1
|
Futaki S, Horimoto A, Shimono C, Norioka N, Taniguchi Y, Hamaoka H, Kaneko M, Shigeta M, Abe T, Sekiguchi K, Kondo Y. Visualization of basement membranes by a nidogen-based fluorescent reporter in mice. Matrix Biol Plus 2023; 18:100133. [PMID: 37131404 PMCID: PMC10149278 DOI: 10.1016/j.mbplus.2023.100133] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 05/04/2023] Open
Abstract
Basement membranes (BMs) are thin, sheet-like extracellular structures that cover the basal side of epithelial and endothelial tissues and provide structural and functional support to adjacent cell layers. The molecular structure of BMs is a fine meshwork that incorporates specialized extracellular matrix proteins. Recently, live visualization of BMs in invertebrates demonstrated that their structure is flexible and dynamically rearranged during cell differentiation and organogenesis. However, the BM dynamics in mammalian tissues remain to be elucidated. We developed a mammalian BM imaging probe based on nidogen-1, a major BM-specific protein. Recombinant human nidogen-1 fused with an enhanced green fluorescent protein (Nid1-EGFP) retains its ability to bind to other BM proteins, such as laminin, type IV collagen, and perlecan, in a solid-phase binding assay. When added to the culture medium of embryoid bodies derived from mouse ES cells, recombinant Nid1-EGFP accumulated in the BM zone of embryoid bodies, and BMs were visualized in vitro. For in vivo BM imaging, a knock-in reporter mouse line expressing human nidogen-1 fused to the red fluorescent protein mCherry (R26-CAG-Nid1-mCherry) was generated. R26-CAG-Nid1-mCherry showed fluorescently labeled BMs in early embryos and adult tissues, such as the epidermis, intestine, and skeletal muscles, whereas BM fluorescence was unclear in several other tissues, such as the lung and heart. In the retina, Nid1-mCherry fluorescence visualized the BMs of vascular endothelium and pericytes. In the developing retina, Nid1-mCherry fluorescence labeled the BM of the major central vessels; however, the BM fluorescence were hardly observed in the peripheral growing tips of the vascular network, despite the presence of endothelial BM. Time-lapse observation of the retinal vascular BM after photobleaching revealed gradual recovery of Nid1-mCherry fluorescence, suggesting the turnover of BM components in developing retinal blood vessels. To the best of our knowledge, this is the first demonstration of in vivo BM imaging using a genetically engineered mammalian model. Although R26-CAG-Nid1-mCherry has some limitations as an in vivo BM imaging model, it has potential applications in the study of BM dynamics during mammalian embryogenesis, tissue regeneration, and pathogenesis.
Collapse
Affiliation(s)
- Sugiko Futaki
- Department of Anatomy and Cell Biology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
- Corresponding author.
| | - Ayano Horimoto
- Laboratory of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Chisei Shimono
- Laboratory of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Naoko Norioka
- Laboratory of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yukimasa Taniguchi
- Laboratory of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hitomi Hamaoka
- Department of Anatomy and Cell Biology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Mayo Shigeta
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kiyotoshi Sekiguchi
- Laboratory of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yoichi Kondo
- Department of Anatomy and Cell Biology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
2
|
Dinesh NEH, Campeau PM, Reinhardt DP. Fibronectin isoforms in skeletal development and associated disorders. Am J Physiol Cell Physiol 2022; 323:C536-C549. [PMID: 35759430 DOI: 10.1152/ajpcell.00226.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular matrix is an intricate and essential network of proteins and non-proteinaceous components that provide a conducive microenvironment for cells to regulate cell function, differentiation, and survival. Fibronectin is one key component in the extracellular matrix that participates in determining cell fate and function crucial for normal vertebrate development. Fibronectin undergoes time dependent expression patterns during stem cell differentiation, providing a unique stem cell niche. Mutations in fibronectin have been recently identified to cause a rare form of skeletal dysplasia with scoliosis and abnormal growth plates. Even though fibronectin has been extensively analyzed in developmental processes, the functional role and importance of this protein and its various isoforms in skeletal development remains less understood. This review attempts to provide a concise and critical overview of the role of fibronectin isoforms in cartilage and bone physiology and associated pathologies. This will facilitate a better understanding of the possible mechanisms through which fibronectin exerts its regulatory role on cellular differentiation during skeletal development. The review discusses the consequences of mutations in fibronectin leading to corner fracture type spondylometaphyseal dysplasia and presents a new outlook towards matrix-mediated molecular pathways in relation to therapeutic and clinical relevance.
