1
|
Jain KG, Zhao R, Liu Y, Guo X, Yi G, Ji HL. Wnt5a/β-catenin axis is involved in the downregulation of AT2 lineage by PAI-1. Am J Physiol Lung Cell Mol Physiol 2022; 323:L515-L524. [PMID: 36098461 PMCID: PMC9602939 DOI: 10.1152/ajplung.00202.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/09/2022] [Accepted: 09/04/2022] [Indexed: 11/22/2022] Open
Abstract
Failure to regenerate injured alveoli functionally and promptly causes a high incidence of fatality in coronavirus disease 2019 (COVID-19). How elevated plasminogen activator inhibitor-1 (PAI-1) regulates the lineage of alveolar type 2 (AT2) cells for re-alveolarization has not been studied. This study aimed to examine the role of PAI-1-Wnt5a-β catenin cascades in AT2 fate. Dramatic reduction in AT2 yield was observed in Serpine1Tg mice. Elevated PAI-1 level suppressed organoid number, development efficiency, and total surface area in vitro. Anti-PAI-1 neutralizing antibody restored organoid number, proliferation and differentiation of AT2 cells, and β-catenin level in organoids. Both Wnt family member 5A (Wnt5a) and Wnt5a-derived N-butyloxycarbonyl hexapeptide (Box5) altered the lineage of AT2 cells. This study demonstrates that elevated PAI-1 regulates AT2 proliferation and differentiation via the Wnt5a/β catenin cascades. PAI-1 could serve as autocrine signaling for lung injury repair.
Collapse
Affiliation(s)
- Krishan G Jain
- Department of Cellular and Molecular Biology, University of Texas at Tyler, Tyler, Texas
| | - Runzhen Zhao
- Department of Cellular and Molecular Biology, University of Texas at Tyler, Tyler, Texas
| | - Yang Liu
- Department of Cellular and Molecular Biology, University of Texas at Tyler, Tyler, Texas
| | - Xuan Guo
- Department of Computer Science and Engineering, University of North Texas, Denton, Texas
| | - Guohua Yi
- Department of Pulmonary Immunology, University of Texas at Tyler, Tyler, Texas
| | - Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas at Tyler, Tyler, Texas
- Texas Lung Injury Institute, University of Texas at Tyler, Tyler, Texas
| |
Collapse
|
2
|
Vellasamy DM, Lee SJ, Goh KW, Goh BH, Tang YQ, Ming LC, Yap WH. Targeting Immune Senescence in Atherosclerosis. Int J Mol Sci 2022; 23:13059. [PMID: 36361845 PMCID: PMC9658319 DOI: 10.3390/ijms232113059] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 10/29/2023] Open
Abstract
Atherosclerosis is one of the main underlying causes of cardiovascular diseases (CVD). It is associated with chronic inflammation and intimal thickening as well as the involvement of multiple cell types including immune cells. The engagement of innate or adaptive immune response has either athero-protective or atherogenic properties in exacerbating or alleviating atherosclerosis. In atherosclerosis, the mechanism of action of immune cells, particularly monocytes, macrophages, dendritic cells, and B- and T-lymphocytes have been discussed. Immuno-senescence is associated with aging, viral infections, genetic predispositions, and hyperlipidemia, which contribute to atherosclerosis. Immune senescent cells secrete SASP that delays or accelerates atherosclerosis plaque growth and associated pathologies such as aneurysms and coronary artery disease. Senescent cells undergo cell cycle arrest, morphological changes, and phenotypic changes in terms of their abundances and secretome profile including cytokines, chemokines, matrix metalloproteases (MMPs) and Toll-like receptors (TLRs) expressions. The senescence markers are used in therapeutics and currently, senolytics represent one of the emerging treatments where specific targets and clearance of senescent cells are being considered as therapy targets for the prevention or treatment of atherosclerosis.
Collapse
Affiliation(s)
- Danusha Michelle Vellasamy
- School of Biosciences, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Sin-Jye Lee
- School of Biosciences, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yin-Quan Tang
- School of Biosciences, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Wei Hsum Yap
- School of Biosciences, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| |
Collapse
|
3
|
Exosome-Mediated Transfer of ACE2 (Angiotensin-Converting Enzyme 2) from Endothelial Progenitor Cells Promotes Survival and Function of Endothelial Cell. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4213541. [PMID: 32051731 PMCID: PMC6995312 DOI: 10.1155/2020/4213541] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is an emerging cardiovascular protective target that mediates the metabolism of angiotensin (Ang) II into Ang (1–7). Our group has demonstrated that ACE2 overexpression enhances the function of endothelial progenitor cells (EPCs). Here, we investigated whether ACE2-primed EPCs (ACE2-EPCs) can protect cerebral microvascular endothelial cells (ECs) against injury and dysfunction in an in vitro model, with focusing on their exosomal and cytokine paracrine effects on endothelial mitochondria. Human EPCs were transfected with lentivirus containing null or human ACE2 cDNA (denoted as Null-EPCs and ACE2-EPCs, respectively). Their conditioned culture media, w/wo depletion of exosomes (ACE2-EPC-CMEX-, Null-EPC-CMEX-, ACE2-EPC-CM, and Null-EPC-CM), were used for coculture experiments. EC injury and dysfunction model was induced by Ang II before coculture. Apoptosis, angiogenic ability, mitochondrion functions (ROS production, membrane potential, fragmentation), and gene expressions (ACE2, Nox2, and Nox4) of ECs were analyzed. The supernatant was collected for measuring the levels of ACE2, Ang II/Ang-(1–7), and growth factors (VEGF and IGF). Our results showed that (1) ACE2-EPC-CM had higher levels of ACE2, Ang (1–7), VEGF, and IGF than that of Null-EPC-CM. (2) Ang II-injured ECs displayed an increase of apoptotic rate and reduction in tube formation and migration abilities, which were associated with ACE2 downregulation, Ang II/Ang (1–7) imbalance, Nox2/Nox4 upregulation, ROS overproduction, an increase of mitochondrion fragmentation, and a decrease of membrane potential. (3) ACE2-EPC-CM had better protective effects than Null-EPC-CM on Ang II-injured ECs, which were associated with the improvements on ACE2 expression, Ang II/Ang (1–7) balance, and mitochondrial functions. (4) ACE2-EPC-CMEX- and Null-EPC-CMEX- showed reduced effects as compared to ACE2-EPCs-CM and Null-EPCs-CM. In conclusion, our data demonstrate that ACE2 overexpression can enhance the protective effects of EPCs on ECs injury, majorly through the exosomal effects on mitochondrial function.
Collapse
|
4
|
Veteskova J, Kmecova Z, Malikova E, Doka G, Radik M, Vavrinec P, Krenek P, Klimas J. Opposite alterations of endothelin-1 in lung and pulmonary artery mirror gene expression of bone morphogenetic protein receptor 2 in experimental pulmonary hypertension. Exp Lung Res 2019; 45:30-41. [PMID: 31012341 DOI: 10.1080/01902148.2019.1605426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aim of the Study: Endothelin-1 (ET-1) overexpression was suggested to play a role in pulmonary hypertension (PH). However, the roles of ET-1 in early stages of PH remain unexplored. We examined the expression of ET-1 and relevant disease progression markers in the pulmonary artery and the lungs during the development of PH induced by monocrotaline (MCT). Material and Methods: Male 12-weeks-old Wistar rats were administered with MCT (60 mg/kg, s.c.) or saline (CON). We measured right ventricular pressure (RVP) by catheterization under tribromoethanol anesthesia; hemoglobin oxygen saturation, breathing rate were measured by pulse oximetry in conscious animals. Rats were sacrificed 1, 2 or 4 weeks after MCT. mRNA levels of ET-1, its receptors, inflammatory markers IL-1beta, TNFalpha, IL-6 and genes related to VSMC proliferation or lung damage (Bmpr2, nestin, Pim1, PAI-1, TGFbeta-1) were analyzed by RT-qPCR. Results: RVP and breathing rate increased and hemoglobin oxygen saturation decreased after MCT only at week 4. Lung weight was increased at all time points. ET-1 was upregulated in the pulmonary artery at weeks 1 and 4, while being clearly suppressed in the lungs at all times. Bone morphogenetic protein receptor 2 followed a similar pattern to ET-1. PAI-1 markedly increased in the MCT lungs (but not pulmonary artery) from week 1 to 4. Nestin peaked at week 2 in both tissues. TGFbeta-1 increased in both tissues at week 4. ET-1 expression did not correlate with other genes, however, Bmpr2 tightly negatively correlated with PAI-1 in the lungs, but not pulmonary artery of MCT groups. Conclusions: ET-1 overexpression in the pulmonary artery preceded development of PH, but it was clearly and unexpectedly downregulated in the lungs of monocrotaline-treated rats and showed no correlation to disease progression markers. We speculate that endothelin-1 may play opposing roles in the lungs vs pulmonary artery in monocrotaline-induced PH.
