1
|
Islam MR, Akash S, Jony MH, Alam MN, Nowrin FT, Rahman MM, Rauf A, Thiruvengadam M. Exploring the potential function of trace elements in human health: a therapeutic perspective. Mol Cell Biochem 2023; 478:2141-2171. [PMID: 36637616 DOI: 10.1007/s11010-022-04638-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/08/2022] [Indexed: 01/14/2023]
Abstract
A trace element, known as a minor element, is a chemical element whose concentration is very low. They are divided into essential and non-essential classes. Numerous physiological and metabolic processes in both plants and animals require essential trace elements. These essential trace elements are so directly related to the metabolic and physiologic processes of the organism that either their excess or deficiency can result in severe bodily malfunction or, in the worst situations, death. Elements can be found in nature in various forms and are essential for the body to carry out its varied functions. Trace elements are crucial for biological, chemical, and molecular cell activity. Nutritional deficits can lead to weakened immunity, increased susceptibility to oral and systemic infections, delayed physical and mental development, and lower productivity. Trace element enzymes are involved in many biological and chemical processes. These compounds act as co-factors for a number of enzymes and serve as centers for stabilizing the structures of proteins and enzymes, allowing them to mediate crucial biological processes. Some trace elements control vital biological processes by attaching to molecules on the cell membrane's receptor site or altering the structure of the membrane to prevent specific molecules from entering the cell. Some trace elements are engaged in redox reactions. Trace elements have two purposes. They are required for the regular stability of cellular structures, but when lacking, they might activate alternate routes and induce disorders. Therefore, thoroughly understanding these trace elements is essential for maintaining optimal health and preventing disease.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Maruf Hossain Jony
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Md Noor Alam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Feana Tasmim Nowrin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, South Korea.
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
2
|
Fang Y, Chen W, Li Z, Chen Y, Wu X, Zhu X, Wang H, Chen X, Liang Q, Huang J, Han X, Hong W, Wang X, Wei W, Yu Z, Tu J. The role of a key transcription factor PU.1 in autoimmune diseases. Front Immunol 2022; 13:1001201. [PMID: 36248862 PMCID: PMC9557192 DOI: 10.3389/fimmu.2022.1001201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
PU.1, a transcription factor member of the E26 transformation-specific family, affects the function of a variety of immune cells in several physiological and pathological conditions. Previous studies studying the role of PU.1 in pathological conditions have mainly focused on immune system-related cancers, and a series of articles have confirmed that PU.1 mutation can induce a variety of immune cell-related malignancies. The underlying mechanism has also been extensively validated. However, the role of PU.1 in other major immune system-related diseases, namely, systemic autoimmune diseases, is still unclear. It was only in recent years that researchers began to gradually realize that PU.1 also played an important role in a variety of autoimmune diseases, such as rheumatoid arthritis (RA), experimental autoimmune encephalomyelitis (EAE) and systemic lupus erythematosus (SLE). This review article summarizes the findings of recent studies that investigated the role of PU.1 in various autoimmune diseases and the related underlying mechanisms. Furthermore, it presents new ideas and provides insight into the role of PU.1 as a potential treatment target for autoimmune diseases and highlights existing research problems and future research directions in related fields.
Collapse
Affiliation(s)
- Yilong Fang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Weile Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Zhe Li
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yu Chen
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xuming Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Xiangling Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Huihui Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Xiaochun Chen
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Qiuni Liang
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jinghua Huang
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xintong Han
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Wenming Hong
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinming Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China,*Correspondence: Jiajie Tu, ; Zhiying Yu, ; Wei Wei,
| | - Zhiying Yu
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China,*Correspondence: Jiajie Tu, ; Zhiying Yu, ; Wei Wei,
| | - Jiajie Tu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China,*Correspondence: Jiajie Tu, ; Zhiying Yu, ; Wei Wei,
| |
Collapse
|
3
|
Wang H, Morse HC, Bolland S. Transcriptional Control of Mature B Cell Fates. Trends Immunol 2020; 41:601-613. [PMID: 32446878 DOI: 10.1016/j.it.2020.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 02/05/2023]
Abstract
The mature naïve B cell repertoire consists of three well-defined populations: B1, B2 (follicular B, FOB), and marginal zone B (MZB) cells. FOB cells are the dominant mature B cell population in the secondary lymphoid organs and blood of both humans and mice. The driving forces behind mature B lineage selection have been linked to B cell receptor (BCR) signaling strength and environmental cues, but how these fate-determination factors are transcriptionally regulated remains poorly understood. We summarize emerging data on the role of transcription factors (TFs) - particularly the ETS and IRF families - in regulating MZB and FOB lineage selection. Indeed, genomic analyses have identified four major groups of target genes that are crucial for FOB differentiation, revealing previously unrecognized pathways that ultimately determine biological responses specific to this lineage.