Collapse
Affiliation(s)
- Neha E H Dinesh
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | | | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada.,Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
3
|
Futaki S, Nakano I, Kawasaki M, Sanzen N, Sekiguchi K. Molecular profiling of the basement membrane of pluripotent epiblast cells in post-implantation stage mouse embryos. Regen Ther 2019; 12:55-65. [PMID: 31890767 PMCID: PMC6933449 DOI: 10.1016/j.reth.2019.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/28/2019] [Accepted: 04/18/2019] [Indexed: 01/27/2023] Open
Abstract
Introduction The basement membrane (BM) is a sheet-like extracellular matrix (ECM) lining the basal side of epithelial and endothelial cells. The molecular composition of the BM diversifies as embryonic development proceeds, providing optimized microenvironments for individual cell types. In post-implantation stage embryos, the embryonic BMs are essential for differentiation of the epiblast, a layer of multipotent embryonic stem cells, and subsequent embryogenesis. To better understand the role of BMs and cell-BM interactions in early embryogenesis, it is imperative to accumulate information on the molecular entities of the embryonic BMs. Methods We analyzed the expressions and localizations of 20 major BM proteins (11 laminin subunits, 6 type IV collagen subunits, nidogen-1 and -2, and perlecan) and other ECM-related proteins such as fibronectin and integrins in post-implantation stage embryos by immunohistochemistry. Results We found that a set of BM proteins, laminin α5, β1, and γ1 (comprising laminin-511), type IV collagen α1 and α2 (yielding type IV collagen α12α2 [IV]), nidogen-1 and -2, and perlecan, were consistently present in the epiblast/ectoderm BMs throughout the early post-implantation stages. In contrast, laminin α1 was detected in the epiblast BM at E5.5 but decreased in later stages, suggesting that laminin-511 is a major laminin isoform in the early embryonic BM. In addition, fibronectin, a mesenchymal ECM protein, was enriched in the endoderm BM, indicating that the BM compositions differ between the ectoderm and the endoderm. Consistent with these observations, integrin α5, a high-affinity receptor for fibronectin, was localized in the endoderm, while integrin α6, a receptor for laminin-511, was localized in the ectoderm. Conclusions The embryonic BMs underlying the epiblast/ectoderm contain a common toolkit comprising laminin-511, type IV collagen (α12α2 [IV]), nidogen-1 and -2, and perlecan, providing a physiological basis for the utility of laminin-511 as a culture substrate for pluripotent stem cells. The distinctive association of laminin-511 and fibronectin with endodermal and ectodermal cells, together with the differential expression of integrin α5 and α6 in these cells, suggests that the ectodermal and endodermal cells rely on their integrin-dependent interactions with laminin-511 and fibronectin, respectively, to ensure their fate specification in embryonic development.