Collapse
Affiliation(s)
- Jana Veteskova
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Zuzana Kmecova
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Eva Malikova
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Gabriel Doka
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Michal Radik
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Peter Vavrinec
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Peter Krenek
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Jan Klimas
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| |
Collapse
|
5
|
Münch J, Grivas D, González-Rajal Á, Torregrosa-Carrión R, de la Pompa JL. Notch signalling restricts inflammation and serpine1 expression in the dynamic endocardium of the regenerating zebrafish heart. Development 2017; 144:1425-1440. [PMID: 28242613 DOI: 10.1242/dev.143362] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/20/2017] [Indexed: 01/13/2023]
Abstract
The zebrafish heart regenerates after ventricular damage through a process involving inflammation, fibrotic tissue deposition/removal and myocardial regeneration. Using 3D whole-mount imaging, we reveal a highly dynamic endocardium during cardiac regeneration, including changes in cell morphology, behaviour and gene expression. These events lay the foundation for an initial expansion of the endocardium that matures to form a coherent endocardial structure within the injury site. We studied two important endocardial molecules, Serpine1 and Notch, which are implicated in different aspects of endocardial regeneration. Notch signalling regulates developmental gene expression and features of endocardial maturation. Also, Notch manipulation interferes with attenuation of the inflammatory response and cardiomyocyte proliferation and dedifferentiation. serpine1 is strongly expressed very early in the wound endocardium, with decreasing expression at later time points. serpine1 expression persists in Notch-abrogated hearts, via what appears to be a conserved mechanism. Functional inhibition studies show that Serpine1 controls endocardial maturation and proliferation and cardiomyocyte proliferation. Thus, we describe a highly dynamic endocardium in the regenerating zebrafish heart, with two key endocardial players, Serpine1 and Notch signalling, regulating crucial regenerative processes.
Collapse
Affiliation(s)
- Juliane Münch
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid E-28029, Spain.,Institute of Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Straße 24-25, Potsdam D-14476, Germany
| | - Dimitrios Grivas
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid E-28029, Spain.,CIBER CV, 28029 Madrid, Spain
| | - Álvaro González-Rajal
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid E-28029, Spain.,Cancer Division, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, 370 Victoria Street, Darlinghurst NSW 2010, Australia
| | - Rebeca Torregrosa-Carrión
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid E-28029, Spain.,CIBER CV, 28029 Madrid, Spain
| | - José Luis de la Pompa
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid E-28029, Spain .,CIBER CV, 28029 Madrid, Spain
| |
Collapse
|
6
|
Daniel AE, Timmerman I, Kovacevic I, Hordijk PL, Adriaanse L, Paatero I, Belting HG, van Buul JD. Plasminogen Activator Inhibitor-1 Controls Vascular Integrity by Regulating VE-Cadherin Trafficking. PLoS One 2015; 10:e0145684. [PMID: 26714278 PMCID: PMC4694698 DOI: 10.1371/journal.pone.0145684] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/07/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Plasminogen activator inhibitor-1 (PAI-1), a serine protease inhibitor, is expressed and secreted by endothelial cells. Patients with PAI-1 deficiency show a mild to moderate bleeding diathesis, which has been exclusively ascribed to the function of PAI-1 in down-regulating fibrinolysis. We tested the hypothesis that PAI-1 function plays a direct role in controlling vascular integrity and permeability by keeping endothelial cell-cell junctions intact. METHODOLOGY/PRINCIPAL FINDINGS We utilized PAI-039, a specific small molecule inhibitor of PAI-1, to investigate the role of PAI-1 in protecting endothelial integrity. In vivo inhibition of PAI-1 resulted in vascular leakage from intersegmental vessels and in the hindbrain of zebrafish embryos. In addition PAI-1 inhibition in human umbilical vein endothelial cell (HUVEC) monolayers leads to a marked decrease of transendothelial resistance and disrupted endothelial junctions. The total level of the endothelial junction regulator VE-cadherin was reduced, whereas surface VE-cadherin expression was unaltered. Moreover, PAI-1 inhibition reduced the shedding of VE-cadherin. Finally, we detected an accumulation of VE-cadherin at the Golgi apparatus. CONCLUSIONS/SIGNIFICANCE Our findings indicate that PAI-1 function is important for the maintenance of endothelial monolayer and vascular integrity by controlling VE-cadherin trafficking to and from the plasma membrane. Our data further suggest that therapies using PAI-1 antagonists like PAI-039 ought to be used with caution to avoid disruption of the vessel wall.
Collapse
Affiliation(s)
- Anna E. Daniel
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ilse Timmerman
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Igor Kovacevic
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter L. Hordijk
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Luc Adriaanse
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ilkka Paatero
- Department of Cell Biology, Biozentrum der Universität Basel, Basel, Switzerland
| | - Heinz-Georg Belting
- Department of Cell Biology, Biozentrum der Universität Basel, Basel, Switzerland
| | - Jaap D. van Buul
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Su SC, Lin CW, Yang WE, Fan WL, Yang SF. The urokinase-type plasminogen activator (uPA) system as a biomarker and therapeutic target in human malignancies. Expert Opin Ther Targets 2015; 20:551-66. [DOI: 10.1517/14728222.2016.1113260] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Inhibition of SERPINE1 Function Attenuates Wound Closure in Response to Tissue Injury: A Role for PAI-1 in Re-Epithelialization and Granulation Tissue Formation. J Dev Biol 2015. [DOI: 10.3390/jdb3010011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
9
|
Marudamuthu AS, Shetty SK, Bhandary YP, Karandashova S, Thompson M, Sathish V, Florova G, Hogan TB, Pabelick CM, Prakash YS, Tsukasaki Y, Fu J, Ikebe M, Idell S, Shetty S. Plasminogen activator inhibitor-1 suppresses profibrotic responses in fibroblasts from fibrotic lungs. J Biol Chem 2015; 290:9428-41. [PMID: 25648892 DOI: 10.1074/jbc.m114.601815] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Indexed: 02/04/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by progressive interstitial scarification. A hallmark morphological lesion is the accumulation of myofibroblasts or fibrotic lung fibroblasts (FL-fibroblasts) in areas called fibroblastic foci. We previously demonstrated that the expression of both urokinase-type plasminogen activator (uPA) and the uPA receptor are elevated in FL-fibroblasts from the lungs of patients with IPF. FL-fibroblasts isolated from human IPF lungs and from mice with bleomycin-induced pulmonary fibrosis showed an increased rate of proliferation compared with normal lung fibroblasts (NL-fibroblasts) derived from histologically "normal" lung. Basal expression of plasminogen activator inhibitor-1 (PAI-1) in human and murine FL-fibroblasts was reduced, whereas collagen-I and α-smooth muscle actin were markedly elevated. Conversely, alveolar type II epithelial cells surrounding the fibrotic foci in situ, as well as those isolated from IPF lungs, showed increased activation of caspase-3 and PAI-1 with a parallel reduction in uPA expression. Transduction of an adenovirus PAI-1 cDNA construct (Ad-PAI-1) suppressed expression of uPA and collagen-I and attenuated proliferation in FL-fibroblasts. On the contrary, inhibition of basal PAI-1 in NL-fibroblasts increased collagen-I and α-smooth muscle actin. Fibroblasts isolated from PAI-1-deficient mice without lung injury also showed increased collagen-I and uPA. These changes were associated with increased Akt/phosphatase and tensin homolog proliferation/survival signals in FL-fibroblasts, which were reversed by transduction with Ad-PAI-1. This study defines a new role of PAI-1 in the control of fibroblast activation and expansion and its role in the pathogenesis of fibrosing lung disease and, in particular, IPF.
Collapse
Affiliation(s)
- Amarnath S Marudamuthu
- From the Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Shwetha K Shetty
- From the Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Yashodhar P Bhandary
- From the Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Sophia Karandashova
- From the Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Michael Thompson
- the Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota 55905, and
| | | | - Galina Florova
- From the Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Taryn B Hogan
- From the Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | | | - Y S Prakash
- the Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota 55905, and
| | - Yoshikazu Tsukasaki
- From the Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Jian Fu
- the Center for Research on Environmental Disease and Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Mitsuo Ikebe
- From the Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Steven Idell
- From the Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Sreerama Shetty
- From the Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas 75708,
| |
Collapse
|
10
|
Brahn E, Lee S, Lucas A, McFadden G, Macaulay C. Suppression of collagen-induced arthritis with a serine proteinase inhibitor (serpin) derived from myxoma virus. Clin Immunol 2014; 153:254-63. [PMID: 24845791 DOI: 10.1016/j.clim.2014.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/01/2014] [Accepted: 05/03/2014] [Indexed: 11/29/2022]
Abstract
Many viruses encode virulence factors to facilitate their own survival by modulating a host's inflammatory response. One of these factors, secreted from cells infected with myxoma virus, is the serine proteinase inhibitor (serpin) Serp-1. Because Serp-1 had demonstrated anti-inflammatory properties in arterial injury models and viral infections, it was cloned and evaluated for therapeutic efficacy in collagen-induced arthritis (CIA). Clinical severity was significantly lower in the Serp-1 protocols (p<0.0001) and blinded radiographs indicated that the Serp-1 group had significantly less erosions than the controls (p<0.01). Delayed-type hypersensitivity was lower in the Serp-1 group but antibody titers to type II collagen were not significantly altered. Recipients had minimal histopathologic synovial changes and did not develop neutralizing antibodies to Serp-1. These results indicate that Serp-1 impedes the pathogenesis of CIA and suggests that the therapeutic potential of serine proteinase inhibitors in inflammatory joint diseases, such as rheumatoid arthritis, should be investigated further.