Collapse
Affiliation(s)
- Hongsheng Wang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA.
| | - Herbert C Morse
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Silvia Bolland
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA.
| |
Collapse
|
4
|
Transcription factors IRF8 and PU.1 are required for follicular B cell development and BCL6-driven germinal center responses. Proc Natl Acad Sci U S A 2019; 116:9511-9520. [PMID: 31000603 DOI: 10.1073/pnas.1901258116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The IRF and Ets families of transcription factors regulate the expression of a range of genes involved in immune cell development and function. However, the understanding of the molecular mechanisms of each family member has been limited due to their redundancy and broad effects on multiple lineages of cells. Here, we report that double deletion of floxed Irf8 and Spi1 (encoding PU.1) by Mb1-Cre (designated DKO mice) in the B cell lineage resulted in severe defects in the development of follicular and germinal center (GC) B cells. Class-switch recombination and antibody affinity maturation were also compromised in DKO mice. RNA-seq (sequencing) and ChIP-seq analyses revealed distinct IRF8 and PU.1 target genes in follicular and activated B cells. DKO B cells had diminished expression of target genes vital for maintaining follicular B cell identity and GC development. Moreover, our findings reveal that expression of B-cell lymphoma protein 6 (BCL6), which is critical for development of germinal center B cells, is dependent on IRF8 and PU.1 in vivo, providing a mechanism for the critical role for IRF8 and PU.1 in the development of GC B cells.
Collapse
|
5
|
Khateb M, Azriel A, Levi BZ. The Third Intron of IRF8 Is a Cell-Type-Specific Chromatin Priming Element during Mouse Embryonal Stem Cell Differentiation. J Mol Biol 2019; 431:210-222. [PMID: 30502383 DOI: 10.1016/j.jmb.2018.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/07/2018] [Accepted: 11/20/2018] [Indexed: 01/09/2023]
Abstract
Interferon regulatory factor 8 (IRF8) is a nuclear transcription factor that plays a key role in the hierarchical differentiation of hematopoietic stem cells toward monocyte/dendritic cell lineages. Therefore, its expression is mainly limited to bone marrow-derived cells. The molecular mechanisms governing this cell-type-restricted expression have been described. However, the molecular mechanisms that are responsible for its silencing in non-hematopoietic cells are elusive. Recently, we demonstrated a role for IRF8 third intron in restricting its expression in non-hematopoietic cells. Furthermore, we showed that this intron alone is sufficient to promote repressed chromatin a cell-type-specific manner. Here we demonstrate the effect of the IRF8 third intron on chromatin conformation during murine embryonal stem cell differentiation. Using genome editing, we provide data showing that the third intron plays a key role in priming the chromatin state of the IRF8 locus during cell differentiation. It mediates dual regulatory effects in a cell-type-specific mode. It acts as a repressor element governing chromatin state of the IRF8 locus during embryonal stem cell differentiation to cardiomyocytes that are expression-restrictive cells. Conversely, it functions as an activator element that is essential for open chromatin structure during the differentiation of these cells to dendritic cells that are expression-permissive cells. Together, these results point to the role of IRF8 third intron as a cell-type-specific chromatin priming element during embryonal stem cell differentiation. These data add another layer to our understanding of the molecular mechanisms governing misexpression of a cell-type-specific gene such as IRF8.