Collapse
Affiliation(s)
- Sugiko Futaki
- Laboratory of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Itsuko Nakano
- Laboratory of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Miwa Kawasaki
- Laboratory of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Noriko Sanzen
- Laboratory of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kiyotoshi Sekiguchi
- Laboratory of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
4
|
Ohashi T, Lemmon CA, Erickson HP. Fibronectin Conformation and Assembly: Analysis of Fibronectin Deletion Mutants and Fibronectin Glomerulopathy (GFND) Mutants. Biochemistry 2017; 56:4584-4591. [PMID: 28745050 PMCID: PMC5729893 DOI: 10.1021/acs.biochem.7b00589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
To study fibronectin (FN) conformation and assembly, we generated several deletion mutants: FNΔI1-5, FNΔIII1-3, FNΔIII4-8, and FNΔIII11-14. A monomeric form, FNmono, which lacked the C-terminal dimerization region, was also created. FNtnA-D was generated by swapping FNIII domains 1-8 in FNΔIII11-14 with seven FNIII domains from tenascin-C. The conformations of these mutants were analyzed by glycerol gradient sedimentation under low-salt (20 mM NaCl) and high-salt (200 mM NaCl) conditions. Surprisingly, most of the mutants showed a compact conformation under low-salt conditions, except for FNtnA-D. When we tested these mutants in cell culture, FNΔI1-5, FNΔIII1-3, and FNtnA-D were unable to form a matrix. Interestingly, FNΔIII1-3 and FNtnA-D were capable of co-assembly with full-length FN, while FNΔI1-5 was not. This indicates that the segment I1-5 is crucial for matrix assembly and segment III1-3 is also important. Mutations in FN are associated with glomerulopathy, but when we studied mutant proteins, the single-nucleotide mutations had only minor effects on conformation and matrix assembly. The mutations may destabilize their FNIII domains or generate dimers of dimers by disulfide cross-linking.
Collapse
Affiliation(s)
- Tomoo Ohashi
- Department of Cell Biology, Duke University Medical Center, Durham,
North Carolina 27710, United States
| | | | - Harold P. Erickson
- Department of Cell Biology, Duke University Medical Center, Durham,
North Carolina 27710, United States
| |
Collapse
|
5
|
Scanzello CR, Markova DZ, Chee A, Xiu Y, Adams SL, Anderson G, Zgonis M, Qin L, An HS, Zhang Y. Fibronectin splice variation in human knee cartilage, meniscus and synovial membrane: observations in osteoarthritic knee. J Orthop Res 2015; 33:556-62. [PMID: 25410897 PMCID: PMC4586164 DOI: 10.1002/jor.22787] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/07/2014] [Indexed: 02/04/2023]
Abstract
Fibronectin (FN) is a widely expressed molecule that can participate in development of osteoarthritis (OA) affecting cartilage, meniscus, and synovial membrane (SM). The alternatively spliced isoforms of FN in joint tissues other than cartilage have not been extensively studied previously. The present study compares FN splice variation in patients with varying degrees of osteoarthritic change. Joint tissues were collected from asymptomatic donors and patients undergoing arthroscopic procedures. Total RNA was amplified by PCR using primers flanking alternatively spliced Extra Domain A (EDA), Extra Domain B (EDB) and Variable (V) regions. EDB(+) , EDB(-) and EDA(-) and V(+) variants were present in all joint tissues, while the EDA(+) variant was rarely detected. Expression levels of EDB(+) and EDV(+) variants were similar in cartilage, synovium, and meniscal tissues. Synovial expression of V(+) FN in arthroscopy patients varied with degree of cartilage degeneration. Two V(-) isoforms, previously identified in cartilage, were also present in SM and meniscus. Fibronectin splicing in meniscus and SM bears striking resemblance to that of cartilage. Expression levels of synovial V(+) FN varied with degree of cartilage degeneration. V(+) FN should be investigated as a potential biomarker of disease stage or progression in larger populations.
