1
|
Silva PMA, Bousbaa H. BUB3, beyond the Simple Role of Partner. Pharmaceutics 2022; 14:pharmaceutics14051084. [PMID: 35631670 PMCID: PMC9147866 DOI: 10.3390/pharmaceutics14051084] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 12/07/2022] Open
Abstract
The BUB3 protein plays a key role in the activation of the spindle assembly checkpoint (SAC), a ubiquitous surveillance mechanism that ensures the fidelity of chromosome segregation in mitosis and, consequently, prevents chromosome mis-segregation and aneuploidy. Besides its role in SAC signaling, BUB3 regulates chromosome attachment to the spindle microtubules. It is also involved in telomere replication and maintenance. Deficiency of the BUB3 gene has been closely linked to premature aging. Upregulation of the BUB3 gene has been found in a variety of human cancers and is associated with poor prognoses. Here, we review the structure and functions of BUB3 in mitosis, its expression in cancer and association with survival prognoses, and its potential as an anticancer target.
Collapse
Affiliation(s)
- Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), University Polytechnic Higher Education Cooperative (CESPU), Rua Central de Gandra, 4585-116 Gandra, Portugal;
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences (IUCS), University Polytechnic Higher Education Cooperative (CESPU), Rua Central de Gandra, 4585-116 Gandra, Portugal
| | - Hassan Bousbaa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), University Polytechnic Higher Education Cooperative (CESPU), Rua Central de Gandra, 4585-116 Gandra, Portugal;
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Correspondence:
| |
Collapse
|
2
|
Luna-Maldonado F, Andonegui-Elguera MA, Díaz-Chávez J, Herrera LA. Mitotic and DNA Damage Response Proteins: Maintaining the Genome Stability and Working for the Common Good. Front Cell Dev Biol 2021; 9:700162. [PMID: 34966733 PMCID: PMC8710681 DOI: 10.3389/fcell.2021.700162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular function is highly dependent on genomic stability, which is mainly ensured by two cellular mechanisms: the DNA damage response (DDR) and the Spindle Assembly Checkpoint (SAC). The former provides the repair of damaged DNA, and the latter ensures correct chromosome segregation. This review focuses on recently emerging data indicating that the SAC and the DDR proteins function together throughout the cell cycle, suggesting crosstalk between both checkpoints to maintain genome stability.
Collapse
Affiliation(s)
- Fernando Luna-Maldonado
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, México City, Mexico
| | - Marco A. Andonegui-Elguera
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, México City, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, México City, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, México City, Mexico
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
3
|
Sarkar S, Sahoo PK, Mahata S, Pal R, Ghosh D, Mistry T, Ghosh S, Bera T, Nasare VD. Mitotic checkpoint defects: en route to cancer and drug resistance. Chromosome Res 2021; 29:131-144. [PMID: 33409811 DOI: 10.1007/s10577-020-09646-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
Loss of mitosis regulation is a common feature of malignant cells that leads to aberrant cell division with inaccurate chromosome segregation. The mitotic checkpoint is responsible for faithful transmission of genetic material to the progeny. Defects in this checkpoint, such as mutations and changes in gene expression, lead to abnormal chromosome content or aneuploidy that may facilitate cancer development. Furthermore, a defective checkpoint response is indicated in the development of drug resistance to microtubule poisons that are used in treatment of various blood and solid cancers for several decades. Mitotic slippage and senescence are important cell fates that occur even with an active mitotic checkpoint and are held responsible for the resistance. However, contradictory findings in both the scenarios of carcinogenesis and drug resistance have aroused questions on whether mitotic checkpoint defects are truly responsible for these dismal outcomes. Here, we discuss the possible contribution of the faulty checkpoint signaling in cancer development and drug resistance, followed by the latest research on this pathway for better outcomes in cancer treatment.
Collapse
Affiliation(s)
- Sinjini Sarkar
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India.,Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Pranab Kumar Sahoo
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Sutapa Mahata
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Ranita Pal
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Dipanwita Ghosh
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Tanuma Mistry
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Sushmita Ghosh
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Tanmoy Bera
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Vilas D Nasare
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India.
| |
Collapse
|
4
|
Nakagawa T, Yoneda M, Higashi M, Ohkuma Y, Ito T. Enhancer function regulated by combinations of transcription factors and cofactors. Genes Cells 2018; 23:808-821. [PMID: 30092612 DOI: 10.1111/gtc.12634] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Regulation of the expression of diverse genes is essential for making possible the complexity of higher organisms, and the temporal and spatial regulation of gene expression allows for the alteration of cell types and growth patterns. A critical component of this regulation is the DNA sequence-specific binding of transcription factors (TFs). However, most TFs do not independently participate in gene transcriptional regulation, because they lack an effector function. Instead, TFs are thought to work by recruiting cofactors, including Mediator complex (Mediator), chromatin-remodeling complexes (CRCs), and histone-modifying complexes (HMCs). Mediator associates with the majority of transcribed genes and acts as an integrator of multiple signals. On the other hand, CRCs and HMCs are selectively recruited by TFs. Although all the pairings between TFs and CRCs or HMCs are not fully known, there are a growing number of established TF-CRC and TF-HMC combinations. In this review, we focused on the most important of these pairings and discuss how they control gene expression.
Collapse
Affiliation(s)
- Takeya Nakagawa
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Mitsuhiro Yoneda
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Miki Higashi
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Yoshiaki Ohkuma
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Takashi Ito
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| |
Collapse
|
5
|
Fischer M. Census and evaluation of p53 target genes. Oncogene 2017; 36:3943-3956. [PMID: 28288132 PMCID: PMC5511239 DOI: 10.1038/onc.2016.502] [Citation(s) in RCA: 615] [Impact Index Per Article: 87.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022]
Abstract
The tumor suppressor p53 functions primarily as a transcription factor. Mutation of the TP53 gene alters its response pathway, and is central to the development of many cancers. The discovery of a large number of p53 target genes, which confer p53's tumor suppressor function, has led to increasingly complex models of p53 function. Recent meta-analysis approaches, however, are simplifying our understanding of how p53 functions as a transcription factor. In the survey presented here, a total set of 3661 direct p53 target genes is identified that comprise 3509 potential targets from 13 high-throughput studies, and 346 target genes from individual gene analyses. Comparison of the p53 target genes reported in individual studies with those identified in 13 high-throughput studies reveals limited consistency. Here, p53 target genes have been evaluated based on the meta-analysis data, and the results show that high-confidence p53 target genes are involved in multiple cellular responses, including cell cycle arrest, DNA repair, apoptosis, metabolism, autophagy, mRNA translation and feedback mechanisms. However, many p53 target genes are identified only in a small number of studies and have a higher likelihood of being false positives. While numerous mechanisms have been proposed for mediating gene regulation in response to p53, recent advances in our understanding of p53 function show that p53 itself is solely an activator of transcription, and gene downregulation by p53 is indirect and requires p21. Taking into account the function of p53 as an activator of transcription, recent results point to an unsophisticated means of regulation.
Collapse
Affiliation(s)
- M Fischer
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Bajaj S, Alam SK, Roy KS, Datta A, Nath S, Roychoudhury S. E2 Ubiquitin-conjugating Enzyme, UBE2C Gene, Is Reciprocally Regulated by Wild-type and Gain-of-Function Mutant p53. J Biol Chem 2016; 291:14231-14247. [PMID: 27129209 DOI: 10.1074/jbc.m116.731398] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 01/31/2023] Open
Abstract
Spindle assembly checkpoint governs proper chromosomal segregation during mitosis to ensure genomic stability. At the cellular level, this event is tightly regulated by UBE2C, an E2 ubiquitin-conjugating enzyme that donates ubiquitin to the anaphase-promoting complex/cyclosome. This, in turn, facilitates anaphase-onset by ubiquitin-mediated degradation of mitotic substrates. UBE2C is an important marker of chromosomal instability and has been associated with malignant growth. However, the mechanism of its regulation is largely unexplored. In this study, we report that UBE2C is transcriptionally activated by the gain-of-function (GOF) mutant p53, although it is transcriptionally repressed by wild-type p53. We showed that wild-type p53-mediated inhibition of UBE2C is p21-E2F4-dependent and GOF mutant p53-mediated transactivation of UBE2C is NF-Y-dependent. We further explored that DNA damage-induced wild-type p53 leads to spindle assembly checkpoint arrest by repressing UBE2C, whereas mutant p53 causes premature anaphase exit by increasing UBE2C expression in the presence of 5-fluorouracil. Identification of UBE2C as a target of wild-type and GOF mutant p53 further highlights the contribution of p53 in regulation of spindle assembly checkpoint.