Collapse
Affiliation(s)
- Mamduh Khateb
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Aviva Azriel
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ben-Zion Levi
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
6
|
Khateb M, Fourier N, Barnea-Yizhar O, Ram S, Kovalev E, Azriel A, Rand U, Nakayama M, Hauser H, Gepstein L, Levi BZ. The Third Intron of the Interferon Regulatory Factor-8 Is an Initiator of Repressed Chromatin Restricting Its Expression in Non-Immune Cells. PLoS One 2016; 11:e0156812. [PMID: 27257682 PMCID: PMC4892516 DOI: 10.1371/journal.pone.0156812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/19/2016] [Indexed: 12/03/2022] Open
Abstract
Interferon Regulatory Factor-8 (IRF-8) serves as a key factor in the hierarchical differentiation towards monocyte/dendritic cell lineages. While much insight has been accumulated into the mechanisms essential for its hematopoietic specific expression, the mode of restricting IRF-8 expression in non-hematopoietic cells is still unknown. Here we show that the repression of IRF-8 expression in restrictive cells is mediated by its 3rd intron. Removal of this intron alleviates the repression of Bacterial Artificial Chromosome (BAC) IRF-8 reporter gene in these cells. Fine deletion analysis points to conserved regions within this intron mediating its restricted expression. Further, the intron alone selectively initiates gene silencing only in expression-restrictive cells. Characterization of this intron’s properties points to its role as an initiator of sustainable gene silencing inducing chromatin condensation with suppressive histone modifications. This intronic element cannot silence episomal transgene expression underlining a strict chromatin-dependent silencing mechanism. We validated this chromatin-state specificity of IRF-8 intron upon in-vitro differentiation of induced pluripotent stem cells (iPSCs) into cardiomyocytes. Taken together, the IRF-8 3rd intron is sufficient and necessary to initiate gene silencing in non-hematopoietic cells, highlighting its role as a nucleation core for repressed chromatin during differentiation.
Collapse
Affiliation(s)
- Mamduh Khateb
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Nitsan Fourier
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Ofer Barnea-Yizhar
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Sigal Ram
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Ekaterina Kovalev
- Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | - Aviva Azriel
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Ulfert Rand
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Manabu Nakayama
- Department of Technology Development, Kazusa DNA Research Institute, Kazusa-Kamatari, Kazusa, Japan
| | - Hansjörg Hauser
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lior Gepstein
- Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | - Ben-Zion Levi
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
7
|
IRF8 suppresses pathological cardiac remodelling by inhibiting calcineurin signalling. Nat Commun 2015; 5:3303. [PMID: 24526256 PMCID: PMC3929801 DOI: 10.1038/ncomms4303] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 01/23/2014] [Indexed: 02/07/2023] Open
Abstract
Interferon regulatory factor 8 (IRF8) is known to affect the innate immune response, for example, by regulating the differentiation and function of immune cells. However, whether IRF8 can influence cardiac hypertrophy is unknown. Here we show that IRF8 levels are decreased in human dilated/hypertrophic cardiomyopathic hearts and in murine hypertrophic hearts. Mice overexpressing Irf8 specifically in the heart are resistant to aortic banding (AB)-induced cardiac hypertrophy, whereas mice lacking IRF8 either globally or specifically in cardiomyocytes develop an aggravated phenotype induced by pressure overload. Mechanistically, we show that IRF8 directly interacts with NFATc1 to prevent NFATc1 translocation and thus inhibits the hypertrophic response. Inhibition of NFATc1 ameliorates the cardiac abnormalities in IRF8(-/-) mice after AB. In contrast, constitutive activation of NFATc1 nullifies the protective effects of IRF8 on cardiac hypertrophy in IRF8-overexpressing mice. Our results indicate that IRF8 is a potential therapeutic target in pathological cardiac hypertrophy.
Collapse
|
8
|
Functional characterization of the human dendritic cell immunodeficiency associated with the IRF8(K108E) mutation. Blood 2015; 124:1894-904. [PMID: 25122610 DOI: 10.1182/blood-2014-04-570879] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have previously reported on a unique patient in whom homozygosity for a mutation at IRF8 (IRF8(K108E)) causes a severe immunodeficiency. Laboratory evaluation revealed a highly unusual myeloid compartment, remarkable for the complete absence of CD141 and CD161 monocytes, absence of CD11c1 conventional dendritic cells (DCs) and CD11c1/CD1231 plasmacytoid DCs, and striking granulocytic hyperplasia. The patient initially presented with severe disseminated mycobacterial and mucocutaneous fungal infections and was ultimately cured by cord blood transplant. Sequencing RNA from the IRF8(K108E) patient's primary blood cells prior to transplant shows not only depletion of IRF8-bound and IRF8-regulated transcriptional targets, in keeping with the distorted composition of the myeloid compartment, but also a paucity of transcripts associated with activated CD41 and CD81 T lymphocytes. This suggests that T cells reared in the absence of a functional antigen-presenting compartment in IRF8(K108E) are anergic. Biochemical characterization of the IRF8(K108E) mutant in vitro shows that loss of the positively charged side chain at K108 causes loss of nuclear localization and loss of transcriptional activity, which is concomitant with decreased protein stability, increased ubiquitination, increased small ubiquitin-like modification, and enhanced proteasomal degradation. These findings provide functional insight into the molecular basis of immunodeficiency associated with loss of IRF8.