Collapse
Affiliation(s)
- Carla R. Scanzello
- Philadelphia Veterans Affairs Medical Center, and Department of Medicine, Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Ana Chee
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Yan Xiu
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sherrill L. Adams
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Greg Anderson
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA
| | - Miltiadis Zgonis
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ling Qin
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Howard S. An
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Yejia Zhang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL,Philadelphia Veterans Affairs Medical Center, and Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
Sato Y, Shimono C, Li S, Nakano I, Norioka N, Sugiura N, Kimata K, Yamada M, Sekiguchi K. Nephronectin binds to heparan sulfate proteoglycans via its MAM domain. Matrix Biol 2013; 32:188-95. [PMID: 23357641 DOI: 10.1016/j.matbio.2013.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/25/2012] [Accepted: 01/02/2013] [Indexed: 01/28/2023]
Abstract
Nephronectin is a basement membrane protein comprising five N-terminal epidermal growth factor (EGF)-like repeats, a central linker segment containing an Arg-Gly-Asp (RGD) motif and a C-terminal meprin-A5 protein-receptor protein tyrosine phosphatase μ (MAM) domain. Nephronectin has been shown to interact with α8β1 integrin through the central linker segment, but its interactions with other molecules remain to be elucidated. Here, we examined the binding of nephronectin to a panel of glycosaminoglycan (GAG) chains. Nephronectin bound strongly to heparin and chondroitin sulfate (CS)-E and moderately to heparan sulfate (HS), but failed to bind to CS-A, CS-C, CS-D, dermatan sulfate and hyaluronic acid. Deletion of the MAM domain severely impaired the binding of nephronectin to heparin but not CS-E, whereas deletion of the EGF-like repeats reduced its binding to CS-E but not heparin, suggesting that nephronectin interacts with CS-E and heparin through the EGF-like repeats and MAM domain, respectively. Consistent with these results, nephronectin bound to agrin and perlecan, which are heparan sulfate proteoglycans (HSPGs) in basement membranes, in HS-dependent manners. Site-directed mutagenesis of the MAM domain revealed that multiple basic amino acid residues in the putative loop regions were involved in the binding of the MAM domain to agrin. The binding of nephronectin to basement membrane HSPGs was further confirmed by in situ nephronectin overlay assays using mouse frozen tissue sections. Taken together, these findings indicate that nephronectin is capable of binding to HSPGs in basement membranes via the MAM domain, and thereby raise the possibility that interactions with basement membrane HSPGs may be involved in the deposition of nephronectin onto basement membranes.
Collapse
Affiliation(s)
- Yuya Sato
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sato-Nishiuchi R, Nakano I, Ozawa A, Sato Y, Takeichi M, Kiyozumi D, Yamazaki K, Yasunaga T, Futaki S, Sekiguchi K. Polydom/SVEP1 is a ligand for integrin α9β1. J Biol Chem 2012; 287:25615-30. [PMID: 22654117 DOI: 10.1074/jbc.m112.355016] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A variety of proteins, including tenascin-C and osteopontin, have been identified as ligands for integrin α9β1. However, their affinities for integrin α9β1 are apparently much lower than those of other integrins (e.g. α3β1, α5β1, and α8β1) for their specific ligands, leaving the possibility that physiological ligands for integrin α9β1 still remain unidentified. In this study, we found that polydom (also named SVEP1) mediates cell adhesion in an integrin α9β1-dependent manner and binds directly to recombinant integrin α9β1 with an affinity that far exceeds those of the known ligands. Using a series of recombinant polydom proteins with N-terminal deletions, we mapped the integrin-binding site to the 21st complement control protein domain. Alanine-scanning mutagenesis revealed that the EDDMMEVPY sequence (amino acids 2636-2644) in the 21st complement control protein domain was involved in the binding to integrin α9β1 and that Glu(2641) was the critical acidic residue for the integrin binding. The importance of this sequence was further confirmed by integrin binding inhibition assays using synthetic peptides. Immunohistochemical analyses of mouse embryonic tissues showed that polydom colocalized with integrin α9 in the stomach, intestine, and other organs. Furthermore, in situ integrin α9β1 binding assays using frozen mouse tissues showed that polydom accounts for most, but not all, of the integrin α9β1 ligands in tissues. Taken together, the present findings indicate that polydom is a hitherto unknown ligand for integrin α9β1 that functions as a physiological ligand in vivo.