Collapse
Affiliation(s)
- Swati Bajaj
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700032, India,; Advanced Molecular Diagnostics Laboratory, Department of Pathology, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Sk Kayum Alam
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700032, India
| | - Kumar Singha Roy
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700032, India
| | - Arindam Datta
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700032, India
| | - Somsubhra Nath
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700032, India,; Molecular Biology Research and Diagnostic Laboratory, Saroj Gupta Cancer Centre and Research Institute, Mahatma Gandhi Road, Thakurpukur, Kolkata-700063, India
| | - Susanta Roychoudhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700032, India,.
| |
Collapse
|
7
|
Mitotic arrest deficient-like 1 is correlated with poor prognosis in small-cell lung cancer after surgical resection. Tumour Biol 2015; 37:4393-8. [PMID: 26499943 DOI: 10.1007/s13277-015-4302-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023] Open
Abstract
Mitotic arrest deficient-like 1 (MAD1L1) whose dysfunction is associated with chromosomal instability plays a pathogenic role in a few human cancers. However, the status of MAD1L1 expression in small-cell lung cancer (SCLC) remains unknown. Immunohistochemistry was used to determine the expression of MAD1L1 protein in 32 lymph node metastasis (LN-M) tissues and 88 primary SCLCs compared with 32 adjacent noncancerous tissues. The associations of MAD1L1 protein expression with the clinicopathologic features and clinical outcomes in patients with SCLC were analyzed. The ratio of MAD1L1 positive expression was higher in primary SCLC tissues (39.8 %) and LN-M tissues (46.9 %) compared with adjacent noncancerous tissues (9.4 %). MAD1L1 positive expression was associated with tumor-node-metastasis (TNM) stage (P = 0.003), International Association for the Study of Lung Cancer (IASLC) stage (P = 0.004), tumor size (P = 0.015), lymph node metastasis (P = 0.014), and recurrence (P < 0.001). Multivariate analysis suggested that MAD1L1 positive expression was an independent factor for overall survival (hazard ratio (HR) 2.002; 95 % confidence interval (CI) 1.065-3.763; P = 0.031) and recurrence-free survival (HR 2.263; 95 % CI 1.197-4.276; P = 0.012). To sum up, MAD1L1 positive expression may be associated with tumour progression and metastasis in SCLCs and may thus serve as a new biomarker for prognosis in these patients.
Collapse
|
8
|
Abstract
The predominant function of the tumor suppressor p53 is transcriptional regulation. It is generally accepted that p53-dependent transcriptional activation occurs by binding to a specific recognition site in promoters of target genes. Additionally, several models for p53-dependent transcriptional repression have been postulated. Here, we evaluate these models based on a computational meta-analysis of genome-wide data. Surprisingly, several major models of p53-dependent gene regulation are implausible. Meta-analysis of large-scale data is unable to confirm reports on directly repressed p53 target genes and falsifies models of direct repression. This notion is supported by experimental re-analysis of representative genes reported as directly repressed by p53. Therefore, p53 is not a direct repressor of transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating transcription factors as well as models based on the function of ncRNAs are also not supported by the meta-analysis. As an alternative to models of direct repression, the meta-analysis leads to the conclusion that p53 represses transcription indirectly by activation of the p53-p21-DREAM/RB pathway.
Collapse
Key Words
- CDE, cell cycle-dependent element
- CDKN1A
- CHR, cell cycle genes homology region
- ChIP, chromatin immunoprecipitation
- DREAM complex
- DREAM, DP, RB-like, E2F4, and MuvB complex
- E2F/RB complex
- HPV, human papilloma virus
- NF-Y, Nuclear factor Y
- cdk, cyclin-dependent kinase
- genome-wide meta-analysis
- p53
Collapse
Affiliation(s)
- Martin Fischer
- a Molecular Oncology; Medical School ; University of Leipzig ; Leipzig , Germany
| | | | | |
Collapse
|
9
|
Singh AK, Pati U. CHIP stabilizes amyloid precursor protein via proteasomal degradation and p53-mediated trans-repression of β-secretase. Aging Cell 2015; 14:595-604. [PMID: 25773675 PMCID: PMC4531073 DOI: 10.1111/acel.12335] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 12/22/2022] Open
Abstract
In patient with Alzheimer’s disease (AD), deposition of amyloid-beta Aβ, a proteolytic cleavage of amyloid precursor protein (APP) by β-secretase/BACE1, forms senile plaque in the brain. BACE1 activation is caused due to oxidative stresses and dysfunction of ubiquitin–proteasome system (UPS), which is linked to p53 inactivation. As partial suppression of BACE1 attenuates Aβ generation and AD-related pathology, it might be an ideal target for AD treatment. We have shown that both in neurons and in HEK-APP cells, BACE1 is a new substrate of E3-ligase CHIP and an inverse relation exists between CHIP and BACE1 level. CHIP inhibits ectopic BACE1 level by promoting its ubiquitination and proteasomal degradation, thus reducing APP processing; it stabilizes APP in neurons, thus reducing Aβ. CHIPUbox domain physically interacts with BACE1; however, both U-box and TPR domain are essential for ubiquitination and degradation of BACE1. Further, BACE1 is a downstream target of p53 and overexpression of p53 decreases BACE1 level. In HEK-APP cells, CHIP is shown to negatively regulate BACE1 promoter through stabilization of p53’s DNA-binding conformation and its binding upon 5′ UTR element (+127 to +150). We have thus discovered that CHIP regulates p53-mediated trans-repression of BACE1 at both transcriptional and post-translational level. We propose that a CHIP–BACE1–p53 feedback loop might control APP stabilization, which could further be utilized for new therapeutic intervention in AD.
Collapse
Affiliation(s)
- Amir Kumar Singh
- School of Biotechnology Jawaharlal Nehru University New Delhi 110067 India
| | - Uttam Pati
- School of Biotechnology Jawaharlal Nehru University New Delhi 110067 India
| |
Collapse
|
10
|
Karsli-Ceppioglu S, Ngollo M, Adjakly M, Dagdemir A, Judes G, Lebert A, Boiteux JP, Penault-LLorca F, Bignon YJ, Guy L, Bernard-Gallon D. Genome-wide DNA methylation modified by soy phytoestrogens: role for epigenetic therapeutics in prostate cancer? OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:209-19. [PMID: 25831061 DOI: 10.1089/omi.2014.0142] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In prostate cancer, DNA methylation is significantly associated with tumor initiation, progression, and metastasis. Previous studies have suggested that soy phytoestrogens might regulate DNA methylation at individual candidate gene loci and that they play a crucial role as potential therapeutic agents for prostate cancer. The purpose of our study was to examine the modulation effects of phytoestrogens on a genome-wide scale in regards to DNA methylation in prostate cancer. Prostate cancer cell lines DU-145 and LNCaP were treated with 40 μM of genistein and 110 μM of daidzein. DNMT inhibitor 5-azacytidine (2 μM) and the methylating agent budesonide (2 μM) were used to compare their demethylation/methylation effects with phytoestrogens. The regulatory effects of phytoestrogens on DNA methylation were analyzed by using a methyl-DNA immunoprecipitation method coupled with Human DNA Methylation Microarrays (MeDIP-chip). We observed that the methylation profiles of 58 genes were altered by genistein and daidzein treatments in DU-145 and LNCaP prostate cancer cells. In addition, the methylation frequencies of the MAD1L1, TRAF7, KDM4B, and hTERT genes were remarkably modified by genistein treatment. Our results suggest that the modulation effects of phytoestrogens on DNA methylation essentially lead to inhibition of cell growth and induction of apoptosis. Genome-wide methylation profiling reported here suggests that epigenetic regulation mechanisms and, by extension, epigenetics-driven novel therapeutic candidates warrant further consideration in future "omics" studies of prostate cancer.
Collapse
Affiliation(s)
- Seher Karsli-Ceppioglu
- 1 Department of Oncogenetics, Centre Jean Perrin-CBRV , Dunant, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nath S, Ghatak D, Das P, Roychoudhury S. Transcriptional control of mitosis: deregulation and cancer. Front Endocrinol (Lausanne) 2015; 6:60. [PMID: 25999914 PMCID: PMC4419714 DOI: 10.3389/fendo.2015.00060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/08/2015] [Indexed: 12/22/2022] Open
Abstract
Research over the past few decades has well established the molecular functioning of mitosis. Deregulation of these functions has also been attributed to the generation of aneuploidy in different tumor types. Numerous studies have given insight into the regulation of mitosis by cell cycle specific proteins. Optimum abundance of these proteins is pivotal to timely execution of mitosis. Aberrant expressions of these mitotic proteins have been reported in different cancer types. Several post-transcriptional mechanisms and their interplay have subsequently been identified that control the level of mitotic proteins. However, to date, infrequent incidences of cancer-associated mutations have been reported for the genes expressing these proteins. Therefore, altered expression of these mitotic regulators in tumor samples can largely be attributed to transcriptional deregulation. This review discusses the biology of transcriptional control for mitosis and evaluates its role in the generation of aneuploidy and tumorigenesis.