Collapse
Affiliation(s)
- Ernest Brahn
- Division of Rheumatology, UCLA School of Medicine, Los Angeles, CA, USA.
| | - Sarah Lee
- Division of Rheumatology, UCLA School of Medicine, Los Angeles, CA, USA
| | - Alexandra Lucas
- Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, USA
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, University of Florida, Gainsville, FL, USA
| | | |
Collapse
|
11
|
Simone TM, Higgins CE, Czekay RP, Law BK, Higgins SP, Archambeault J, Kutz SM, Higgins PJ. SERPINE1: A Molecular Switch in the Proliferation-Migration Dichotomy in Wound-"Activated" Keratinocytes. Adv Wound Care (New Rochelle) 2014; 3:281-290. [PMID: 24669362 DOI: 10.1089/wound.2013.0512] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/13/2014] [Indexed: 11/13/2022] Open
Abstract
Significance: A highly interactive serine protease/plasmin/matrix metalloproteinase axis regulates stromal remodeling in the wound microenvironment. Current findings highlight the importance of stringent controls on protease expression and their topographic activities in cell proliferation, migration, and tissue homeostasis. Targeting elements in this cascading network may lead to novel therapeutic approaches for fibrotic diseases and chronic wounds. Recent Advances: Matrix-active proteases and their inhibitors orchestrate wound site tissue remodeling, cell migration, and proliferation. Indeed, the serine proteases urokinase plasminogen activator and tissue-type plasminogen activator (uPA/tPA) and their major phsyiological inhibitor, plasminogen activator inhibitor-1 (PAI-1; serine protease inhibitor clade E member 1 [SERPINE1]), are upregulated in several cell types during injury repair. Coordinate expression of proteolytic enzymes and their inhibitors in the wound bed provides a mechanism for fine control of focal proteolysis to facilitate matrix restructuring and cell motility in complex environments. Critical Issues: Cosmetic and tissue functional consequences of wound repair anomalies affect the quality of life of millions of patients in the United States alone. The development of novel therapeutics to manage individuals most affected by healing anomalies will likely derive from the identification of critical, translationally accessible, control elements in the wound site microenvironment. Future Directions: Activation of the PAI-1 gene early after wounding, its prominence in the repair transcriptome and varied functions suggest a key role in the global cutaneous injury response program. Targeting PAI-1 gene expression and/or PAI-1 function with molecular genetic constructs, neutralizing antibodies or small molecule inhibitors may provide a novel, therapeutically relevant approach, to manage the pathophysiology of wound healing disorders associated with deficient or excessive PAI-1 levels.
Collapse
Affiliation(s)
- Tessa M. Simone
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| | - Craig E. Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| | - Ralf-Peter Czekay
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| | - Brian K. Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida
| | - Stephen P. Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| | - Jaclyn Archambeault
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| | - Stacie M. Kutz
- Department of Biology, Sage College of Albany, Albany, New York
| | - Paul J. Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| |
Collapse
|
12
|
Park E, Maquat LE. Staufen-mediated mRNA decay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:423-35. [PMID: 23681777 DOI: 10.1002/wrna.1168] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/28/2013] [Accepted: 03/28/2013] [Indexed: 12/26/2022]
Abstract
Staufen1 (STAU1)-mediated mRNA decay (SMD) is an mRNA degradation process in mammalian cells that is mediated by the binding of STAU1 to a STAU1-binding site (SBS) within the 3'-untranslated region (3'-UTR) of target mRNAs. During SMD, STAU1, a double-stranded (ds) RNA-binding protein, recognizes dsRNA structures formed either by intramolecular base pairing of 3'-UTR sequences or by intermolecular base pairing of 3'-UTR sequences with a long-noncoding RNA (lncRNA) via partially complementary Alu elements. Recently, STAU2, a paralog of STAU1, has also been reported to mediate SMD. Both STAU1 and STAU2 interact directly with the ATP-dependent RNA helicase UPF1, a key SMD factor, enhancing its helicase activity to promote effective SMD. Moreover, STAU1 and STAU2 form homodimeric and heterodimeric interactions via domain-swapping. Because both SMD and the mechanistically related nonsense-mediated mRNA decay (NMD) employ UPF1; SMD and NMD are competitive pathways. Competition contributes to cellular differentiation processes, such as myogenesis and adipogenesis, placing SMD at the heart of various physiologically important mechanisms.
Collapse
Affiliation(s)
- Eonyoung Park
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|
13
|
Narasaki R, Xu Z, Liang Z, Fung LCW, Donahue D, Castellino FJ, Ploplis VA. The vitronectin-binding domain of plasminogen activator inhibitor-1 plays an important functional role in lipopolysaccharide-induced lethality in mice. J Thromb Haemost 2012; 10:2618-21. [PMID: 23082983 PMCID: PMC3674865 DOI: 10.1111/jth.12032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Ploplis VA. Effects of altered plasminogen activator inhibitor-1 expression on cardiovascular disease. Curr Drug Targets 2012; 12:1782-9. [PMID: 21707474 DOI: 10.2174/138945011797635803] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/24/2011] [Accepted: 02/28/2011] [Indexed: 12/21/2022]
Abstract
Plasminogen Activator Inhibitor-1 (PAI-1) is a multifunctional protein with the ability to not only regulate fibrinolysis through inhibition of plasminogen activation, but also cell signaling events which have direct downstream effects on cell function. Elevated plasma levels of this protein have been shown to have profound effects on the development and progression of cardiovascular diseases. However, results from a number of studies, especially those using PAI-1 deficient mouse models, have demonstrated that its function is ambiguous, with evidence of both preventing and enhancing various disease states. A number of lifestyle changes and pharmacological reagents have been identified that can regulate PAI-1 levels or function. Those reagents that target function are focused on its ability to regulate plasmin formation, and have been studied in in vivo models of thrombosis. Further investigations involving regulation of cell function could potentially resolve paradoxical issues associated with the function of this protein in regulating cardiovascular disease.
Collapse
Affiliation(s)
- Victoria A Ploplis
- W M Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
15
|
PAI-1-dependent endothelial cell death determines severity of radiation-induced intestinal injury. PLoS One 2012; 7:e35740. [PMID: 22563394 PMCID: PMC3338537 DOI: 10.1371/journal.pone.0035740] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/20/2012] [Indexed: 01/18/2023] Open
Abstract
Normal tissue toxicity still remains a dose-limiting factor in clinical radiation therapy. Recently, plasminogen activator inhibitor type 1 (SERPINE1/PAI-1) was reported as an essential mediator of late radiation-induced intestinal injury. However, it is not clear whether PAI-1 plays a role in acute radiation-induced intestinal damage and we hypothesized that PAI-1 may play a role in the endothelium radiosensitivity. In vivo, in a model of radiation enteropathy in PAI-1 −/− mice, apoptosis of radiosensitive compartments, epithelial and microvascular endothelium was quantified. In vitro, the role of PAI-1 in the radiation-induced endothelial cells (ECs) death was investigated. The level of apoptotic ECs is lower in PAI-1 −/− compared with Wt mice after irradiation. This is associated with a conserved microvascular density and consequently with a better mucosal integrity in PAI-1 −/− mice. In vitro, irradiation rapidly stimulates PAI-1 expression in ECs and radiation sensitivity is increased in ECs that stably overexpress PAI-1, whereas PAI-1 knockdown increases EC survival after irradiation. Moreover, ECs prepared from PAI-1 −/− mice are more resistant to radiation-induced cell death than Wt ECs and this is associated with activation of the Akt pathway. This study demonstrates that PAI-1 plays a key role in radiation-induced EC death in the intestine and suggests that this contributes strongly to the progression of radiation-induced intestinal injury.