Collapse
|
9
|
Salem S, Gros P. Genetic Determinants of Susceptibility to Mycobacterial Infections: IRF8, A New Kid on the Block. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 783:45-80. [DOI: 10.1007/978-1-4614-6111-1_3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Chang TH, Xu S, Tailor P, Kanno T, Ozato K. The small ubiquitin-like modifier-deconjugating enzyme sentrin-specific peptidase 1 switches IFN regulatory factor 8 from a repressor to an activator during macrophage activation. THE JOURNAL OF IMMUNOLOGY 2012; 189:3548-56. [PMID: 22942423 DOI: 10.4049/jimmunol.1201104] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Macrophages, when activated by IFN-γ and TLR signaling, elicit innate immune responses. IFN regulatory factor 8 (IRF8) is a transcription factor that facilitates macrophage activation and innate immunity. We show that, in resting macrophages, some IRF8 is conjugated to small ubiquitin-like modifiers (SUMO) 2/3 through the lysine residue 310. SUMO3-conjugated IRF8 failed to induce IL12p40 and other IRF8 target genes, consistent with SUMO-mediated transcriptional repression reported for other transcription factors. SUMO3-conjugated IRF8 showed reduced mobility in live nuclei and bound poorly to the IL12p40 gene. However, macrophage activation caused a sharp reduction in the amount of SUMOylated IRF8. This reduction coincided with the induction of a deSUMOylating enzyme, sentrin-specific peptidase 1 (SENP1), in activated macrophages. In transfection analysis, SENP1 removed SUMO3 from IRF8 and enhanced expression of IL12p40 and other target genes. Conversely, SENP1 knockdown repressed IRF8 target gene expression. In parallel with IRF8 deSUMOylation, macrophage activation led to the induction of proteins active in the SUMO pathway and caused a global shift in nuclear protein SUMOylation patterns. Together, the IRF8 SUMO conjugation/deconjugation switch is part of a larger transition in SUMO modifications that takes place upon macrophage activation, serving as a mechanism to trigger innate immune responses.
Collapse
Affiliation(s)
- Tsung-Hsien Chang
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
11
|
Khalfin-Rabinovich Y, Weinstein A, Levi BZ. PML is a key component for the differentiation of myeloid progenitor cells to macrophages. Int Immunol 2011; 23:287-96. [PMID: 21427174 DOI: 10.1093/intimm/dxr004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
IFN regulatory factor-8 (IRF-8, previously known as ICSBP) is a key transcription factor driving the differentiation of granulocyte\monocyte progenitor (GMP) cells toward monocyte\macrophage lineage. The promyelocytic leukemia (PML) gene is an immediate target gene regulated by IRF-8 in response to IFN-γ activation. PML is a multifunctional protein that has many isoforms serving as the scaffold components for nuclear bodies (NBs) engaged in numerous proteins interactions. The role of PML in the retinoic acid pathway that drives GMPs to granulopoiesis is documented in the literature. Here, we show that PML is also involved in monopoiesis by mediating some of the IRF-8 activities during the differentiation of murine-derived bone marrow macrophages (BMMs). PML silencing resulted in altered expression level of key transcription factors essential for monopoiesis that was accompanied by silencing of typical myeloid-specific genes. Interestingly, this altered expression resembled that of the GMPs and that of BMMs derived from IRF-8(-/-) mice altogether supporting the role of PML in monopoiesis. Further, PML silencing led to reduced colony-forming capacity of bone marrow cells highlighting the dual function of PML in myelopoiesis. Last, PML overexpression only partially rescued the phenotype of IRF-8(-/-) BMMs. Together, our data show that PML is an important factor for monopoiesis and not solely for granulopoiesis. This suggests that PML-NBs respond to an incoming signal that affects the fate of GMP driving cell differentiation to granulocytes or monocytes.