Collapse
Affiliation(s)
- Somsubhra Nath
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Present address: Somsubhra Nath, Genetics, Cell Biology and Anatomy Division, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dishari Ghatak
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pijush Das
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Susanta Roychoudhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- *Correspondence: Susanta Roychoudhury, Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India, ;
| |
Collapse
|
12
|
Sun Q, Zhang X, Liu T, Liu X, Geng J, He X, Liu Y, Pang D. Increased expression of Mitotic Arrest Deficient-Like 1 (MAD1L1) is associated with poor prognosis and insensitive to Taxol treatment in breast cancer. Breast Cancer Res Treat 2013; 140:323-30. [DOI: 10.1007/s10549-013-2633-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/04/2013] [Indexed: 11/28/2022]
|
13
|
Contreras AU, Mebratu Y, Delgado M, Montano G, Hu CAA, Ryter SW, Choi AMK, Lin Y, Xiang J, Chand H, Tesfaigzi Y. Deacetylation of p53 induces autophagy by suppressing Bmf expression. ACTA ACUST UNITED AC 2013; 201:427-37. [PMID: 23629966 PMCID: PMC3639396 DOI: 10.1083/jcb.201205064] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interferon γ (IFN-γ)-induced cell death is mediated by the BH3-only domain protein, Bik, in a p53-independent manner. However, the effect of IFN-γ on p53 and how this affects autophagy have not been reported. The present study demonstrates that IFN-γ down-regulated expression of the BH3 domain-only protein, Bmf, in human and mouse airway epithelial cells in a p53-dependent manner. p53 also suppressed Bmf expression in response to other cell death-stimulating agents, including ultraviolet radiation and histone deacetylase inhibitors. IFN-γ did not affect Bmf messenger RNA half-life but increased nuclear p53 levels and the interaction of p53 with the Bmf promoter. IFN-γ-induced interaction of HDAC1 and p53 resulted in the deacetylation of p53 and suppression of Bmf expression independent of p53's proline-rich domain. Suppression of Bmf facilitated IFN-γ-induced autophagy by reducing the interaction of Beclin-1 and Bcl-2. Furthermore, autophagy was prominent in cultured bmf(-/-) but not in bmf(+/+) cells. Collectively, these observations show that deacetylation of p53 suppresses Bmf expression and facilitates autophagy.
Collapse
Affiliation(s)
- Amelia U Contreras
- Chronic Obstructive Pulmonary Disease Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Schuyler SC, Wu YF, Kuan VJW. The Mad1-Mad2 balancing act--a damaged spindle checkpoint in chromosome instability and cancer. J Cell Sci 2012; 125:4197-206. [PMID: 23093575 DOI: 10.1242/jcs.107037] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer cells are commonly aneuploid. The spindle checkpoint ensures accurate chromosome segregation by controlling cell cycle progression in response to aberrant microtubule-kinetochore attachment. Damage to the checkpoint, which is a partial loss or gain of checkpoint function, leads to aneuploidy during tumorigenesis. One form of damage is a change in levels of the checkpoint proteins mitotic arrest deficient 1 and 2 (Mad1 and Mad2), or in the Mad1:Mad2 ratio. Changes in Mad1 and Mad2 levels occur in human cancers, where their expression is regulated by the tumor suppressors p53 and retinoblastoma 1 (RB1). By employing a standard assay, namely the addition of a mitotic poison at mitotic entry, it has been shown that checkpoint function is normal in many cancer cells. However, in several experimental systems, it has been observed that this standard assay does not always reveal checkpoint aberrations induced by changes in Mad1 or Mad2, where excess Mad1 relative to Mad2 can lead to premature anaphase entry, and excess Mad2 can lead to a delay in entering anaphase. This Commentary highlights how changes in the levels of Mad1 and Mad2 result in a damaged spindle checkpoint, and explores how these changes cause chromosome instability that can lead to aneuploidy during tumorigenesis.
Collapse
Affiliation(s)
- Scott C Schuyler
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, 333 Taiwan, Republic of China.
| | | | | |
Collapse
|
15
|
Regulation of the human catalytic subunit of telomerase (hTERT). Gene 2012; 498:135-46. [PMID: 22381618 DOI: 10.1016/j.gene.2012.01.095] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 01/29/2012] [Accepted: 01/30/2012] [Indexed: 12/12/2022]
Abstract
Over the past decade, there has been much interest in the regulation of telomerase, the enzyme responsible for maintaining the integrity of chromosomal ends, and its crucial role in cellular immortalization, tumorigenesis, and the progression of cancer. Telomerase activity is characterized by the expression of the telomerase reverse transcriptase (TERT) gene, suggesting that TERT serves as the major limiting agent for telomerase activity. Recent discoveries have led to characterization of various interactants that aid in the regulation of human TERT (hTERT), including numerous transcription factors; further supporting the pivotal role that transcription plays in both the expression and repression of telomerase. Several studies have suggested that epigenetic modulation of the hTERT core promoter region may provide an additional level of regulation. Although these studies have provided essential information on the regulation of hTERT, there has been ambiguity of the role of methylation within the core promoter region and the subsequent binding of various activating and repressive agents. As a result, we found it necessary to consolidate and summarize these recent developments and elucidate these discrepancies. In this review, we focus on the co-regulation of hTERT via transcriptional regulation, the presence or absence of various activators and repressors, as well as the epigenetic pathways of DNA methylation and histone modifications.
Collapse
|
16
|
Bansal N, Kadamb R, Mittal S, Vig L, Sharma R, Dwarakanath BS, Saluja D. Tumor suppressor protein p53 recruits human Sin3B/HDAC1 complex for down-regulation of its target promoters in response to genotoxic stress. PLoS One 2011; 6:e26156. [PMID: 22028823 PMCID: PMC3197607 DOI: 10.1371/journal.pone.0026156] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/21/2011] [Indexed: 11/18/2022] Open
Abstract
Master regulator protein p53, popularly known as the “guardian of genome” is the hub for regulation of diverse cellular pathways. Depending on the cell type and severity of DNA damage, p53 protein mediates cell cycle arrest or apoptosis, besides activating DNA repair, which is apparently achieved by regulation of its target genes, as well as direct interaction with other proteins. p53 is known to repress target genes via multiple mechanisms one of which is via recruitment of chromatin remodelling Sin3/HDAC1/2 complex. Sin3 proteins (Sin3A and Sin3B) regulate gene expression at the chromatin-level by serving as an anchor onto which the core Sin3/HDAC complex is assembled. The Sin3/HDAC co-repressor complex can be recruited by a large number of DNA-binding transcription factors. Sin3A has been closely linked to p53 while Sin3B is considered to be a close associate of E2Fs. The theme of this study was to establish the role of Sin3B in p53-mediated gene repression. We demonstrate a direct protein-protein interaction between human p53 and Sin3B (hSin3B). Amino acids 1–399 of hSin3B protein are involved in its interaction with N-terminal region (amino acids 1–108) of p53. Genotoxic stress induced by Adriamycin treatment increases the levels of hSin3B that is recruited to the promoters of p53-target genes (HSPA8, MAD1 and CRYZ). More importantly recruitment of hSin3B and repression of the three p53-target promoters upon Adriamycin treatment were observed only in p53+/+ cell lines. Additionally an increased tri-methylation of the H3K9 residue at the promoters of HSPA8 and CRYZ was also observed following Adriamycin treatment. The present study highlights for the first time the essential role of Sin3B as an important associate of p53 in mediating the cellular responses to stress and in the transcriptional repression of genes encoding for heat shock proteins or proteins involved in regulation of cell cycle and apoptosis.
Collapse
Affiliation(s)
- Nidhi Bansal
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Rama Kadamb
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Shilpi Mittal
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Leena Vig
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Raisha Sharma
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | | | - Daman Saluja
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
- * E-mail:
| |
Collapse
|
17
|
Rinn JL, Huarte M. To repress or not to repress: this is the guardian's question. Trends Cell Biol 2011; 21:344-53. [PMID: 21601459 DOI: 10.1016/j.tcb.2011.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/11/2011] [Accepted: 04/13/2011] [Indexed: 10/18/2022]
Abstract
p53 is possibly the most central tumor suppressor gene of our cells, integrating stress signals to activate a transcriptional program responsible for maintaining cellular homeostasis. Many of the downstream effects of p53 are a consequence of its activity as a transcription factor, resulting in the induction of multiple target genes. In addition to gene activation, however, gene repression is an essential part of the p53 cellular response. Despite extensive research efforts towards the elucidation of p53 functions, the molecular mechanisms and biological consequences of gene repression by p53 have not been studied extensively. We review our current knowledge of the mechanisms and biological consequences of p53 repression, with special attention to recently discovered mechanisms of repression that involve non-coding RNA molecules, an emerging aspect of regulation in the p53 cellular network.