Collapse
|
8
|
Hubmacher D, Sabatier L, Annis DS, Mosher DF, Reinhardt DP. Homocysteine modifies structural and functional properties of fibronectin and interferes with the fibronectin-fibrillin-1 interaction. Biochemistry 2011; 50:5322-32. [PMID: 21561146 DOI: 10.1021/bi200183z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Homocystinuria is a genetic disorder resulting in elevated levels of homocysteine in plasma and tissues. Some of the skeletal and ocular symptoms such as long bone overgrowth, scoliosis, and ectopia lentis overlap with symptoms seen in Marfan syndrome. Marfan syndrome is caused by mutations in the extracellular matrix protein fibrillin-1. We previously showed that fibrillin-1 is a target for homocysteine and that the deposition of homocysteinylated fibrillin-1 in the extracellular matrix is compromised. Since the assembly of fibrillin-1 is critically dependent on fibronectin, we analyzed the consequences of fibronectin homocysteinylation and its interaction with fibrillin-1. Cellular fibronectin and proteolytic fragments were homocysteinylated and tested in various interaction assays with recombinant fibrillin-1 and heparin. Fibronectin homocysteinylation consistently compromised the fibronectin-fibrillin-1 interaction, while the interaction with heparin was not affected. Fibronectin homocysteinylation, but not cysteinylation, reduced the fibronectin dimers to monomers as shown by Western blotting. ELISA analyses of homocysteinylated fibronectin with three monoclonal antibodies demonstrated structural changes in the disulfide-containing FNI domains FNI(2), FNI(4), and FNI(9). Using fluorescently labeled fibronectin, we studied the consequence of fibronectin homocysteinylation on assembly in cell culture. Modified fibronectin showed deficiencies in denovo matrix incorporation and initial assembly. In conclusion, we define here characteristic structural changes of fibronectin upon homocysteinylation that translate into functional deficiencies in the fibronectin-fibrillin-1 interaction and in fibronectin assembly. Since fibronectin is a major organizer of various extracellular protein networks, these structural and functional alterations may contribute to the pathogenesis of homocystinuria and Marfan syndrome.
Collapse
Affiliation(s)
- Dirk Hubmacher
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
9
|
Nugent-Derfus GE, Chan AH, Schumacher BL, Sah RL. PRG4 exchange between the articular cartilage surface and synovial fluid. J Orthop Res 2007; 25:1269-76. [PMID: 17546655 DOI: 10.1002/jor.20431] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The boundary lubrication function of articular cartilage is mediated in part by proteoglycan 4 (PRG4) molecules, found both in synovial fluid (SF) and bound to the articular cartilage surface. Currently the mechanism by which PRG4 binds to the articular surface is not well understood. The objectives of this study were to determine (1) the effect of bathing fluid contents on PRG4 concentration at the articular surface ([PRG4](cart)), and (2) whether native PRG4 can be removed from the surface and subsequently repleted with PRG4 from synovial fluid. In one experiment, cylindrical cartilage disks were stored in solutions of various PRG4 concentrations, either in phosphate-buffered saline (PBS) or SF as the carrier fluid. In a separate experiment, cartilage disks were stored in solutions expected to remove native PRG4 from the articular surface and allow subsequent repletion with PRG4 from SF. [PRG4](cart) was independent of PRG4 concentration of the bathing fluid, and was similar for both carrier fluids. PRG4 was removed from cartilage by treatment with hyaluronidase, reduction/alkylation, and sodium dodecyl sulphate, and was repleted fully by subsequent bathing in SF. These results suggest that the articular surface is normally saturated with tightly bound PRG4, but this PRG4 can exchange with the PRG4 in SF under certain conditions. This finding suggests that all tissues surrounding the joint cavity that secrete PRG4 into the SF may help to maintain lubrication function at the articular surface.
Collapse
Affiliation(s)
- G E Nugent-Derfus
- Department of Bioengineering and Whitaker Institute of Biomedical Engineering, 9500 Gilman Drive, University of California-San Diego, La Jolla, California 92093-0412, USA
| | | | | | | |
Collapse
|
10
|
Mao Y, Schwarzbauer JE. Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol 2005; 24:389-99. [PMID: 16061370 DOI: 10.1016/j.matbio.2005.06.008] [Citation(s) in RCA: 551] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 06/21/2005] [Indexed: 11/21/2022]
Abstract
The extracellular matrix provides a framework for cell adhesion, supports cell movement, and serves to compartmentalize tissues into functional units. Fibronectin is a core component of many extracellular matrices where it regulates a variety of cell activities through direct interactions with cell surface integrin receptors. Fibronectin is synthesized by many adherent cells which then assemble it into a fibrillar network. The assembly process is integrin-dependent and fibronectin-integrin interactions initiate a step-wise process involving conformational activation of fibronectin outside and organization of the actin cytoskeleton inside. During assembly, fibronectin undergoes conformational changes that expose fibronectin-binding sites and promote intermolecular interactions needed for fibril formation. In this review, the main steps of fibronectin assembly are described and recent studies on fibronectin conformational changes are discussed.