Collapse
Affiliation(s)
- Yana Khalfin-Rabinovich
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | |
Collapse
|
12
|
Battistini A. Interferon regulatory factors in hematopoietic cell differentiation and immune regulation. J Interferon Cytokine Res 2010; 29:765-80. [PMID: 19929577 DOI: 10.1089/jir.2009.0030] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Members of the interferon regulatory factor (IRF) family are transcription factors implicated in the regulation of a variety of biological processes. Originally identified as intracellular mediators of the induction and biological activities of interferons, their central role in host resistance to pathogens has recently been confirmed by the recognition of their involvement in the regulation of gene expression in responses triggered by Toll-like receptors and other pattern recognition receptors (PRRs). Their function in regulating the development as well as the activity of hematopoietic cells puts them at the interface between innate and adaptive immune responses. IRFs also regulate cell growth and apoptosis in several cell types, thereby affecting susceptibility to and the progression of cancer. In this review the role of some members of the family more deeply involved in the differentiation of hematopoietic cells and in immune regulation is addressed, with a specific focus on T cells and dendritic cells.
Collapse
Affiliation(s)
- Angela Battistini
- Molecular Pathogenesis Unit, Department of Infectious, Parasitic, and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome 00161, Italy.
| |
Collapse
|
13
|
Linking chronic infection and autoimmune diseases: Mycobacterium avium subspecies paratuberculosis, SLC11A1 polymorphisms and type-1 diabetes mellitus. PLoS One 2009; 4:e7109. [PMID: 19768110 PMCID: PMC2740822 DOI: 10.1371/journal.pone.0007109] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 08/25/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The etiology of type 1 diabetes mellitus (T1DM) is still unknown; numerous studies are performed to unravel the environmental factors involved in triggering the disease. SLC11A1 is a membrane transporter that is expressed in late endosomes of antigen presenting cells involved in the immunopathogenic events leading to T1DM. Mycobacterium avium subsp. paratuberculosis (MAP) has been reported to be a possible trigger in the development of T1DM. METHODOLOGY/PRINCIPAL FINDINGS Fifty nine T1DM patients and 79 healthy controls were genotyped for 9 polymorphisms of SLC11A1 gene, and screened for the presence of MAP by PCR. Differences in genotype frequency were evaluated for both T1DM patients and controls. We found a polymorphism in the SLC11A1 gene (274C/T) associated to type 1 diabetic patients and not to controls. The presence of MAP DNA was also significantly associated with T1DM patients and not with controls. CONCLUSIONS/SIGNIFICANCE The 274C/T SCL11A1 polymorphism was found to be associated with T1DM as well as the presence of MAP DNA in blood. Since MAP persists within macrophages and it is also processed by dendritic cells, further studies are necessary to evaluate if mutant forms of SLC11A1 alter the processing or presentation of MAP antigens triggering thereby an autoimmune response in T1DM patients.
Collapse
|
14
|
Weiss G. Iron metabolism in the anemia of chronic disease. Biochim Biophys Acta Gen Subj 2009; 1790:682-93. [DOI: 10.1016/j.bbagen.2008.08.006] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/27/2008] [Accepted: 08/14/2008] [Indexed: 02/08/2023]
|
15
|
Abstract
Interferon regulatory factor 8 (IRF8) is a member of the IRF family of transcription factors whose members play critical roles in interferon (IFN) signaling pathways governing the establishment of innate immune responses by myeloid and dendritic cells. IRF8 is also expressed in lymphoid cells and recent studies have documented its involvement in B cell lineage specification, immunoglobulin light chain gene rearrangement, the distribution of mature B cells into the marginal zone and follicular B cell compartment, and the transcriptional regulation of critical elements of the germinal center reaction. Here we review the contributions of IRF8 to B cell development from hematopoietic stem cells in the bone marrow and its place in the hierarchical regulatory network governing specification and commitment to the B cell fate.