Collapse
Affiliation(s)
- John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | | |
Collapse
|
18
|
Huang JM, Sheard MA, Ji L, Sposto R, Keshelava N. Combination of vorinostat and flavopiridol is selectively cytotoxic to multidrug-resistant neuroblastoma cell lines with mutant TP53. Mol Cancer Ther 2011; 9:3289-301. [PMID: 21159612 DOI: 10.1158/1535-7163.mct-10-0562] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As p53 loss of function (LOF) confers high-level drug resistance in neuroblastoma, p53-independent therapies might have superior activity in recurrent neuroblastoma. We tested the activity of vorinostat, a histone deacetylase inhibitor, and flavopiridol, a pan-Cdk inhibitor, in a panel of multidrug-resistant neuroblastoma cell lines that included lines with wild-type (wt) and transcriptionally active TP53 (n = 3), mutated (mt), and LOF TP53 (n = 4) or p14(ARF) deletion (n = 1). The combination of vorinostat and flavopiridol was synergistic and significantly more cytotoxic (P < 0.001) in cell lines with p53-LOF and in the clones stably transfected with dominant-negative p53 plasmids. Cell cycle analysis by flow cytometry showed prominent cell-cycle arrest in G(2)/M (37%) for a cell line with wt TP53 (SK-N-RA) at 16 to 20 hours, while cells with mt TP53 (CHLA-90) slipped into sub-G(1) at 6 to 24 hours (25%-40% specific cell death). The morphological hallmarks of mitotic cell death, including defective spindle formation and abnormal cytokinesis, were detected by confocal microscopy after the treatment with vorinostat + flavopiridol combination in CHLA-90. The combination caused reduction in the expression of G(2)/M proteins (cyclin B1, Mad2, MPM2) in 2 cell lines with mt TP53 but not in those with wt TP53. Plk1 expression was reduced in all treated lines. Small interfering RNA knockdown of Mad2 and cyclin B1 or Plk1 synergistically reduced the clonogenicity of CHLA-90 cells. The combination of HDAC inhibitor and flavopiridol may be a unique approach to treating neuroblastomas with p53 LOF, one that evokes induction of mitotic failure.
Collapse
Affiliation(s)
- Jen-Ming Huang
- Division of Hematology-Oncology, Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | | | | | | |
Collapse
|
19
|
Nath S, Banerjee T, Sen D, Das T, Roychoudhury S. Spindle assembly checkpoint protein Cdc20 transcriptionally activates expression of ubiquitin carrier protein UbcH10. J Biol Chem 2011; 286:15666-77. [PMID: 21454660 DOI: 10.1074/jbc.m110.160671] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The spindle assembly checkpoint (SAC) ensures accurate segregation of chromosomes by monitoring kinetochore attachment of spindles during mitosis. Proper progression of mitosis depends on orderly ubiquitination and subsequent degradation of various mitotic inhibitors. At the molecular level, upon removal of SAC, Cdc20 activates E3 ubiquitin ligase anaphase-promoting complex/cyclosome that, along with E2 ubiquitin-conjugating enzyme UbcH10, executes this function. Both Cdc20 and UbcH10 are overexpressed in many cancer types and are associated with defective SAC function leading to chromosomal instability. The precise mechanism of correlated overexpression of these two proteins remains elusive. We show that Cdc20 transcriptionally up-regulates UbcH10 expression. The WD40 domain of Cdc20 is required for this activity. Physical interaction between Cdc20 and anaphase-promoting complex/cyclosome-CBP/p300 complex and its subsequent recruitment to the UBCH10 promoter are involved in this transactivation process. This transcriptional regulatory function of Cdc20 was observed to be cell cycle-specific. We hypothesize that this co-regulated overexpression of both proteins contributes to chromosomal instability.
Collapse
Affiliation(s)
- Somsubhra Nath
- Molecular and Human Genetics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | | | | | | | | |
Collapse
|
20
|
One function--multiple mechanisms: the manifold activities of p53 as a transcriptional repressor. J Biomed Biotechnol 2011; 2011:464916. [PMID: 21436991 PMCID: PMC3062963 DOI: 10.1155/2011/464916] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 01/17/2011] [Indexed: 12/31/2022] Open
Abstract
Maintenance of genome integrity is a dynamic process involving complex regulation systems. Defects in one or more of these pathways could result in cancer. The most important tumor-suppressor is the transcription factor p53, and its functional inactivation is frequently observed in many tumor types. The tumor suppressive function of p53 is mainly attributed to its ability to regulate numerous target genes at the transcriptional level. While the mechanism of transcriptional induction by p53 is well characterized, p53-dependent repression is not understood in detail. Here, we review the manifold mechanisms of p53 as a transcriptional repressor. We classify two different categories of repressed genes based on the underlying mechanism, and novel mechanisms which involve regulation through noncoding RNAs are discussed. The complete elucidation of p53 functions is important for our understanding of its tumor-suppressor activity and, therefore, represents the key for the development of novel therapeutic approaches.
Collapse
|
21
|
Hepatitis C virus causes uncoupling of mitotic checkpoint and chromosomal polyploidy through the Rb pathway. J Virol 2009; 83:12590-600. [PMID: 19793824 DOI: 10.1128/jvi.02643-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus (HCV) infection is associated with the development of hepatocellular carcinoma and probably also non-Hodgkin's B-cell lymphoma. The molecular mechanisms of HCV-associated carcinogenesis are unknown. Here we demonstrated that peripheral blood mononuclear cells obtained from hepatitis C patients and hepatocytes infected with HCV in vitro showed frequent chromosomal polyploidy. HCV infection or the expression of viral core protein alone in hepatocyte culture or transgenic mice inhibited mitotic spindle checkpoint function because of reduced Rb transcription and enhanced E2F-1 and Mad2 expression. The silencing of E2F-1 by RNA interference technology restored the function of mitotic checkpoint in core-expressing cells. Taken together, these data suggest that HCV infection may inhibit the mitotic checkpoint to induce polyploidy, which likely contributes to neoplastic transformation.
Collapse
|
22
|
Prystowsky MB, Adomako A, Smith RV, Kawachi N, McKimpson W, Atadja P, Chen Q, Schlecht NF, Parish JL, Childs G, Belbin TJ. The histone deacetylase inhibitor LBH589 inhibits expression of mitotic genes causing G2/M arrest and cell death in head and neck squamous cell carcinoma cell lines. J Pathol 2009; 218:467-77. [PMID: 19402126 DOI: 10.1002/path.2554] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Head and neck squamous cell carcinoma represents a complex set of neoplasms arising in diverse anatomical locations. The site and stage of the cancer determine whether patients will be treated with single or multi-modality therapy. The HDAC inhibitor LBH589 is effective in treating some haematological neoplasms and shows promise for certain epithelial neoplasms. As with other human cancer cell lines, LBH589 causes up-regulation of p21, G2/M cell cycle arrest, and cell death of human HNSCC cell lines, as measured using flow cytometry and cDNA microarrays. Global RNA expression studies following treatment of the HNSCC cell line FaDu with LBH589 reveal down-regulation of genes required for chromosome congression and segregation (SMC2L1), sister chromatid cohesion (DDX11), and kinetochore structure (CENP-A, CENP-F, and CENP-M); these LBH589-induced changes in gene expression coupled with the down-regulation of MYC and BIRC5 (survivin) provide a plausible explanation for the early mitotic arrest and cell death observed. When LBH589-induced changes in gene expression were compared with gene expression profiles of 41 primary HNSCC samples, many of the genes that were down-regulated by LBH589 showed increased expression in primary HNSCC, suggesting that some patients with HNSCC may respond to treatment with LBH589.
Collapse
Affiliation(s)
- Michael B Prystowsky
- Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Banerjee T, Nath S, Roychoudhury S. DNA damage induced p53 downregulates Cdc20 by direct binding to its promoter causing chromatin remodeling. Nucleic Acids Res 2009; 37:2688-98. [PMID: 19273532 PMCID: PMC2677870 DOI: 10.1093/nar/gkp110] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CDC20 is a critical molecule in the Spindle Assembly Checkpoint (SAC). It activates the Anaphase promoting complex and helps a dividing cell to proceed towards Anaphase. CDC20 is overexpressed in many tumor cells which cause chromosomal instability. There have been limited reports on the mechanism of SAC's response to genotoxic stress. We show that ectopically expressed p53 or DNA damage induced endogenous p53 can downregulate Cdc20 transcriptionally. We have identified a consensus p53-binding site on the Cdc20 promoter and have shown that it is being used by p53 to bind the promoter and bring about chromatin remodeling thereby repressing Cdc20. Additionally, p53 also downregulates Cdc20 promoter through CDE/CHR element, but in a p21 independent manner. This CDE/CHR element-mediated downregulation occurs only under p53 overexpressed condition but not in the context of DNA damage. The present results suggest that the two CCAAT elements in the Cdc20 promoter are not used by p53 to downregulate its activity, as reported earlier.