Collapse
|
16
|
Abstract
Fibrosis is defined as a fibroproliferative or abnormal fibroblast activation-related disease. Deregulation of wound healing leads to hyperactivation of fibroblasts and excessive accumulation of extracellular matrix (ECM) proteins in the wound area, the pathological manifestation of fibrosis. The accumulation of excessive levels of collagen in the ECM depends on two factors: an increased rate of collagen synthesis and or decreased rate of collagen degradation by cellular proteolytic activities. The urokinase/tissue type plasminogen activator (uPA/tPA) and plasmin play significant roles in the cellular proteolytic degradation of ECM proteins and the maintenance of tissue homeostasis. The activities of uPA/tPA/plasmin and plasmin-dependent MMPs rely mostly on the activity of a potent inhibitor of uPA/tPA, plasminogen activator inhibitor-1 (PAI-1). Under normal physiologic conditions, PAI-1 controls the activities of uPA/tPA/plasmin/MMP proteolytic activities and thus maintains the tissue homeostasis. During wound healing, elevated levels of PAI-1 inhibit uPA/tPA/plasmin and plasmin-dependent MMP activities, and, thus, help expedite wound healing. In contrast to this scenario, under pathologic conditions, excessive PAI-1 contributes to excessive accumulation of collagen and other ECM protein in the wound area, and thus preserves scarring. While the level of PAI-1 is significantly elevated in fibrotic tissues, lack of PAI-1 protects different organs from fibrosis in response to injury-related profibrotic signals. Thus, PAI-1 is implicated in the pathology of fibrosis in different organs including the heart, lung, kidney, liver, and skin. Paradoxically, PAI-1 deficiency promotes spontaneous cardiac-selective fibrosis. In this review, we discuss the significance of PAI-1 in the pathogenesis of fibrosis in multiple organs.
Collapse
Affiliation(s)
- Asish K Ghosh
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
17
|
Brandal S, Blake CM, Sullenger BA, Fortenberry YM. Effects of plasminogen activator inhibitor-1-specific RNA aptamers on cell adhesion, motility, and tube formation. Nucleic Acid Ther 2011; 21:373-81. [PMID: 22103403 PMCID: PMC3279719 DOI: 10.1089/nat.2011.0320] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/09/2011] [Indexed: 11/12/2022] Open
Abstract
The serine protease inhibitor (serpin) plasminogen activator inhibitor-1 (PAI-1) is associated with the pathophysiology of several diseases, including cancer and cardiovascular disease. The extracellular matrix protein vitronectin increases at sites of vessel injury and is also present in fibrin clots. Integrins present on the cell surface bind to vitronectin and anchor the cell to the extracellular matrix. However, the binding of PAI-1 to vitronectin prevents this interaction, thereby decreasing both cell adhesion and migration. We previously developed PAI-1-specific RNA aptamers that bind to (or in the vicinity of) the vitronectin binding site of PAI-1. These aptamers prevented cancer cells from detaching from vitronectin in the presence of PAI-1, resulting in an increase in cell adhesion. In the current study, we used in vitro assays to investigate the effects that these aptamers have on human aortic smooth muscle cell (HASMC) and human umbilical vein endothelial cell (HUVEC) migration, adhesion, and proliferation. The PAI-1-specific aptamers (SM20 and WT15) increased attachment of HASMCs and HUVECs to vitronectin in the presence of PAI-1 in a dose-dependent manner. Whereas PAI-1 significantly inhibited cell migration through its interaction with vitronectin, both SM20 and WT15 restored cell migration. The PAI-1 vitronectin binding mutant (PAI-1AK) did not facilitate cell detachment or have an effect on cell migration. The effect on cell proliferation was minimal. Additionally, both SM20 and WT15 promoted tube formation on matrigel that was supplemented with vitronectin, thereby reversing the PAI-1's inhibition of tube formation. Collectively, results from this study show that SM20 and WT15 bind to the PAI-1's vitronectin binding site and interfere with its effect on cell migration, adhesion, and tube formation. By promoting smooth muscle and endothelial cell migration, these aptamers can potentially eliminate the adverse effects of elevated PAI-1 levels in the pathogenesis of vascular disease.
Collapse
Affiliation(s)
- Stephanie Brandal
- Department of Pediatric Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charlene M. Blake
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Bruce A. Sullenger
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Yolanda M. Fortenberry
- Department of Pediatric Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
18
|
Mutoh M, Teraoka N, Takasu S, Takahashi M, Onuma K, Yamamoto M, Kubota N, Iseki T, Kadowaki T, Sugimura T, Wakabayashi K. Loss of adiponectin promotes intestinal carcinogenesis in Min and wild-type mice. Gastroenterology 2011; 140:2000-8, 2008.e1-2. [PMID: 21334339 DOI: 10.1053/j.gastro.2011.02.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 01/28/2011] [Accepted: 02/14/2011] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Metabolic syndrome- and obesity-associated cancers, including colon cancer, are common in Western countries. Visceral fat accumulation and decreased levels of plasma adiponectin (APN) have been associated with development of human colorectal adenoma. We investigated the function of APN in intestinal carcinogenesis. METHODS APN+/+, APN+/-, or APN-/- mice (C57BL/6J) were given injections of azoxymethane (AOM), which led to development of intestinal tumors; these strains of mice were also crossed with Min mice to assess polyp formation. Adipocytokine levels and phosphorylation/activation of AMP-activated protein kinase (AMPK) were evaluated to investigate the mechanisms of APN in tumor growth. RESULTS The total number of polyps in the intestines of male APN+/-Min and APN-/-Min mice increased 2.4- and 3.2-fold, respectively, by the age of 9 weeks and 3.2- and 3.4-fold, respectively, by 12 weeks, compared with those of APN+/+Min mice. Similar results were obtained from female mice. AOM induced colon tumor formation in 40% of APN+/+, 50% of APN+/-, and 71% of APN-/- (P<.05) mice, respectively; mean values for tumor multiplicity of each genotype were 0.5, 0.6, and 1.1 (P<.05), respectively. Phosphorylation of AMPK decreased in intestinal epithelial cells of APN-/- mice compared with APN+/+ mice. Among serum adipocytokines, plasminogen activator inhibitor-1 levels increased in APN-/-Min mice and APN-/- mice that received injections of AOM. Activation of AMPK suppressed expression of plasminogen activator inhibitor-1 in Min mice. CONCLUSIONS Mice with disruptions in APN develop more intestinal tumors and have decreased activation (phosphorylation) of AMPK and increased levels of plasminogen activator inhibitor-1, compared with wild-type mice. APN and its receptor might be developed as targets for cancer chemopreventive agents.
Collapse
Affiliation(s)
- Michihiro Mutoh
- Cancer Prevention Basic Research Project, National Cancer Center Research Institute, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Balsara RD, Merryman R, Virjee F, Northway C, Castellino FJ, Ploplis VA. A deficiency of uPAR alters endothelial angiogenic function and cell morphology. Vasc Cell 2011; 3:10. [PMID: 21535874 PMCID: PMC3105951 DOI: 10.1186/2045-824x-3-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/02/2011] [Indexed: 01/19/2023] Open
Abstract
The angiogenic potential of a cell requires dynamic reorganization of the cytoskeletal architecture that involves the interaction of urokinase-type plasminogen activator receptor (uPAR) with the extracellular matrix. This study focuses on the effect of uPAR deficiency (uPAR-/-) on angiogenic function and associated cytoskeletal organization. Utilizing murine endothelial cells, it was observed that adhesion, migration, proliferation, and capillary tube formation were altered in uPAR-/- cells compared to wild-type (WT) cells. On a vitronectin (Vn) matrix, uPAR-/- cells acquired a "fried egg" morphology characterized by circular actin organization and lack of lamellipodia formation. The up-regulation of β1 integrin, FAK(P-Tyr925), and paxillin (P-Tyr118), and decreased Rac1 activation, suggested increased focal adhesions, but delayed focal adhesion turnover in uPAR-/- cells. This accounted for the enhanced adhesion, but attenuated migration, on Vn. VEGF-enriched Matrigel implants from uPAR-/- mice demonstrated a lack of mature vessel formation compared to WT mice. Collectively, these results indicate that a uPAR deficiency leads to decreased angiogenic functions of endothelial cells.