Collapse
Affiliation(s)
- Yong Mao
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, United States
| | | |
Collapse
|
11
|
Musaad SMA, Melson CL, Boswell DR. Assessment of the impact of introducing fetal fibronectin assay in the management of preterm labour at Middlemore Hospital, New Zealand. Pathology 2005; 37:226-30. [PMID: 16175896 DOI: 10.1080/00313020500099056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
UNLABELLED Elevated levels of fetal fibronectin (fFN) in cervicovaginal secretions beyond 20-22 weeks of gestation are used as a predictor of preterm birth in patients with corroborative symptoms and signs. AIM To assess the impact of introducing the fFN assay on the diagnosis, length of hospital stay and cost of managing patients presenting with symptoms of premature labour in our hospital. METHODS The first 30 fFN-tested patients (fFN group) were prospectively recruited and followed up until delivery. Hospital stay and management costs (costs of individual tests and treatment administered) and neonatal outcomes were compared with 30 matching historical controls. RESULTS Overall management costs of the fFN-group were comparable with controls (NZ dollar 918 versus NZ dollar 943 per patient, p = 0.44). The fFN-group had a trend towards reduced length of hospital stay (p = 0.082), less tocolysis (p = 0.002) and use of steroids (p < 0.001). The cost of managing an fFN-positive patient was more than an fFN-negative patient, but not statistically significant (NZ dollar 1117 versus NZ dollar 846, respectively, p = 0.11). CONCLUSION Despite a trend towards reduced hospital stay and less use of obstetric intervention, total expenditure in patient management has not reduced with the availability of the fFN assay in our hospital. This may only reflect the slow introduction of a new policy that with time may be implemented to full effect.
Collapse
|
12
|
Berdoz J, Corthésy B. Human polymeric IgA is superior to IgG and single-chain Fv of the same monoclonal specificity to inhibit urease activity associated with Helicobacter pylori. Mol Immunol 2004; 41:1013-22. [PMID: 15302163 DOI: 10.1016/j.molimm.2004.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Indexed: 12/24/2022]
Abstract
Helicobacter-induced gastritis is considered nowadays an epidemic, the prevalence of which is one of the highest world-wide (70%), with as much as 40% of the population in industrialized countries. Helicobacter pylori (H. pylori) antigens (Ag) capable to elicit a protective immune response in animal models have been identified, but these antigens have not been shown to be strongly immunogenic when administered to humans. Due to their stability in the gastric environment and avidity, passive administration of secretory immunoglobulin A (SIgA) antibodies (Ab) targeting protective Ag might be particularly relevant as a substitute or complement to current therapies. To this aim, we have designed expression vectors to convert a scFv polypeptide specific for H. pylori urease subunit A into human IgG, polymeric IgA (IgAp/d) and SIgA. Purified proteins show proper binding characteristics toward both the native and denatured forms of H. pylori urease. The direct comparison between different isotype and molecular forms, but of unique specificity, demonstrates that SIgA and IgAp/d are more efficient in blocking free and H. pylori-associated urease than IgG and scFv. We conclude that the expression system reported herein will represent a valuable tool to produce human SIgA Ab of multiple specificities against H. pylori antigens involved in colonization and persistence.
Collapse
Affiliation(s)
- José Berdoz
- Galli-Valerio Institute, Rue César-Roux 37, 1014 Lausanne, Switzerland
| | | |
Collapse
|