Collapse
Affiliation(s)
- Taraswi Banerjee
- Molecular and Human Genetics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata 700032, India
| | | | | |
Collapse
|
24
|
Shen YC, Hu FC, Jeng YM, Chang YT, Lin ZZ, Chang MC, Hsu C, Cheng AL. Nuclear overexpression of mitotic regulatory proteins in biliary tract cancer: correlation with clinicopathologic features and patient survival. Cancer Epidemiol Biomarkers Prev 2009; 18:417-23. [PMID: 19190145 DOI: 10.1158/1055-9965.epi-08-0691] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mitosis dysregulation is common in cancers. This study explored the nuclear expression patterns and prognostic significance of mitotic regulatory proteins, including Aurora kinases, survivin, and p53, in biliary tract cancer (BTC). Archival tumor samples from 161 BTC patients who underwent surgery were tested for the expression of Aurora-A, Aurora-B, survivin, and p53 by immunohistochemistry. The potential endogeneity among the clinicopathologic variables and survival outcome was assessed by a generalized simultaneous equations model. Nuclear overexpression of Aurora-A, Aurora-B, survivin, and p53 was found in 79 (49.1%), 45 (28.0%), 55 (34.2%), and 55 (34.2%) patients, respectively. Intrahepatic cholangiocarcinoma, compared with the other two subtypes, had significantly higher proportions of nuclear overexpression of Aurora-B and survivin (37.8% and 47.3%, respectively). Simultaneous overexpression of Aurora-A and Aurora-B was correlated with that of p53. Overexpression of Aurora-B was also correlated with that of survivin and tumor grade. Our data indicate that simultaneous overexpression of Aurora-A and Aurora-B, suggesting dysregulated mitosis is associated with worse survival in patients with BTC. Independent prognostic factors for poor overall survival included simultaneous overexpression of Aurora-A and Aurora-B (hazard ratio, 1.997; 95% confidence interval, 1.239-3.219; P = 0.0045) and tumor grade (hazard ratio, 2.117; 95% confidence interval, 1.339-3.348; P = 0.0013) assessed by a multivariate analysis stratified by American Joint Committee on Cancer stage and p53 overexpression. Endogeneity testing suggested that nuclear overexpression of p53 and tumor type may influence patient survival through their interactions with Aurora-A/Aurora-B expression and tumor grade.
Collapse
Affiliation(s)
- Ying-Chun Shen
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Xiong CL, Huang Y. Advances in biological characteristics of p53 gene and its role in gastrointestinal tumors. Shijie Huaren Xiaohua Zazhi 2008; 16:3648-3653. [DOI: 10.11569/wcjd.v16.i32.3648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
With the progression of current genetic research, tumor-specific gene detection has become an important method to identify tumor patients; meanwhile, gene therapy or gene-targeted therapy, which is becoming a novel approach of tumor treatment, has brought a new hope for the final cure of malignant tumors. In this article, we review the characteristics of tumor-associated gene p53 and its role in gastrointestinal tumors.
Collapse
|
26
|
Siu YT, Ching YP, Jin DY. Activation of TORC1 transcriptional coactivator through MEKK1-induced phosphorylation. Mol Biol Cell 2008; 19:4750-61. [PMID: 18784253 DOI: 10.1091/mbc.e08-04-0369] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
CREB is a prototypic bZIP transcription factor and a master regulator of glucose metabolism, synaptic plasticity, cell growth, apoptosis, and tumorigenesis. Transducers of regulated CREB activity (TORCs) are essential transcriptional coactivators of CREB and an important point of regulation on which various signals converge. In this study, we report on the activation of TORC1 through MEKK1-mediated phosphorylation. MEKK1 potently activated TORC1, and this activation was independent of downstream effectors MEK1/MEK2, ERK2, JNK, p38, protein kinase A, and calcineurin. MEKK1 induced phosphorylation of TORC1 both in vivo and in vitro. Expression of the catalytic domain of MEKK1 alone in cultured mammalian cells sufficiently caused phosphorylation and subsequent activation of TORC1. MEKK1 physically interacted with TORC1 and stimulated its nuclear translocation. An activation domain responsive to MEKK1 stimulation was mapped to amino acids 431-650 of TORC1. As a physiological activator of CREB, interleukin 1alpha triggered MEKK1-dependent phosphorylation of TORC1 and its consequent recruitment to the cAMP response elements in the interleukin 8 promoter. Taken together, our findings suggest a new mechanism for regulated activation of TORC1 transcriptional coactivator and CREB signaling.
Collapse
Affiliation(s)
- Yeung-Tung Siu
- Department of Biochemistry and Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | |
Collapse
|
27
|
Hassan M, Alaoui A, Feyen O, Mirmohammadsadegh A, Essmann F, Tannapfel A, Gulbins E, Schulze-Osthoff K, Hengge UR. The BH3-only member Noxa causes apoptosis in melanoma cells by multiple pathways. Oncogene 2008; 27:4557-68. [PMID: 18408751 DOI: 10.1038/onc.2008.90] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The molecular causes for resistance of melanoma to apoptosis are currently only partly understood. In the present study, we examined gene transfer and expression of the proapoptotic BH3-only protein Noxa as an alternative approach to chemotherapy and investigated the molecular mechanisms regulating Noxa-induced apoptosis. Noxa gene transfer caused dysregulation of both mitochondria and, as shown for the first time, also the endoplasmic reticulum, resulting in the accumulation of reactive oxygen species. Interestingly, expression of Noxa not only triggered the classical mitochondrial caspase cascade, but also resulted in the activation of apoptosis signal-regulating kinase1 and its downstream effectors c-Jun N-terminal kinase and p38. The activation of these kinases was abolished by antioxidants. Moreover, inhibition of the kinases by RNA interference or pharmacological inhibitors significantly attenuated Noxa-induced apoptosis. Thus, our data provide evidence for the involvement of multiple pathways in Noxa-induced apoptosis that are triggered at mitochondria and the endoplasmic reticulum, and suggest Noxa gene transfer as a complementary approach to chemotherapy.
Collapse
Affiliation(s)
- M Hassan
- Department of Dermatology, Heinrich-Heine-University, Duesseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Laptenko O, Prives C. Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ 2007; 13:951-61. [PMID: 16575405 DOI: 10.1038/sj.cdd.4401916] [Citation(s) in RCA: 381] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The p53 tumor suppressor protein is a DNA sequence-specific transcriptional regulator that, in response to various forms of cellular stress, controls the expression of numerous genes involved in cellular outcomes including among others, cell cycle arrest and cell death. Two key features of the p53 protein are required for its transcriptional activities: its ability to recognize and bind specific DNA sequences and to recruit both general and specialized transcriptional co-regulators. In fact, multiple interactions with co-activators and co-repressors as well as with the components of the general transcriptional machinery allow p53 to either promote or inhibit transcription of different target genes. This review focuses on some of the salient features of the interactions of p53 with DNA and with factors that regulate transcription. We discuss as well the complexities of the functional domains of p53 with respect to these interactions.
Collapse
Affiliation(s)
- O Laptenko
- Department of Biological Sciences, Columbia University, 530 120th Street, New York, NY 10027, USA
| | | |
Collapse
|
29
|
Chin KT, Chun ACS, Ching YP, Jeang KT, Jin DY. Human T-cell leukemia virus oncoprotein tax represses nuclear receptor-dependent transcription by targeting coactivator TAX1BP1. Cancer Res 2007; 67:1072-81. [PMID: 17283140 DOI: 10.1158/0008-5472.can-06-3053] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human T-cell leukemia virus type 1 oncoprotein Tax is a transcriptional regulator that interacts with a large number of host cell factors. Here, we report the novel characterization of the interaction of Tax with a human cell protein named Tax1-binding protein 1 (TAX1BP1). We show that TAX1BP1 is a nuclear receptor coactivator that forms a complex with the glucocorticoid receptor. TAX1BP1 and Tax colocalize into intranuclear speckles that partially overlap with but are not identical to the PML oncogenic domains. Tax binds TAX1BP1 directly, induces the dissociation of TAX1BP1 from the glucocorticoid receptor-containing protein complex, and represses the coactivator function of TAX1BP1. Genetic knockout of Tax1bp1 in mice abrogates the influence of Tax on the activation of nuclear receptors. We propose that Tax-TAX1BP1 interaction mechanistically explains the previously reported repression of nuclear receptor activity by Tax.
Collapse
Affiliation(s)
- King-Tung Chin
- Department of Biochemistry, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | | | | | | | | |
Collapse
|
30
|
Pinto M, Soares MJ, Cerveira N, Henrique R, Ribeiro FR, Oliveira J, Jerónimo C, Teixeira MR. Expression changes of the MAD mitotic checkpoint gene family in renal cell carcinomas characterized by numerical chromosome changes. Virchows Arch 2007; 450:379-85. [PMID: 17333263 DOI: 10.1007/s00428-007-0386-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 01/31/2007] [Accepted: 02/08/2007] [Indexed: 10/23/2022]
Abstract
Papillary and chromophobe renal cell carcinomas are characterized by multiple trisomies and monosomies, respectively, but the molecular mechanisms behind the acquisition of these numerical chromosome changes are unknown. To evaluate the role of mitotic checkpoint defects for the karyotypic patterns characteristic of these two renal cell cancer subtypes, we analyzed the messenger RNA expression levels of the major mitotic checkpoint genes of the budding uninhibited by benzimidazole family (BUB1, BUBR1, BUB3) and of the mitotic arrest deficiency family (MAD1, MAD2L1, MAD2L2) by real-time quantitative polymerase chain reaction in 30 renal cell cancer samples (11 chromophobe and 19 papillary) and 36 normal kidney tissue samples. MAD1, MAD2L1, and MAD2L2 showed significant expression differences in tumor tissue compared to controls. Chromophobe tumors presented underexpression of MAD1, and MAD2L2, whereas papillary tumors showed overexpression of MAD2L1. The expression level of the BUB gene family did not differ significantly from that of normal kidney. We conclude that expression changes in mitotic arrest deficiency genes (MAD1, MAD2L1, and MAD2L2) play a role in renal carcinogenesis characterized by multiple numerical chromosome abnormalities.