Collapse
Affiliation(s)
- Rashna D Balsara
- W, M, Keck Center for Transgene Research, University of Notre Dame, 230 Raclin-Carmichael Hall, Notre Dame, Indiana 46556, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Boncela J, Przygodzka P, Papiewska-Pajak I, Wyroba E, Osinska M, Cierniewski CS. Plasminogen activator inhibitor type 1 interacts with alpha3 subunit of proteasome and modulates its activity. J Biol Chem 2010; 286:6820-31. [PMID: 21135093 DOI: 10.1074/jbc.m110.173781] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasminogen activator inhibitor type-1 (PAI-1), a multifunctional protein, is an important physiological regulator of fibrinolysis, extracellular matrix homeostasis, and cell motility. Recent observations show that PAI-1 may also be implicated in maintaining integrity of cells, especially with respect to cellular proliferation or apoptosis. In the present study we provide evidence that PAI-1 interacts with proteasome and affects its activity. First, by using the yeast two-hybrid system, we found that the α3 subunit of proteasome directly interacts with PAI-1. Then, to ensure that the PAI-1-proteasome complex is formed in vivo, both proteins were coimmunoprecipitated from endothelial cells and identified with specific antibodies. The specificity of this interaction was evidenced after transfection of HeLa cells with pCMV-PAI-1 and coimmunoprecipitation of both proteins with anti-PAI-1 antibodies. Subsequently, cellular distribution of the PAI-1-proteasome complexes was established by immunogold staining and electron microscopy analyses. Both proteins appeared in a diffuse cytosolic pattern but also could be found in a dense perinuclear and nuclear location. Furthermore, PAI-1 induced formation of aggresomes freely located in endothelial cytoplasm. Increased PAI-1 expression abrogated degradation of degron analyzed after cotransfection of HeLa cells with pCMV-PAI-1 and pd2EGFP-N1 and prevented degradation of p53 as well as IκBα, as evidenced both by confocal microscopy and Western immunoblotting.
Collapse
Affiliation(s)
- Joanna Boncela
- Institute of Medical Biology, Polish Academy of Sciences, Lodz 93-232, Poland
| | | | | | | | | | | |
Collapse
|
21
|
Gao S, Nielsen BS, Krogdahl A, Sørensen JA, Tagesen J, Dabelsteen S, Dabelsteen E, Andreasen PA. Epigenetic alterations of the SERPINE1 gene in oral squamous cell carcinomas and normal oral mucosa. Genes Chromosomes Cancer 2010; 49:526-38. [PMID: 20222049 DOI: 10.1002/gcc.20762] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A high level of plasminogen activator inhibitor-1 (PAI-1 or SERPINE1) in tumor extracts is a marker of a poor prognosis in human cancers, including oral carcinomas. However, the mechanisms responsible for the upregulation of PAI-1 in cancers remain unclear. Investigating specific PAI-1 expressing cells in oral carcinomas by immunohistochemistry, we found that PAI-1 was expressed in 18 of the 20 patients, mainly by cancer cells. Two showed PAI-1 positive stromal cells surrounding the tumor areas and five showed PAI-1 positive cells in tumor-adjacent normal epithelium. By real-time RT-PCR analysis, 17 of 20 patients with oral carcinoma were found to have between 2.5- and 50-fold increased tumor PAI-1 mRNA level, as compared with the matched tumor-adjacent normal tissues. The PAI-1 mRNA level in connective tissues from 15 healthy volunteers was similar to the level in tumor-adjacent normal tissues, but the level in epithelium was 5- to 10-fold lower. Analyzing DNA methylation of 25 CpG sites within 960 bp around the transcription initiation site of the SERPINE1 gene by bisulfite sequencing, we did the surprising observation that both tumors and tumor-adjacent normal tissue had a significant level of methylation, whereas there was very little methylation in tissue from healthy volunteers, suggesting that tumor-adjacent normal tissue already contains transformation-associated epigenetic changes. However, there was no general inverse correlation between PAI-1 mRNA levels and SERPINE1 gene methylation in all tissues, showing that CpG methylation is not the main determinant of the PAI-1 expression level in oral tissue.
Collapse
Affiliation(s)
- Shan Gao
- Department of Molecular Biology, Danish-Chinese Centre for Proteases and Cancer, University of Aarhus, 8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Masset A, Maillard C, Sounni NE, Jacobs N, Bruyére F, Delvenne P, Tacke M, Reinheckel T, Foidart JM, Coussens LM, Noël A. Unimpeded skin carcinogenesis in K14-HPV16 transgenic mice deficient for plasminogen activator inhibitor. Int J Cancer 2010; 128:283-93. [PMID: 20232379 DOI: 10.1002/ijc.25326] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 02/23/2010] [Indexed: 12/12/2022]
Abstract
Angiogenesis, extracellular matrix remodeling and cell migration are associated with cancer progression and involve at least, the plasminogen activating system and its main physiological inhibitor, the plasminogen activator inhibitor-1 (PAI-1). Considering the recognized importance of PAI-1 in the regulation of tumor angiogenesis and invasion in murine models of skin tumor transplantation, we explored the functional significance of PAI-1 during early stages of neoplastic progression in the transgenic mouse model of multistage epithelial carcinogenesis (K14-HPV16 mice). We have studied the effect of genetic deletion of PAI-1 on inflammation, angiogenesis, lymphangiogenesis and tumor progression. In this model, PAI-1 deficiency neither impaired keratinocyte hyperproliferation or tumor development nor affected the infiltration of inflammatory cells and development of angiogenic or lymphangiogenic vasculature. We are reporting evidence for concomitant lymphangiogenic and angiogenic switches independent to PAI-1 status. Taken together, these data indicate that PAI-1 is not rate limiting for neoplastic progression and vascularization during premalignant progression, or that there is a functional redundancy between PAI-1 and other tumor regulators, masking the effect of PAI-1 deficiency in this long-term model of multistage epithelial carcinogenesis.
Collapse
Affiliation(s)
- Anne Masset
- Laboratory of Biology of Tumor and Development, Groupe Interdisciplinaire de Génoprotéomique Appliqué-GIGA Cancer, Tour de Pathologie (B23), Sart-Tilman, Liège, University of Liège, Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Extravasale Proteolyse: Funktion und Interaktion der Faktoren des fibrinolytischen Systems. Hamostaseologie 2010. [DOI: 10.1007/978-3-642-01544-1_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
24
|
Plasminogen activator inhibitor-1 (PAI-1) is cardioprotective in mice by maintaining microvascular integrity and cardiac architecture. Blood 2009; 115:2038-47. [PMID: 20009036 DOI: 10.1182/blood-2009-09-244962] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Although the involvement of plasminogen activator inhibitor-1 (PAI-1) in fibrotic diseases is well documented, its role in cardiac fibrosis remains controversial. The goal of this study was to determine the effect of a PAI-1 deficiency (PAI-1(-/-)) on the spontaneous development of cardiac fibrosis. PAI-1(-/-) mice developed pervasive cardiac fibrosis spontaneously with aging, and these mice displayed progressively distorted cardiac architecture and markedly reduced cardiac function. To mechanistically elucidate the role of PAI-1 in cardiac fibrosis, 12-week-old mice were chosen to study the biologic events leading to fibrosis. Although fibrosis was not observed at this early age, PAI-1(-/-) hearts presented with enhanced inflammation, along with increased microvascular permeability and hemorrhage. A potent fibrogenic cytokine, transforming growth factor-beta (TGF-beta), was markedly enhanced in PAI-1(-/-) heart tissue. Furthermore, the expression levels of several relevant proteases associated with tissue remodeling were significantly enhanced in PAI-1(-/-) hearts. These results suggest that PAI-1 is cardioprotective, and functions in maintaining normal microvasculature integrity. Microvascular leakage in PAI-1(-/-) hearts may provoke inflammation, and predispose these mice to cardiac fibrosis. Therefore, a PAI-1 deficiency contributes to the development of cardiac fibrosis by increasing vascular permeability, exacerbating local inflammation, and increasing extracellular matrix remodeling, an environment conducive to accelerated fibrosis.
Collapse
|
25
|
Lim S, Hung AC, Porter AG. Focused PCR Screen Reveals p53 Dependence of Nitric Oxide-Induced Apoptosis and Up-Regulation of Maspin and Plasminogen Activator Inhibitor-1 in Tumor Cells. Mol Cancer Res 2009; 7:55-66. [DOI: 10.1158/1541-7786.mcr-08-0331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
The plasminogen activator inhibitor "paradox" in cancer. Immunol Lett 2008; 118:116-24. [PMID: 18495253 DOI: 10.1016/j.imlet.2008.03.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 03/29/2008] [Accepted: 03/31/2008] [Indexed: 01/01/2023]
Abstract
Proteolysis in general and specifically the plasminogen activating system regulated by urokinase (uPA) its specific receptor, the GPI membrane anchored urokinase receptor (uPAR) and the specific plasminogen activator inhibitor 1 (PAI-1) plays a major role in tumorigenesis, tumor progression, tumor invasion and metastasis formation. This is exemplified by a body of published work showing a positive correlation between the expression of uPA or uPAR in several tumors and their malignancy. It is generally assumed that such a "pro-malignant" effect of the uPA-uPAR system is mediated by increased local proteolysis thus favoring tumor invasion, by a pro-angiogenic effect of this system and also by uPA-uPAR signaling towards the tumor thereby shifting the tumor phenotype to a more "malignant" one. However, when tumor patients are analyzed for long term survival, those with high levels of the inhibitor of the system, PAI-1 have a much worse prognosis than those with lower PAI-1 levels. This indicates that increased overall proteolysis alone cannot be made responsible for the adverse effects of the plasminogen activating system in tumors. Moreover, it becomes increasingly evident that components of the fibrinolytic system secreted by the tumor cells themselves are not solely responsible for a correlation between the plasminogen activating system and tumor malignancy; components of the plasminogen activating system secreted by stroma cells or cells of the immune system such as macrophages contribute also to the impact of fibrinolysis on malignancy. This review summarizes the evidence for the role of plasminogen activator inhibitor-1 in mediating the malignant phenotype and possible mechanism thereby trying to explain the "PAI-1 paradox in cancer" on a molecular level.