Collapse
Affiliation(s)
- Hongsheng Wang
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Twinbrook 1, Rm. 1518, 5640 Fishers Lane, Rockville, MD 20852, USA.
| | | |
Collapse
|
16
|
Abstract
PU.1, IKAROS, E2A, EBF, and PAX5 comprise a transcriptional network that orchestrates B-cell lineage specification, commitment, and differentiation. Here we identify interferon regulatory factor 8 (IRF8) as another component of this complex, and show that it also modulates lineage choice by hematopoietic stem cells (HSCs). IRF8 binds directly to an IRF8/Ets consensus sequence located in promoter regions of Sfpi1 and Ebf1, which encode PU.1 and EBF, respectively, and is associated with transcriptional repression of Sfpi1 and transcriptional activation of Ebf1. Bone marrows of IRF8 knockout mice (IRF8(-/-)) had significantly reduced numbers of pre-pro-B cells and increased numbers of myeloid cells. Although HSCs of IRF8(-/-) mice failed to differentiate to B220(+) B-lineage cells in vitro, the defect could be rescued by transfecting HSCs with wild-type but not with a signaling-deficient IRF8 mutant. In contrast, overexpression of IRF8 in HSC-differentiated progenitor cells resulted in growth inhibition and apoptosis. We also found that IRF8 was expressed at higher levels in pre-pro-B cells than more mature B cells in wild-type mice. Together, these results indicate that IRF8 modulates lineage choice by HSCs and is part of the transcriptional network governing B-cell lineage specification, commitment, and differentiation.
Collapse
|
17
|
Richer E, Campion CG, Dabbas B, White JH, Cellier MFM. Transcription factors Sp1 and C/EBP regulate NRAMP1 gene expression. FEBS J 2008; 275:5074-89. [PMID: 18786141 DOI: 10.1111/j.1742-4658.2008.06640.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The natural resistance-associated macrophage protein 1 (Nramp1), which belongs to a conserved family of membrane metal transporters, contributes to phagocyte-autonomous antimicrobial defense mechanisms. Genetic polymorphisms in the human NRAMP1 gene predispose to susceptibility to infectious or inflammatory diseases. To characterize the transcriptional mechanisms controlling NRAMP1 expression, we previously showed that a 263 bp region upstream of the ATG drives basal promoter activity, and that a 325 bp region further upstream confers myeloid specificity and activation during differentiation of HL-60 cells induced by vitamin D. Herein, the major transcription start site was mapped in the basal region by S1 protection assay, and two cis-acting elements essential for myeloid transactivation were characterized by in vitro DNase footprinting, electrophoretic mobility shift experiments, in vivo transfection assays using linker-mutated constructs, and chromatin immunoprecipitation assays in differentiated monocytic cells. One distal cis element binds Sp1 and is required for NRAMP1 myeloid regulation. Another site in the proximal region binds CCAAT enhancer binding proteins alpha or beta and is crucial for transcription. This study implicates Sp1 and C/EBP factors in regulating the expression of the NRAMP1 gene in myeloid cells.
Collapse
Affiliation(s)
- Etienne Richer
- Institut national de la recherche scientifique, INRS-Institut Armand-Frappier, Laval, Canada
| | | | | | | | | |
Collapse
|
18
|
Tamura T, Yanai H, Savitsky D, Taniguchi T. The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 2008; 26:535-84. [PMID: 18303999 DOI: 10.1146/annurev.immunol.26.021607.090400] [Citation(s) in RCA: 981] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The interferon regulatory factor (IRF) family, consisting of nine members in mammals, was identified in the late 1980s in the context of research into the type I interferon system. Subsequent studies over the past two decades have revealed the versatile and critical functions performed by this transcription factor family. Indeed, many IRF members play central roles in the cellular differentiation of hematopoietic cells and in the regulation of gene expression in response to pathogen-derived danger signals. In particular, the advances made in understanding the immunobiology of Toll-like and other pattern-recognition receptors have recently generated new momentum for the study of IRFs. Moreover, the role of several IRF family members in the regulation of the cell cycle and apoptosis has important implications for understanding susceptibility to and progression of several cancers.