Collapse
Affiliation(s)
- Mafalda Pinto
- Department of Genetics, Portuguese Oncology Institute, Rua Dr António Bernardino de Almeida, 4200-072,, Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Rother K, Dengl M, Lorenz J, Tschöp K, Kirschner R, Mössner J, Engeland K. Gene expression of cyclin-dependent kinase subunit Cks2 is repressed by the tumor suppressor p53 but not by the related proteins p63 or p73. FEBS Lett 2007; 581:1166-72. [PMID: 17336302 DOI: 10.1016/j.febslet.2007.02.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 02/12/2007] [Accepted: 02/13/2007] [Indexed: 12/13/2022]
Abstract
Cks2 proteins are essential components of cyclin/cyclin-dependent kinase complexes and contribute to cell cycle control. We identify Cks2 as a transcriptional target downregulated by the tumor suppressor p53. Cks2 expression was found to be repressed by p53 both at the mRNA and the protein levels. p53 downregulates transcription from the Cks2 promoter in a dose-dependent manner and in all cell types tested. This repression appears to be independent of p53 binding to the Cks2 promoter. In contrast to p53, neither p63 nor p73 proteins can repress Cks2 transcription. Thus p53, rather than its homologues p63 and p73, may contribute to control of the first metaphase/anaphase transition of mammalian meiosis by downregulation of Cks2 expression.
Collapse
Affiliation(s)
- Karen Rother
- Medizinische Klinik II, Max-Bürger-Forschungszentrum, Universität Leipzig, Johannisallee 30, D-04103 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Chan CP, Siu KL, Chin KT, Yuen KY, Zheng B, Jin DY. Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein. J Virol 2006; 80:9279-87. [PMID: 16940539 PMCID: PMC1563899 DOI: 10.1128/jvi.00659-06] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Perturbation of the function of endoplasmic reticulum (ER) causes stress leading to the activation of cell signaling pathways known as the unfolded protein response (UPR). Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) uses ER as a site for synthesis and processing of viral proteins. In this report, we demonstrate that infection with SARS-CoV induces the UPR in cultured cells. A comparison with M, E, and NSP6 proteins indicates that SARS-CoV spike (S) protein sufficiently induces transcriptional activation of several UPR effectors, including glucose-regulated protein 78 (GRP78), GRP94, and C/EBP homologous protein. A substantial amount of S protein accumulates in the ER. The expression of S protein exerts different effects on the three major signaling pathways of the UPR. Particularly, it induces GRP78/94 through PKR-like ER kinase but has no influence on activating transcription factor 6 or X box-binding protein 1. Taken together, our findings suggest that SARS-CoV S protein specifically modulates the UPR to facilitate viral replication.
Collapse
Affiliation(s)
- Ching-Ping Chan
- Department of Biochemistry, The University of Hong Kong, 3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Hong Kong
| | | | | | | | | | | |
Collapse
|
33
|
Achison M, Boylan MT, Hupp TR, Spruce BA. HIF-1alpha contributes to tumour-selective killing by the sigma receptor antagonist rimcazole. Oncogene 2006; 26:1137-46. [PMID: 16924239 DOI: 10.1038/sj.onc.1209890] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have previously reported tumour-selective killing by the sigma (sigma) receptor ligand rimcazole. We now report that rimcazole elevates hypoxia inducible factor-1alpha (HIF-1alpha) protein levels under normoxic conditions in colorectal (HCT-116) and mammary carcinoma (MDA MB 231) cells but fails to induce HIF-1alpha in normal fibroblasts or mammary epithelial cells. Combining the sigma-1 agonist (+)-pentazocine with rimcazole substantially reduces the accumulation of HIF-1alpha, confirming that the effect is mediated at least partly by antagonism of sigma-1 sites. HIF-1alpha knockdown by RNA interference attenuates rimcazole-induced cell death in both cell types. Thus, the induction of HIF-1alpha by rimcazole contributes to tumour cell killing. In a comparison of HCT-116p53+/+ and HCT-116p53-/- cells, HIF-1alpha levels are consistently higher after rimcazole treatment in HCT-116p53+/+ cells. Furthermore, although rimcazole kills HCT-116p53-/- cells, it has a more potent apoptosis-inducing effect in HCT-116p53+/+ cells. This suggests that the presence of functional p53 protein may enhance death induction by rimcazole in part through greater induction of HIF-1alpha. p53 is not required, however, for the rimcazole-induced engagement of HIF-1alpha in proapoptotic mode as HIF-1alpha knockdown attenuates rimcazole-induced death to comparable extents in p53 mutant and wild-type cell systems. Knowledge of HIF-1alpha involvement may assist the re-profiling of rimcazole and other sigma ligands as cancer therapeutics.
Collapse
Affiliation(s)
- M Achison
- Surgery and Molecular Oncology, Ninewells Medical School, University of Dundee, Dundee, UK
| | | | | | | |
Collapse
|
34
|
Spurgers KB, Gold DL, Coombes KR, Bohnenstiehl NL, Mullins B, Meyn RE, Logothetis CJ, McDonnell TJ. Identification of cell cycle regulatory genes as principal targets of p53-mediated transcriptional repression. J Biol Chem 2006; 281:25134-42. [PMID: 16798743 DOI: 10.1074/jbc.m513901200] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Historically, most studies attribute p53 function to the transactivation of target genes. That p53 can selectively repress genes to affect a cellular response is less widely appreciated. Available evidence suggests that repression is important for p53-induced apoptosis and cell cycle arrest. To better establish the scope of p53-repressed target genes and the cellular processes they may affect, a global expression profiling strategy was used to identify p53-responsive genes following adenoviral p53 gene transfer (Ad-p53) in PC3 prostate cancer cells. A total of 111 genes, 0.77% of the 14,500 genes represented on the Affymetrix U133A microarray, were repressed more than 2-fold (p < or = 0.05). Validation of the array data, using reverse transcription-PCR of 20 randomly selected genes, yielded a confirmation rate of >95.5% for the complete data set. Functional over-representation analysis revealed that cell cycle regulatory genes exhibited a highly significant enrichment (p < or = 5 x 10(-28)) within the transrepressed targets. 41% of the repressed targets are cell cycle regulators. A subset of these genes exhibited repression following DNA damage, preceding cell cycle arrest, in LNCaP cells. The use of a p53 small interfering RNA strategy in LNCaP cells and the use of p53-null cell lines demonstrated that this repression is p53-dependent. These findings identify a set of genes not known previously to be down-regulated by p53 and indicate that p53-induced cell cycle arrest is a function of not only the transactivation of cell cycle inhibitors (e.g. p21) but also the repression of targets that regulate proliferation at several distinct phases of the cell cycle.
Collapse
Affiliation(s)
- Kevin B Spurgers
- Department of Molecular Pathology, University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhang DW, Jeang KT, Lee CGL. p53 negatively regulates the expression of FAT10, a gene upregulated in various cancers. Oncogene 2006; 25:2318-27. [PMID: 16501612 DOI: 10.1038/sj.onc.1209220] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
FAT10 is a member of the ubiquitin-like modifier family of proteins and has been implicated to play important roles in antigen presentation, cytokine response, apoptosis and mitosis. We have recently demonstrated the upregulation of FAT10 gene expression in 90% of hepatocellular carcinoma patients. Here, we identified and characterized the promoter of the FAT10 gene to elucidate the mechanism of FAT10 gene expression. Notably, we found that the 5' untranslated region (5'UTR), from the transcription start site to 15 bases before the translational start site, displays significant promoter activity. Regions upstream of the 5'UTR (from +26 to -1997) do not confer any promoter activity. Curiously, FAT10 promoter activity and expression is significantly repressed in KB3-1 and HepG2 cells, which have wild-type p53, than in p53-negative Hep3B cells. The role of p53 in regulating FAT10 expression was evident by the significant downregulation (P<0.05) of FAT10 mRNA expression and promoter activity when wild-type p53 was transfected into p53-null Hep3B cells. Conversely, inhibiting p53 expression through siRNA against p53 significantly enhanced FAT10 expression and promoter activity. p53 was found to bind in vivo to the 5' half consensus sequence of p53-binding site located at the FAT10 promoter. Hence, we propose that FAT10 is a downstream target of p53 and dysregulation of FAT10 expression in p53-defective cells could contribute to carcinogenesis.