Collapse
|
27
|
Mutoh M, Niho N, Komiya M, Takahashi M, Ohtsubo R, Nakatogawa K, Ueda K, Sugimura T, Wakabayashi K. Plasminogen activator inhibitor-1 (Pai-1) blockers suppress intestinal polyp formation in Min mice. Carcinogenesis 2008; 29:824-9. [DOI: 10.1093/carcin/bgn028] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Abstract
To study the effects of podocyte injury on glomerular maturation and underlying mechanisms of such effects, puromycin aminonucleoside (PAN) was given to neonatal mice at 1 d post partum (1 dpp). Mice with PAN injection had smaller kidney weight (KW) and body weight (BW) at all times and smaller KW/BW at 4, 8, and 12 dpp versus normal saline (NS) controls. Electron microscopy (EM) revealed nearly complete podocyte foot process effacement and segmental microvillous transformation as early as 2 dpp, preceding proteinuria. PAN-injected kidneys showed significantly fewer glomerular capillary loops and decreased glomerular maturation index, as well as less CD31+ endothelium in cortical glomeruli at 12 dpp versus NS controls. Glomerular mesangial injury and glomerulosclerosis along with proteinuria were noted in PAN-injected kidneys starting from 30 dpp. Systolic blood pressure was increased significantly by 60 dpp in PAN mice. PAN mice also had significantly decreased Flk-1 and Tie2 mRNA expression and increased angiopoitein-1 (Ang-1) expression, without change in vascular endothelial growth factor (VEGF) at 2 dpp versus NS. Our study shows that podocyte injury in neonatal mice kidneys alters the expression of key capillary growth modulators in glomeruli, leading to abnormal development of glomerular capillaries, with subsequent development of proteinuria, hypertension, and glomerulosclerosis.
Collapse
Affiliation(s)
- Ji Ma
- Division of Pediatric Nephrology, Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA, and Division of Nephrology, Hua Shan Hospital, Shanghai 200040, China
| | | | | | | | | | | |
Collapse
|
29
|
Beaulieu LM, Whitley BR, Wiesner TF, Rehault SM, Palmieri D, Elkahloun AG, Church FC. Breast cancer and metabolic syndrome linked through the plasminogen activator inhibitor-1 cycle. Bioessays 2007; 29:1029-38. [PMID: 17876797 PMCID: PMC4046619 DOI: 10.1002/bies.20640] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is a physiological inhibitor of urokinase (uPA), a serine protease known to promote cell migration and invasion. Intuitively, increased levels of PAI-1 should be beneficial in downregulating uPA activity, particularly in cancer. By contrast, in vivo, increased levels of PAI-1 are associated with a poor prognosis in breast cancer. This phenomenon is termed the "PAI-1 paradox". Many factors are responsible for the upregulation of PAI-1 in the tumor microenvironment. We hypothesize that there is a breast cancer predisposition to a more aggressive stage when PAI-1 is upregulated as a consequence of Metabolic Syndrome (MetS). MetS exerts a detrimental effect on the breast tumor microenvironment that supports cancer invasion. People with MetS have an increased risk of coronary heart disease, stroke, peripheral vascular disease and hyperinsulinemia. Recently, MetS has also been identified as a risk factor for breast cancer. We hypothesize the existence of the "PAI-1 cycle". Sustained by MetS, adipocytokines alter PAI-1 expression to promote angiogenesis, tumor-cell migration and procoagulant microparticle formation from endothelial cells, which generates thrombin and further propagates PAI-1 synthesis. All of these factors culminate in a chemotherapy-resistant breast tumor microenvironment. The PAI-1 cycle may partly explain the PAI-1 paradox. In this hypothesis paper, we will discuss further how MetS upregulates PAI-1 and how an increased level of PAI-1 can be linked to a poor prognosis.
Collapse
Affiliation(s)
- Lea M. Beaulieu
- Departments of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7035
| | - Brandi R. Whitley
- Departments of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7035
| | - Theodore F. Wiesner
- Departments of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7035
| | - Sophie M. Rehault
- Departments of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7035
| | - Diane Palmieri
- Departments of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7035
| | - Abdel G. Elkahloun
- NHGRI-NIH Genome Technology Branch, National Institute of Health, Bethesda, MD 20892
| | - Frank C. Church
- Departments of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7035
| |
Collapse
|
30
|
Qi L, Higgins SP, Lu Q, Samarakoon R, Wilkins-Port CE, Ye Q, Higgins CE, Staiano-Coico L, Higgins PJ. SERPINE1 (PAI-1) is a prominent member of the early G0 --> G1 transition "wound repair" transcriptome in p53 mutant human keratinocytes. J Invest Dermatol 2007; 128:749-53. [PMID: 17882266 PMCID: PMC2654242 DOI: 10.1038/sj.jid.5701068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Li Qi
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA
| | - Stephen P. Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA
| | - Qi Lu
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA
| | - Rohan Samarakoon
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA
| | | | - Qunhui Ye
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA
| | - Craig E. Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA
| | - Lisa Staiano-Coico
- Department of Surgery, Weill Medical College of Cornell University, New York, New York, USA
| | - Paul J. Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA
| |
Collapse
|
31
|
Mukerji SS, Katsman EA, Wilber C, Haner NA, Selman WR, Hall AK. Activin is a neuronal survival factor that is rapidly increased after transient cerebral ischemia and hypoxia in mice. J Cereb Blood Flow Metab 2007; 27:1161-72. [PMID: 17133227 DOI: 10.1038/sj.jcbfm.9600423] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
One approach for developing targeted stroke therapies is to identify the neuronal protective and destructive signaling pathways and gene expression that follow ischemic insult. In some neural injury models, the transforming growth factor-beta family member activin can provide neuroprotective effects in vivo and promote neuronal survival. This study tests if activin supports cortical neurons after ischemic challenge in vitro and if signals after cerebral ischemia involve activin in vivo. In a defined cell culture model that uses hydrogen peroxide (H(2)O(2))-free radical stress, activin addition maintained neuronal survival. H(2)O(2) treatment increased activin mRNA twofold in surviving cortical neurons, and inhibition of activin with neutralizing antibodies caused neuronal death. These data identify activin gene changes as a rapid response to oxidative stress, and indicate that endogenous activin acts as a protective factor for cortical neurons in vitro. Similarly, after transient focal cerebral ischemia in adult mice, activin mRNA increased at 1 and 4 h ipsilateral to the infarct but returned to control values at 24 h after reperfusion. Intracellular activated smad signals were detected in neurons adjacent to the infarct. Activin was also increased after 2 h of 11% hypoxia. Activin mRNA increased at 1 h but not 4 or 24 h after hypoxia, similar to the time course of erythropoietin and vascular endothelial growth factor induction. These findings identify activin as an early-regulated gene response to transient ischemia and hypoxia, and its function in cortical neuron survival during oxidative challenge provides a basis to test activin as a potential therapeutic in stroke injury.
Collapse
Affiliation(s)
- Shibani S Mukerji
- Department of Neuroscience, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
32
|
Richardson M, Liu L, Dunphy L, Wong D, Sun Y, Viswanathan K, Singh G, Lucas A. Viral serpin, Serp-1, inhibits endogenous angiogenesis in the chicken chorioallantoic membrane model. Cardiovasc Pathol 2007; 16:191-202. [PMID: 17637427 DOI: 10.1016/j.carpath.2007.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2006] [Revised: 11/18/2006] [Accepted: 02/09/2007] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Angiogenesis is a critical factor in the development of malignant tumors, in arthritic joints, and in cardiovascular disease. In cardiovascular disease, angiogenesis is recognised both as a potential therapy and as a complicating factor in atherosclerotic plaque rupture and thrombotic obstruction. Serine proteases regulate thrombosis, inflammation, and cell invasion, events that trigger various stages of angiogenesis and are in turn regulated by inhibitors, termed serpins. Serp-1 is a secreted anti-inflammatory viral serpin that profoundly inhibits early mononuclear cell invasion, and the development of atherosclerosis, transplant vasculopathy, and arthritis in a range of animal models. METHODS The capacity of Serp-1 to alter angiogenesis was evaluated in the chicken chorioallantoic membrane (CAM) model using morphometric analysis of vascular changes and RT-PCR to explore alterations in gene expression. RESULTS Serp-1 inhibited endogenous angiogenesis in a dose-dependent manner, with associated altered expression of laminin and vascular endothelial growth factor (VEGF). Serp-1 was ineffective in CAMs no longer in the rapid growth phase. Similar inhibition of angiogenesis was detected after inhibition of VEGF, but not after treatment with the inactivated reactive center loop mutant of Serp-1. CONCLUSIONS The angiogenic process can be controlled using Serp-1, an anti-inflammatory agent that is effective at low concentrations with rapid reversibility, targets endothelial cells, and reduces the availability of VEGF. These properties may be especially important in cardiovascular disease, reducing plaque destabilization. It is likely that the anti-angiogenic activity of Serp-1 contributes to the observed anti-inflammatory and anti-atherogenic actions with potential importance in this therapeutic setting.
