, Massachusetts General Hospital, 149 13th Street, Room 7139, 7th floor, Charlestown, MA 02129, USA. Tel.: +1 6177269462; Fax: +1 6177265684; E-mail:
| |
Collapse
|
7
|
Dovat S, Montecino-Rodriguez E, Schuman V, Teitell MA, Dorshkind K, Smale ST. Transgenic expression of Helios in B lineage cells alters B cell properties and promotes lymphomagenesis. THE JOURNAL OF IMMUNOLOGY 2005; 175:3508-15. [PMID: 16148093 DOI: 10.4049/jimmunol.175.6.3508] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Helios, a member of the Ikaros family of DNA-binding proteins, is expressed in multipotential lymphoid progenitors and throughout the T lineage. However, in most B lineage cells, Helios is not expressed, suggesting that its absence may be critical for B cell development and function. To test this possibility, transgenic mice were generated that express Helios under the control of an Ig mu enhancer. Commitment to the B cell lineage was unaltered in Helios transgenic mice, and numbers of surface IgM(+) B cells were normal in the bone marrow and spleen. However, both bone marrow and splenic B cells exhibited prolonged survival and enhanced proliferation. B cells in Helios transgenic mice were also hyperresponsive to Ag stimulation. These alterations were observed even though the concentration of ectopic Helios in B lineage cells, like that of endogenous Helios in thymocytes, was well below the concentration of Ikaros. Further evidence that ectopic Helios expression contributes to B cell abnormalities was provided by the observation that Helios transgenic mice developed metastatic lymphoma as they aged. Taken together, these results demonstrate that silencing of Helios is critical for normal B cell function.
Collapse
Affiliation(s)
- Sinisa Dovat
- Mattel Children's Hospital and Department of Pediatrics, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
8
|
Cobb BS, Smale ST. Ikaros-family proteins: in search of molecular functions during lymphocyte development. Curr Top Microbiol Immunol 2005; 290:29-47. [PMID: 16480038 DOI: 10.1007/3-540-26363-2_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The regulatory steps that lead to the differentiation of hematopoietic cells from a multipotential stem cell remain largely unknown. A beginning to the understanding of these steps has come from the study of DNA-binding proteins that are thought to regulate the expression of genes required for specific developmental events. Ikaros is the founding member of a small family of DNA-binding proteins required for lymphocyte development, but the members of this family differ from other key regulators of lymphopoiesis in that direct target genes have not been conclusively identified, and reasonable support has been presented for only a few potential targets. Therefore, the molecular mechanisms that Ikaros uses for regulating lymphocyte development remain largely unknown. Current data suggest that, in some instances, Ikaros may function as a typical transcription factor. However, recent results suggest that it may function more broadly, perhaps in the formation of silent and active chromatin structures. In this review, our current knowledge of the molecular functions of Ikaros will be discussed.
Collapse
Affiliation(s)
- B S Cobb
- Department of Microbiology, Immunology and Molecular Genetics, Howard Hughes Medical Institute, University of California, Los Angeles 90095-1662, USA
| | | |
Collapse
|
9
|
Hou Q, Yi X, Jiang G, Wei Q. The salt bridge of calcineurin is important for transferring the effect of CNB binding to CNA. FEBS Lett 2005; 577:294-8. [PMID: 15527802 DOI: 10.1016/j.febslet.2004.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 09/14/2004] [Accepted: 10/01/2004] [Indexed: 11/28/2022]
Abstract
Calcineurin (CN) is a heterodimer consisting of a catalytic subunit (CNA) and a regulatory subunit (CNB). The crystal structure shows that three residues or regions of CNA are mainly responsible for the interaction with CNB: the CNB binding helix (BBH), the N-terminus, and Glu53 that forms a salt bridge with Lys134 of CNB. In this report, we try to find the role that the salt bridge plays in the interaction between CNA and CNB. We found that mutation of Glu53 greatly reduced its responsiveness to CNB in the phosphatase assay and also that mutation of Lys134 of CNB affected its ability to activate the phosphatase activity of CNA. Structural analysis showed that disruption of the salt bridge affected the compact association of CNA and CNB. Thus, the salt bridge appears to help to stabilize CN and transfer the effects of CNB binding to CNA to activate its phosphatase activity.
Collapse
Affiliation(s)
- Qiang Hou
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, PR China
| | | | | | | |
Collapse
|
10
|
Westman BJ, Perdomo J, Matthews JM, Crossley M, Mackay JP. Structural Studies on a Protein-Binding Zinc-Finger Domain of Eos Reveal Both Similarities and Differences to Classical Zinc Fingers†. Biochemistry 2004; 43:13318-27. [PMID: 15491138 DOI: 10.1021/bi049506a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oligomerization domain that is present at the C terminus of Ikaros-family proteins and the protein Trps-1 is important for the proper regulation of developmental processes such as hematopoiesis. Remarkably, this domain is predicted to contain two classical zinc fingers (ZnFs), domains normally associated with the recognition of nucleic acids. The preference for protein binding by these predicted ZnFs is not well-understood. We have used a range of methods to gain insight into the structure of this domain. Circular dichroism, UV-vis, and NMR experiments carried out on the C-terminal domain of Eos (EosC) revealed that the two putative ZnFs (C1 and C2) are separable, i.e., capable of folding independently in the presence of Zn(II). We next determined the structure of EosC2 using NMR spectroscopy, revealing that, although the overall fold of EosC2 is similar to other classical ZnFs, a number of differences exist. For example, the conformation of the C terminus of EosC2 appears to be flexible and may result in a major rearrangement of the zinc ligands. Finally, alanine-scanning mutagenesis was used to identify the residues that are involved in the homo- and hetero-oligomerization of Eos, and these results are discussed in the context of the structure of EosC. These studies provide the first structural insights into how EosC mediates protein-protein interactions and contributes to our understanding of why it does not exhibit high-affinity DNA binding.
Collapse
Affiliation(s)
- Belinda J Westman
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | |
Collapse
|