Collapse
Affiliation(s)
- D W Zhang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
36
|
Bhonde MR, Hanski ML, Budczies J, Cao M, Gillissen B, Moorthy D, Simonetta F, Scherübl H, Truss M, Hagemeier C, Mewes HW, Daniel PT, Zeitz M, Hanski C. DNA Damage-induced Expression of p53 Suppresses Mitotic Checkpoint Kinase hMps1. J Biol Chem 2006; 281:8675-85. [PMID: 16446370 DOI: 10.1074/jbc.m511333200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA damage induced by the topoisomerase I inhibitor irinotecan (CPT-11) triggers in p53(WT) colorectal carcinoma cells a long term cell cycle arrest and in p53MUT cells a transient arrest followed by apoptosis (Magrini, R., Bhonde, M. R., Hanski, M. L., Notter, M., Scherübl, H., Boland, C. R., Zeitz, M., and Hanski, C. (2002) Int. J. Cancer 101, 23-31; Bhonde, M. R., Hanski, M. L., Notter, M., Gillissen, B. F., Daniel, P. T., Zeitz, M., and Hanski, C. (2006) Oncogene 25, 165-175). The mechanism of the p53-independent apoptosis still remains largely unclear. Here we used five p53WT and five p53MUT established colon carcinoma cell lines to identify gene expression alterations associated with apoptosis in p53MUT cells after treatment with SN-38, the irinotecan metabolite. After treatment, 16 mitosis-related genes were found to be expressed at least 2-fold stronger in the apoptosis-executing p53MUT cells than in the cell cycle-arrested p53WT cells by oligonucleotide microarray analysis. One of the genes whose strong post-treatment expression was associated with apoptosis was the mitotic checkpoint kinase hMps1 (human ortholog of the yeast monopolar spindle 1 kinase). hMps1 mRNA and protein expression were suppressed by the treatment-induced and by the exogenous adenovirus-coded p53 protein. The direct suppression of hMps1 on RNA level or inhibition of its activity by a dominant-negative hMps1 partly suppressed apoptosis. Together, these data indicate that the high expression of mitotic genes in p53MUT cells after SN-38 treatment contributes to DNA damage-induced apoptosis, whereas their suppression in p53WT cells acts as a safeguard mechanism preventing mitosis initiation and the subsequent apoptosis. hMps1 kinase is one of the mitotic checkpoint proteins whose expression after DNA damage in p53MUT cells activates the checkpoint and contributes to apoptosis.
Collapse
Affiliation(s)
- Mandar R Bhonde
- Department of Gastroenterology, University Medical Center Charité, Campus Benjamin Franklin, 12200 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ng DCH, Chan SF, Kok KH, Yam JWP, Ching YP, Ng IOL, Jin DY. Mitochondrial targeting of growth suppressor protein DLC2 through the START domain. FEBS Lett 2005; 580:191-8. [PMID: 16364308 DOI: 10.1016/j.febslet.2005.11.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Accepted: 11/27/2005] [Indexed: 10/25/2022]
Abstract
Deleted in liver cancer 2 (DLC2) is a candidate tumor suppressor frequently found to be deleted in hepatocellular carcinoma. In this study, we determined the subcellular localization of DLC2. Co-localization and biochemical fractionation studies revealed that DLC2 localized to mitochondria. In addition, the DLC2-containing cytoplasmic speckles were in proximity to lipid droplets. A DLC2 mutant containing the steroidogenic acute regulatory protein-related lipid transfer (START) domain only showed a localization pattern identical to that of DLC2. Taken together, we have provided the first evidence for mitochondrial localization of DLC2 through the START domain. These findings might have implications in liver physiology and carcinogenesis.
Collapse
Affiliation(s)
- David Chi-Heng Ng
- Department of Biochemistry, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
38
|
Zhu N, Gu L, Findley HW, Zhou M. Transcriptional repression of the eukaryotic initiation factor 4E gene by wild type p53. Biochem Biophys Res Commun 2005; 335:1272-9. [PMID: 16112647 DOI: 10.1016/j.bbrc.2005.08.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 08/02/2005] [Indexed: 01/31/2023]
Abstract
The eukaryotic initiation factor 4E (eIF4E) plays important roles in transformation and cancer progression. It is frequently overexpressed in malignant cells, one mechanism of which is through transcriptional activation by c-myc. Here, we report that high level of eIF4E expression and its tumorigenicity could be alternatively associated with defects of p53, since we found that induction of wt-p53 repressed eIF4E expression. Gene transfection of p53 inhibited eIF4E promoter activity, while inactivation of p53 either by mutation or by over-expression of MDM2 resulted in stimulation of eIF4E promoter activity. We demonstrated that p53-repression of eIF4E was regulated by c-myc. The wt-p53 can physically bind to c-myc, which inhibited binding of c-myc to eIF4E promoter and c-myc-stimulated promoter activity. These results suggest that the expression of eIF4E is reciprocally regulated by p53 and c-myc, and loss of p53-mediated control over c-myc-dependent transactivation of eIF4E may represent a novel mechanism for eIF4E-mediated neoplastic transformation and cancer progression.
Collapse
Affiliation(s)
- Ningxi Zhu
- Division of Pediatric Hematology/Oncology/BMT, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Abnormal chromosome content - also known as aneuploidy - is the most common characteristic of human solid tumours. It has therefore been proposed that aneuploidy contributes to, or even drives, tumour development. The mitotic checkpoint guards against chromosome mis-segregation by delaying cell-cycle progression through mitosis until all chromosomes have successfully made spindle-microtubule attachments. Defects in the mitotic checkpoint generate aneuploidy and might facilitate tumorigenesis, but more severe disabling of checkpoint signalling is a possible anticancer strategy.
Collapse
Affiliation(s)
- Geert J P L Kops
- Laboratory of Experimental Oncology, Department of Medical Oncology, University Medical Center, Utrecht, 3584 CG, The Netherlands.
| | | | | |
Collapse
|
40
|
Chin KT, Zhou HJ, Wong CM, Lee JMF, Chan CP, Qiang BQ, Yuan JG, Ng IOL, Jin DY. The liver-enriched transcription factor CREB-H is a growth suppressor protein underexpressed in hepatocellular carcinoma. Nucleic Acids Res 2005; 33:1859-73. [PMID: 15800215 PMCID: PMC1072803 DOI: 10.1093/nar/gki332] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have previously characterized transcription factor LZIP to be a growth suppressor targeted by hepatitis C virus oncoprotein. In search of proteins closely related to LZIP, we have identified a liver-enriched transcription factor CREB-H. LZIP and CREB-H represent a new subfamily of bZIP factors. CREB-H activates transcription by binding to cAMP responsive element, box B, and ATF6-binding element. Interestingly, CREB-H has a putative transmembrane (TM) domain and it localizes ambiently to the endoplasmic reticulum. Proteolytic cleavage that removes the TM domain leads to nuclear translocation and activation of CREB-H. CREB-H activates the promoter of hepatic gluconeogenic enzyme phosphoenolpyruvate carboxykinase. This activation can be further stimulated by cAMP and protein kinase A. CREB-H transcript is exclusively abundant in adult liver. In contrast, the expression of CREB-H mRNA is aberrantly reduced in hepatoma tissues and cells. The enforced expression of CREB-H suppresses the proliferation of cultured hepatoma cells. Taken together, our findings suggest that the liver-enriched bZIP transcription factor CREB-H is a growth suppressor that plays a role in hepatic physiology and pathology.
Collapse
Affiliation(s)
- King-Tung Chin
- Department of Biochemistry, University of Hong KongHong Kong, China
| | - Hai-Jun Zhou
- Department of Biochemistry, University of Hong KongHong Kong, China
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100005, China
| | - Chun-Ming Wong
- Department of Pathology, Faculty of Medicine, University of Hong KongHong Kong, China
| | - Joyce Man-Fong Lee
- Department of Pathology, Faculty of Medicine, University of Hong KongHong Kong, China
| | - Ching-Ping Chan
- Department of Biochemistry, University of Hong KongHong Kong, China
| | - Bo-Qin Qiang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100005, China
| | - Jian-Gang Yuan
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100005, China
| | - Irene Oi-lin Ng
- Department of Pathology, Faculty of Medicine, University of Hong KongHong Kong, China
| | - Dong-Yan Jin
- Department of Biochemistry, University of Hong KongHong Kong, China
- To whom correspondence should be addressed at Department of Biochemistry, The University of Hong Kong, 3rd Floor, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Hong Kong. Tel: +852 2819 9491; Fax: +852 2855 1254;
| |
Collapse
|
41
|
Li C, Lin M, Liu J. Identification of PRC1 as the p53 target gene uncovers a novel function of p53 in the regulation of cytokinesis. Oncogene 2005; 23:9336-47. [PMID: 15531928 DOI: 10.1038/sj.onc.1208114] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our previous studies conducted in MCF7-ptsp53 cells have demonstrated that overexpression of the wild-type (wt) p53 at permissive temperature 32 degrees C leads to growth arrest at the G2/M phase of the cell cycle. To identify novel p53-regulated genes that are responsible for the p53-induced G2/M arrest, we conducted cDNA microarray analyses. The array results indicated that the mRNA level of protein regulator of cytokinesis (PRC1) was significantly decreased when the p53 transactivation activity was turned on, suggesting that PRC1 transcription could be downregulated by p53. In this study, we have extensively examined the functional role of p53 in the regulation of PRC1, a cell cycle protein that plays important roles during cytokinesis. We demonstrate that increased expression of the wt p53 either by exogenous transfection or chemical induction results in reduced mRNA and protein expression of PRC1 in HCT116 p53(+/+), HCT116 p53(-/-), MCF-7, T47D, and HeLa cells. Importantly, we show that the decreased PRC1 expression is accompanied by the appearance of binucleated cells, indicating the process of cell division after mitosis being inhibited. By isolation and characterization of a 3 kb genomic fragment containing the 5'-flanking region and part of exon 1 of PRC1 gene, we demonstrate that p53 directly suppresses PRC1 gene transcription. We further locate the p53-responsive sequence to the proximal promoter region -214 to -163, relative to the transcriptional start site. The in vivo interaction of p53 with PRC1 gene promoter is further demonstrated by chromatin immunoprecipitation assay. Taken together, these new findings suggest that p53 may have important roles in the regulation of cytokinesis through controlling the transcription of PRC1.