Collapse
Affiliation(s)
- Mary Richardson
- Juravinski Cancer Centre, Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Whitley BR, Beaulieu LM, Carter JC, Church FC. Phosphatidylinositol 3-kinase/Akt regulates the balance between plasminogen activator inhibitor-1 and urokinase to promote migration of SKOV-3 ovarian cancer cells. Gynecol Oncol 2006; 104:470-9. [PMID: 17070899 PMCID: PMC4049274 DOI: 10.1016/j.ygyno.2006.08.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 08/15/2006] [Accepted: 08/22/2006] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Increased levels of urokinase-type plasminogen activator (uPA) are associated with shortened overall survival in ovarian cancer patients. Additionally, elevated levels of the serine protease inhibitor (serpin), plasminogen activator inhibitor-1 (PAI-1), a uPA inhibitor, have also been correlated with an unfavorable prognosis in ovarian cancer. Therefore, it is critical to understand the signaling pathways that regulate PAI-1 and uPA expression in cancer cell migration-invasion. METHODS We studied the PI3K/Akt, Rho kinase/ROCK, p38 MAPK and MEK pathways and their modulation of PAI-1 and uPA expression and wound-induced cell migration in SKOV-3 ovarian cancer cells. The PI3K/Akt pathway was further examined using pharmacological inhibitors (LY294002 and wortmannin), Akt siRNA, constitutively active Akt adenovirus and treatment with IGF-1/insulin in the SKOV-3 cells. RESULTS The PI3K/Akt pathway negatively regulates PAI-1 expression and positively correlates with migratory abilities and uPA expression in SKOV-3 cells. A reduction in active Akt results in an increase in PAI-1 expression coupled with a decrease in uPA expression to ultimately result in reduced cell migration and invasion. By contrast, an increase in Akt activity reduces PAI-1 expression and results in an increase in SKOV-3 wound-induced cell migration. Furthermore, IGF-1 and insulin stimulated SKOV-3 migration by altering the balance between uPA and PAI-1 to favor uPA, and the enhanced migration was attenuated by treatment with LY294002 indicating PI3K/Akt in this pathway. CONCLUSIONS These results suggest an overall ovarian tumor-protective role for PAI-1, and that the PI3K/Akt signaling pathway regulates the ratio of PAI-1:uPA to either increase or decrease cell migration.
Collapse
Affiliation(s)
- Brandi R. Whitley
- Departments of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7035, USA
| | - Lea M. Beaulieu
- Departments of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7035, USA
| | - Jennifer C. Carter
- Departments of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7035, USA
| | - Frank C. Church
- Departments of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7035, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7035, USA
- Department Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7035, USA
- Corresponding author. Division of Hematology-Oncology/Department of Medicine, 932 Mary Ellen Jones Bldg., Campus Box 7035, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7035, USA. Fax: +1 919 966 7639. (F.C. Church)
| |
Collapse
|
34
|
Balsara RD, Castellino FJ, Ploplis VA. A Novel Function of Plasminogen Activator Inhibitor-1 in Modulation of the AKT Pathway in Wild-type and Plasminogen Activator Inhibitor-1-deficient Endothelial Cells. J Biol Chem 2006; 281:22527-36. [PMID: 16785241 DOI: 10.1074/jbc.m512819200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell proliferation, an event associated with angiogenesis, involves coordinated activities of a number of proteins. The role of plasminogen activator inhibitor-1 (PAI-1) in angiogenesis remains controversial. Utilizing proliferating PAI-1-/- endothelial cells (EC), the impact of a host PAI-1 deficiency on Akt activation was evaluated. Hyperactivation of Akt(Ser(P)473) was observed in PAI-1-/- EC, and this was probably due to enhanced inactivation of tumor suppressor PTEN, thus rendering the cells resistant to apoptotic signals. Higher levels of inactivated caspase-9 in PAI-1-/- EC led to lower levels of procaspase-3 and cleaved caspase-3, thereby promoting survival. These effects were reversed when recombinant PAI-1 was added to PAI-1-/- EC. Additional studies demonstrated that regulation of proliferation is dependent on its interaction with low density lipoprotein receptor-related protein. Thus, PAI-1 is a negative regulator of cell growth, exerting its effect on the phosphatidylinositol 3-kinase/Akt pathway and allowing controlled cell proliferation.
Collapse
Affiliation(s)
- Rashna D Balsara
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
35
|
Chen Y, Budd RC, Kelm RJ, Sobel BE, Schneider DJ. Augmentation of proliferation of vascular smooth muscle cells by plasminogen activator inhibitor type 1. Arterioscler Thromb Vasc Biol 2006; 26:1777-83. [PMID: 16709941 DOI: 10.1161/01.atv.0000227514.50065.2a] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Proliferation of vascular smooth muscle cells (VSMCs) contributes to restenosis after coronary intervention. We have shown previously that increased expression of plasminogen activator inhibitor type 1 (PAI-1) limits VSMC apoptosis. Because apoptosis and proliferation appear to be linked, we sought to determine whether increased PAI-1 would affect VSMC proliferation. METHODS AND RESULTS VSMCs were explanted from control and transgenic mice (SM22-PAI+) in which VSMC expression of PAI-1 was increased. Increased growth of SM22-PAI+-VSMCs (2.3+/-0.4-fold) reflected, at least partially, increased proliferation. Greater expression of FLICE-like inhibitory protein (FLIP; 2.7-fold) and its cleaved active form were seen in SM22-PAI+-VSMCs. The balance between caspase-8 and FLIP favored proliferation in SM22-PAI+-VSMCs. Increased expression of NF-kappaB and activation of extracellular signal-regulated kinase (ERK) were demonstrated in SM22-PAI+-VSMCs (fold=NF-kappaB=2.2+/-0.1, fold=phosphorylated-ERK=1.6+/-0.1). Results were confirmed when expression of PAI-1 was increased by transfection. Inhibition of NF-kappaB and ERK attenuated proliferation in SM22-PAI+-VSMCs. Increased expression of PAI-1 promoted proliferation when VSMCs were exposed to tumor necrosis factor (TNF). CONCLUSIONS Increased expression of PAI-1 is associated with greater activity of FLIP that promotes VSMC proliferation through NF-kappaB and ERK. Thus, when vascular wall expression of PAI-1 is increased, restenosis after coronary intervention is likely to be potentiated by greater proliferation of VSMC and resistance to apoptosis.
Collapse
Affiliation(s)
- Yabing Chen
- Department of Medicine and Cardiovascular Research Institute, University of Vermont, Burlington, USA.
| | | | | | | | | |
Collapse
|
36
|
Okamoto A, Iwamoto Y, Maru Y. Oxidative stress-responsive transcription factor ATF3 potentially mediates diabetic angiopathy. Mol Cell Biol 2006; 26:1087-97. [PMID: 16428460 PMCID: PMC1347018 DOI: 10.1128/mcb.26.3.1087-1097.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous results of our cDNA microarray analysis to look for genes whose expression level correlates well with in vitro tubulogenesis by NP31 endothelial cells revealed the transcription factor ATF3 known to be responsive to stress such as reactive oxygen species (ROS). Anti-ATF3 small interfering RNA gave an inhibitory influence on tube formation by NP31 cells expressing an activated form of the vascular endothelial growth factor receptor 1 (VEGFR-1) kinase. When expression of ATF3 was regulated under the control of tetracycline system in NP31 cells, they acquired the tubulogenic ability upon ATF3 induction. While ATF3 failed to induce expressions of VEGF and VEGFR, it regulated those of CDK2, CDK4, p8, plasminogen activator inhibitor 1, integrin alpha1, subunit and matrix metalloprotease MMP13. In H2O2-stimulated NP31 cells as well as endothelial cells of glomerulus and aorta of Otsuka-Long-Evans-Tokushima-Fatty diabetic model rats, concomitantly enhanced expressions of ATF3, PAI-1, and p8 were observed. Given the proposed hypothesis of the close linkage between diabetic angiopathy and ROS, those data suggest that ROS-associated diabetic complication may involve ATF3-mediated pathological angiogenesis.