Collapse
Affiliation(s)
- Tomohiko Tamura
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
19
|
Alter-Koltunoff M, Goren S, Nousbeck J, Feng CG, Sher A, Ozato K, Azriel A, Levi BZ. Innate immunity to intraphagosomal pathogens is mediated by interferon regulatory factor 8 (IRF-8) that stimulates the expression of macrophage-specific Nramp1 through antagonizing repression by c-Myc. J Biol Chem 2007; 283:2724-33. [PMID: 18045875 DOI: 10.1074/jbc.m707704200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophages are a central arm of innate immune defense against intracellular pathogens. They internalize microbes into phagosomes where the invaders are being killed by oxygen and nitrogen reactive species. Despite this battery of antimicrobial molecules, some are able to thrive within the phagosome thus termed intraphagosomal pathogens among which are Salmonella, Leishmania, and Mycobacteria. In mice, a single dominant gene termed Nramp1/Slc11a1 controls innate resistance to such pathogens. This gene is expressed exclusively in myeloid cells. Previously, we have shown that the restricted expression of Nramp1 is regulated by a myeloid cell-specific transcription factor termed IRF-8/ICSBP. It is demonstrated here that the induction of Nramp1 expression in activated macrophages is accompanied by a promoter shift from a repression state elicited by c-Myc to an activation state elicited by the induction of IRF-8 in activated macrophages. This transition from repression to activation is facilitated by a competitive protein-protein interaction with the transcription factor Miz-1. To show that IRF-8 is directly involved in the elimination of intraphagosomal pathogens through the regulation of Nramp1 gene expression, we bred wild type as well as IRF-8 and Nramp1 null mouse strains and examined macrophages derived from bone marrow and peritoneum. Our results clearly show that the absence of IRF-8 and Nramp1 leads to the same phenotype; defective killing of intraphagosomal Salmonella enterica serovar typhimurium and Mycobacterium bovis. Thus, interplay between repression and activation state of the Nramp1 promoter mediated by IRF-8 provides the molecular basis by which macrophages resist intraphagosomal pathogens at early stage after infection.
Collapse
Affiliation(s)
- Michal Alter-Koltunoff
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Turcotte K, Gauthier S, Malo D, Tam M, Stevenson MM, Gros P. Icsbp1/IRF-8 is required for innate and adaptive immune responses against intracellular pathogens. THE JOURNAL OF IMMUNOLOGY 2007; 179:2467-76. [PMID: 17675508 DOI: 10.4049/jimmunol.179.4.2467] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The chronic myeloid leukemia syndrome of the BXH-2 mouse strain (Mus musculus) is caused by a recessive mutation (R294C) in the transcriptional regulator Icsbp1/IRF-8. In trans activation assays using an IL-12p40 gene reporter construct introduced in RAW 264.7 mouse macrophages, we show that the Icsbp1(C294) isoform behaves as a partial loss-of-function. The Icsbp1(C294) hypomorph allele appears to have a threshold effect on IL-12 production, with pleiotropic consequences on resistance to different types of infections in vivo. Despite the presence of a resistance Nramp1(G169) allele, BXH-2 mice (Icsbp1(C294)) show impaired control of Mycobacterium bovis (bacille Calmette-Guérin) multiplication both early and late during infection, with uncontrolled replication linked to inability to form granulomas in infected liver and spleen. Studies in informative (BXH-2 x BALB/cJ)F(2) mice show that homozygosity for Icsbp1(C294) causes susceptibility to Salmonella enterica serovar Typhimurium to a level comparable to that seen for mice lacking functional Nramp1 or TLR4. Finally, impaired Icsbp1(C294) function is associated with the following: 1) increased replication of the Plasmodium chabaudi AS malarial parasite during the first burst of blood parasitemia, and 2) recurring waves of high blood parasitemia late during infection. These results show that Icsbp1 is required for orchestrating early innate responses and also long-term immune protection against unrelated intracellular pathogens.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Cation Transport Proteins/genetics
- Cation Transport Proteins/immunology
- Cell Line
- Genes, Recessive
- Immunity, Innate/genetics
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/immunology
- Interleukin-12 Subunit p40/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Macrophages/immunology
- Macrophages/microbiology
- Macrophages/parasitology
- Malaria/genetics
- Malaria/immunology
- Malaria/veterinary
- Mice
- Mice, Inbred BALB C