Collapse
Affiliation(s)
- Cong Li
- Department of Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | | | | |
Collapse
|
42
|
Sze KMF, Ching YP, Jin DY, Ng IOL. Association of MAD2 expression with mitotic checkpoint competence in hepatoma cells. J Biomed Sci 2004; 11:920-7. [PMID: 15591789 DOI: 10.1007/bf02254377] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2004] [Accepted: 05/15/2004] [Indexed: 10/25/2022] Open
Abstract
Chromosomal instability (CIN) refers to high rates of chromosomal gains and losses and is a major cause of genomic instability of cells. It is thought that CIN caused by loss of mitotic checkpoint contributes to carcinogenesis. In this study, we evaluated the competence of mitotic checkpoint in hepatoma cells and investigated the cause of mitotic checkpoint defects. We found that 6 (54.5%) of the 11 hepatoma cell lines were defective in mitotic checkpoint control as monitored by mitotic indices and flow-cytometric analysis after treatment with microtubule toxins. Interestingly, all 6 hepatoma cell lines with defective mitotic checkpoint showed significant underexpression of mitotic arrest deficient 2 (MAD2), a key mitotic checkpoint protein. The level of MAD2 underexpression was significantly associated with defective mitotic checkpoint response (p < 0.001). In addition, no mutations were found in the coding sequences of MAD2 in all 11 hepatoma cell lines. Our findings suggest that MAD2 deficiency may cause a mitotic checkpoint defect in hepatoma cells.
Collapse
Affiliation(s)
- Karen Man-Fong Sze
- Department of Pathology, University of Hong Kong, Faculty of Medicine, Hong Kong, China
| | | | | | | |
Collapse
|
43
|
Zhang Y, Wang JS, Chen LL, Zhang Y, Cheng XK, Heng FY, Wu NH, Shen YF. Repression of hsp90β Gene by p53 in UV Irradiation-induced Apoptosis of Jurkat Cells. J Biol Chem 2004; 279:42545-51. [PMID: 15284248 DOI: 10.1074/jbc.m314213200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor suppressor p53 has been implicated in cell stress response and determines cell fate of either growth arrest or apoptosis. Heat shock proteins (Hsps) expressed under stress usually confer survival protection to the cell or interruption in the apoptotic pathways. Although Hsp90 can physically interact with p53, whether or not the hsp90 gene is influenced downstream of p53 in UV irradiation-induced apoptosis remains unclear. We have found that the level of p53 is elevated with the decline of Hsp90 in UV-irradiated cells and that malfunction of Hsp90, as inhibited by geldanamycin, enhances the p53-involved UV irradiation-induced apoptosis. In addition, the expression of the hsp90beta gene was reduced in both UV-irradiated and wild type p53-transfected cells. These results suggest a negative correlation between the trans factor p53 and a chaperone gene hsp90beta in apoptotic cells. Mutation analysis demonstrated that the p53 binding site in the first exon was indispensable for p53 regulation on the hsp90beta gene. In addition, with p53 bound at the promoter of the hsp90beta gene, mSin3a and p300 were differentially recruited in UV irradiation-treated or untreated Jurkat cells in vivo. The evidence of p53-repressed hsp90beta gene expression in UV-irradiated cells shed light on a novel pathway of Hsp90 in the survival control of the stressed cells.
Collapse
Affiliation(s)
- Ye Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Ching YP, Chun ACS, Chin KT, Zhang ZQ, Jeang KT, Jin DY. Specific TATAA and bZIP requirements suggest that HTLV-I Tax has transcriptional activity subsequent to the assembly of an initiation complex. Retrovirology 2004; 1:18. [PMID: 15285791 PMCID: PMC509288 DOI: 10.1186/1742-4690-1-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Accepted: 07/30/2004] [Indexed: 11/21/2022] Open
Abstract
Background Human T-cell leukemia virus type I (HTLV-I) Tax protein is a transcriptional regulator of viral and cellular genes. In this study we have examined in detail the determinants for Tax-mediated transcriptional activation. Results Whereas previously the LTR enhancer elements were thought to be the sole Tax-targets, herein, we find that the core HTLV-I TATAA motif also provides specific responsiveness not seen with either the SV40 or the E1b TATAA boxes. When enhancer elements which can mediate Tax-responsiveness were compared, the authentic HTLV-I 21-bp repeats were found to be the most effective. Related bZIP factors such as CREB, ATF4, c-Jun and LZIP are often thought to recognize the 21-bp repeats equivalently. However, amongst bZIP factors, we found that CREB, by far, is preferred by Tax for activation. When LTR transcription was reconstituted by substituting either κB or serum response elements in place of the 21-bp repeats, Tax activated these surrogate motifs using surfaces which are different from that utilized for CREB interaction. Finally, we employed artificial recruitment of TATA-binding protein to the HTLV-I promoter in "bypass" experiments to show for the first time that Tax has transcriptional activity subsequent to the assembly of an initiation complex at the promoter. Conclusions Optimal activation of the HTLV-I LTR by Tax specifically requires the core HTLV-I TATAA promoter, CREB and the 21-bp repeats. In addition, we also provide the first evidence for transcriptional activity of Tax after the recruitment of TATA-binding protein to the promoter.
Collapse
Affiliation(s)
- Yick-Pang Ching
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Abel CS Chun
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - King-Tung Chin
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zhi-Qing Zhang
- National Key Laboratory for Molecular Virology, Institute of Virology, 100 Yingxin Street, Beijing 100052, China
| | | | - Dong-Yan Jin
- Laboratory of Molecular Microbiology, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-0460, USA
| |
Collapse
|
45
|
Yoon HS, Yang VW. Requirement of Krüppel-like factor 4 in preventing entry into mitosis following DNA damage. J Biol Chem 2003; 279:5035-41. [PMID: 14627709 PMCID: PMC1262649 DOI: 10.1074/jbc.m307631200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Previous studies indicate that Krüppel-like factor 4 (KLF4 or GKLF) controls the G1/S cell cycle checkpoint upon DNA damage. We present evidence for an equally important role of KLF4 in maintaining the integrity of the G2/M checkpoint following DNA damage. HCT116, a colon cancer cell line with wild type p53 alleles, underwent sustained G2 arrest up to 4 days after gamma-irradiation. In contrast, HCT116 cells null for p53 were able to enter mitosis following irradiation. Western blot analyses of irradiated HCT116 cells showed increased levels of p53, KLF4, and p21WAF1/CIP1 and decreased levels of cyclin B1 when compared with unirradiated controls. In contrast, the levels of cyclin B1 increased in irradiated HCT116 p53-/- cells, in which KLF4 failed to increase due to the absence of p53. When KLF4 was inhibited by small interfering RNA, irradiated HCT116 cells exhibited increased mitotic indices and a rise in cyclin B1 levels. Conversely, irradiated HCT116 p53-/- cells that were infected with KLF4-expressing adenoviruses demonstrated a concurrent reduction in mitotic indices and cyclin B1 levels. In each case, Cdc2 kinase measurements showed an inverse correlation between Cdc2 kinase activities and KLF4 levels. Co-transfection experiments showed that KLF4 repressed the cyclin B1 promoter through a specific GC-rich element. Moreover, chromatin immunoprecipitation experiments demonstrated that both KLF4 and HDAC were associated with the cyclin B1 promoter in irradiated HCT116 cells. We conclude that KLF4 is essential in preventing mitotic entry following gamma-irradiation and does so by inhibiting cyclin B1 expression.
Collapse
Affiliation(s)
- Hong S. Yoon
- From the Division of Digestive Diseases, Department of Medicine, and
| | - Vincent W. Yang
- From the Division of Digestive Diseases, Department of Medicine, and
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
- ¶ Recipient of a Georgia Cancer Coalition Distinguished Cancer Clinician Scientist Award. To whom correspondence should be addressed: Division of Digestive Diseases, Dept. of Medicine, 201 Whitehead Research Bldg., 615 Michael St., Atlanta, GA 30322. Tel.: 404-727-5638; Fax: 404-727-5767; E-mail:
| |
Collapse
|