Collapse
Affiliation(s)
- Aki Okamoto
- Department of Pharmacology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | | | | |
Collapse
|
37
|
Fukuda G, Yoshitake N, Khan ZA, Kanazawa M, Notoya Y, Che XF, Akiyama SI, Tomoda A, Chakrabarti S, Odawara M. 2-amino-phenoxazine-3-one attenuates glucose-induced augmentation of embryonic form of myosin heavy chain, endothelin-1 and plasminogen activator inhibitor-1 in human umbilical vein endothelial cells. Biol Pharm Bull 2005; 28:797-801. [PMID: 15863881 DOI: 10.1248/bpb.28.797] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate the changes in mRNA level of embryonic form of myosin heavy chain (SMemb), endothelin-1 (ET-1) and plasminogen activator inhibitor-1 (PAI-1), which are considered to be involved in the angiogenesis and atherosclerosis in diabetic blood vessels, in human umbilical vein endothelial cells (HUVECs) caused by high ambient glucose, and the effects of 2-aminophenoxazine-3-one (Phx-3), which was produced by the reaction of bovine hemoglobin with o-aminophenol, on them. The mRNA level of SMemb, ET-1 and PAI-1 and the level of SMemb protein were extensively upregulated in HUVECs treated with high concentration of glucose (15 mM), compared with those in the cells with normal concentration of glucose (5 mM). The migration activity of HUVECs evaluated by the cell migration assay was accelerated by 15 mM glucose. When 10 microM Phx-3, at the concentration of which the proliferation of HUVECs was not affected, was administered to HUVECs with 15 mM glucose, the mRNA level of SMemb, ET-1 and PAI-1 and the level of SMemb protein were significantly downregulated to the normal levels in the cells. However, when 10 microM Phx-3 was administered to HUVECs with 5 mM of glucose, the mRNA level of SMemb, ET-1 and PAI-1 and the level of SMemb protein were not affected. The migration activity of HUVECs, which was accelerated by high glucose, was reversed by 10 microM Phx-3. The present results suggest that Phx-3 may be a drug to prevent the high glucose-associated endothelial damage, vascular angiogenesis in diabetic patients, by inhibiting the expression of angiogenic factors, such as SMemb, ET-1 and PAI-1, in the endothelial cells.
Collapse
Affiliation(s)
- Gen Fukuda
- Third Department of Internal Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro Oncol 2005; 7:134-53. [PMID: 15831232 PMCID: PMC1871894 DOI: 10.1215/s1152851704001115] [Citation(s) in RCA: 484] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glioblastomas, like other solid tumors, have extensive areas of hypoxia and necrosis. The importance of hypoxia in driving tumor growth is receiving increased attention. Hypoxia-inducible factor 1 (HIF-1) is one of the master regulators that orchestrate the cellular responses to hypoxia. It is a heterodimeric transcription factor composed of alpha and beta subunits. The alpha subunit is stable in hypoxic conditions but is rapidly degraded in normoxia. The function of HIF-1 is also modulated by several molecular mechanisms that regulate its synthesis, degradation, and transcriptional activity. Upon stabilization or activation, HIF-1 translocates to the nucleus and induces transcription of its downstream target genes. Most important to gliomagenesis, HIF-1 is a potent activator of angiogenesis and invasion through its upregulation of target genes critical for these functions. Activation of the HIF-1 pathway is a common feature of gliomas and may explain the intense vascular hyperplasia often seen in glioblastoma multiforme. Activation of HIF results in the activation of vascular endothelial growth factors, vascular endothelial growth factor receptors, matrix metalloproteinases, plasminogen activator inhibitor, transforming growth factors alpha and beta, angiopoietin and Tie receptors, endothelin-1, inducible nitric oxide synthase, adrenomedullin, and erythropoietin, which all affect glioma angiogenesis. In conclusion, HIF is a critical regulatory factor in the tumor microenvironment because of its central role in promoting proangiogenic and invasive properties. While HIF activation strongly promotes angiogenesis, the emerging vasculature is often abnormal, leading to a vicious cycle that causes further hypoxia and HIF upregulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Erwin G. Van Meir
- Address correspondence to Erwin G. Van Meir, Winship Cancer Institute, Emory University School of Medicine, 1365C Clifton Road, NE, Room C5078, Atlanta, GA 30322, USA (
)
| |
Collapse
|
39
|
Maillard C, Jost M, Rømer MU, Brunner N, Houard X, Lejeune A, Munaut C, Bajou K, Melen L, Dano K, Carmeliet P, Fusenig NE, Foidart JM, Noel A. Host plasminogen activator inhibitor-1 promotes human skin carcinoma progression in a stage-dependent manner. Neoplasia 2005; 7:57-66. [PMID: 15720817 PMCID: PMC1490321 DOI: 10.1593/neo.04406] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Angiogenesis and tumor expansion are associated with extracellular matrix remodeling and involve various proteases such as the plasminogen (Plg)/plasminogen activator (PA) system. Recently, several experimental data have implicated the plasminogen activator inhibitor-1 (PAI-1) in tumor angiogenesis in murine systems. However, little is known about PAI-1 functions in human skin carcinoma progression. By generating immunodeficient mice (in Rag-1-/- or nude background) deleted for PAI-1 gene (PAI-1-/-), we have evaluated the impact of host PAI-1 deficiency on the tumorigenicity of two malignant human skin keratinocyte cell lines HaCaT II-4 and HaCaT A5-RT3 forming low-grade and high-grade carcinomas, respectively. When using the surface transplantation model, angiogenesis and tumor invasion of these two cell lines are strongly reduced in PAI-1-deficient mice as compared to the wild-type control animals. After subcutaneous injection in PAI-1-/- mice, the tumor incidence is reduced for HaCaT II-4 cells, but not for those formed by HaCaT A5-RT3 cells. These data indicate that PAI-1 produced by host cells is an important contributor to earlier stages of human skin carcinoma progression. It exerts its tumor-promoting effect in a tumor stage-dependent manner, but PAI-1 deficiency is not sufficient to prevent neoplastic growth of aggressive tumors of the human skin.
Collapse
Affiliation(s)
- Catherine Maillard
- Laboratory of Tumor and Development Biology, CRCE, CBIG, University of Liège, Tour de Pathologie (B23), Sart Tilman, Liège B-4000, Belgium
| | - Maud Jost
- Laboratory of Tumor and Development Biology, CRCE, CBIG, University of Liège, Tour de Pathologie (B23), Sart Tilman, Liège B-4000, Belgium
| | - Maria Unni Rømer
- Finsen Laboratory, Rigshospitalet, Strandboulevarden 49, Copenhagen DK 2100, Denmark
| | - Nils Brunner
- Finsen Laboratory, Rigshospitalet, Strandboulevarden 49, Copenhagen DK 2100, Denmark
| | - Xavier Houard
- Laboratory of Tumor and Development Biology, CRCE, CBIG, University of Liège, Tour de Pathologie (B23), Sart Tilman, Liège B-4000, Belgium
| | - Annabelle Lejeune
- Laboratory of Tumor and Development Biology, CRCE, CBIG, University of Liège, Tour de Pathologie (B23), Sart Tilman, Liège B-4000, Belgium
| | - Carine Munaut
- Laboratory of Tumor and Development Biology, CRCE, CBIG, University of Liège, Tour de Pathologie (B23), Sart Tilman, Liège B-4000, Belgium
| | - Khalid Bajou
- Laboratory of Tumor and Development Biology, CRCE, CBIG, University of Liège, Tour de Pathologie (B23), Sart Tilman, Liège B-4000, Belgium
| | - Laurence Melen
- Laboratory of Tumor and Development Biology, CRCE, CBIG, University of Liège, Tour de Pathologie (B23), Sart Tilman, Liège B-4000, Belgium
| | - Keld Dano
- Finsen Laboratory, Rigshospitalet, Strandboulevarden 49, Copenhagen DK 2100, Denmark
| | - Peter Carmeliet
- Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, KU Leuven, Leuven B-3000, Belgium
| | - Norbert E Fusenig
- Division of Carcinogenesis and Differentiation, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Jean Michel Foidart
- Laboratory of Tumor and Development Biology, CRCE, CBIG, University of Liège, Tour de Pathologie (B23), Sart Tilman, Liège B-4000, Belgium
| | - Agnès Noel
- Laboratory of Tumor and Development Biology, CRCE, CBIG, University of Liège, Tour de Pathologie (B23), Sart Tilman, Liège B-4000, Belgium
| |
Collapse
|