- Mice, Mutant Strains
- Mutation, Missense
- Mycobacterium bovis/immunology
- Parasitemia/genetics
- Parasitemia/immunology
- Plasmodium chabaudi/immunology
- Salmonella Infections/genetics
- Salmonella Infections/immunology
- Salmonella typhimurium/immunology
- Syndrome
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/immunology
- Tuberculosis/genetics
- Tuberculosis/immunology
- Tuberculosis/veterinary
Collapse
Affiliation(s)
- Karine Turcotte
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Niño-Moreno P, Portales-Pérez D, Hernández-Castro B, Portales-Cervantes L, Flores-Meraz V, Baranda L, Gómez-Gómez A, Acuña-Alonzo V, Granados J, González-Amaro R. P2X7 and NRAMP1/SLC11 A1 gene polymorphisms in Mexican mestizo patients with pulmonary tuberculosis. Clin Exp Immunol 2007; 148:469-77. [PMID: 17493019 PMCID: PMC1941940 DOI: 10.1111/j.1365-2249.2007.03359.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Tuberculosis remains one of the most important infectious diseases worldwide. Several studies have suggested that genetic factors may affect susceptibility to tuberculosis, but the specific genes involved have not yet been fully characterized. NRAMP1/SLC11 A1 and P2X(7) genes have been linked to increased risk for tuberculosis in some African and Asiatic populations. To explore the potential role of these genes in the susceptibility to pulmonary tuberculosis in a Mexican mestizo population, we evaluated the association of D543N and 3'-UTR polymorphisms in NRAMP1/SLC11 A1 and - 762 and A1513C polymorphisms in P2X(7) genes with the risk for tuberculosis. Polymerase chain reaction (PCR) amplification of genomic DNA followed by restriction fragment length polymorphism analysis, and allelic-specific PCR was employed. We found no significant differences in allelic frequency in NRAMP1/SLC11 A1 gene polymorphisms in 94 patients with tuberculosis compared to 100 healthy contacts. Similarly, no significant association of the P2X(7)-762 gene polymorphism with tuberculosis was detected. In contrast, the P2X(7) A1513C polymorphism was associated significantly with tuberculosis (P = 0.02, odds ratio = 5.28, 95% CI, 0.99-37.69), an association that had not been reported previously. However, when the function of P2X(7) was assessed by an L-selectin loss assay, we did not find significant differences in patients compared to healthy contacts or between PPD(+) and PPD(-) control individuals. This study further supports the complex role of P2X(7) gene in host regulation of Mycobacterium tuberculosis infection, and demonstrates that different associations of gene polymorphisms and tuberculosis are found in distinct racial populations.
Collapse
Affiliation(s)
- P Niño-Moreno
- Dpto de Inmunología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Huang W, Horvath E, Eklund EA. PU.1, Interferon Regulatory Factor (IRF) 2, and the Interferon Consensus Sequence-binding Protein (ICSBP/IRF8) Cooperate to Activate NF1 Transcription in Differentiating Myeloid Cells. J Biol Chem 2007; 282:6629-43. [PMID: 17200120 DOI: 10.1074/jbc.m607760200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nf1 (neurofibromin 1) is a Ras-GAP protein that regulates cytokine-induced proliferation of myeloid cells. In previous studies, we found that the interferon consensus sequence-binding protein (ICSBP; also referred to as interferon regulatory factor 8) activates transcription of the gene encoding Nf1 (the NF1 gene) in differentiating myeloid cells. We also found that NF1 activation requires cytokine-stimulated phosphorylation of a conserved tyrosine residue in the interferon regulatory factor (IRF) domain of ICSBP/IRF8. In this study, we found that ICSBP/IRF8 cooperates with PU.1 and interferon regulatory factor 2 to activate a composite ets/IRF-cis element in the NF1 promoter. We found that PU.1 binds directly to the NF1-cis element, and DNA-bound PU.1 interacts with IRF2, recruiting IRF2 to the cis element. This interaction requires cytokine-induced phosphorylation of specific serine residues in the PU.1 PEST domain and of a conserved tyrosine residue in the IRF domain of IRF2. We found that ICSBP/IRF8 interaction with the NF1-cis element requires pre-binding of PU.1 and IRF2. The conserved IRF domain tyrosine in ICSBP/IRF8 is required for interaction with the DNA-bound PU.1-IRF2 heterodimer. NF1 deficiency in myeloid progenitor cells results in cytokine hypersensitivity and myeloproliferation. Therefore, these studies identify a target gene for the previously observed tumor-suppressor effect of PU.1. Additionally, these studies identify a tumor-suppressor function for the "oncogenic" transcription factor, IRF2.
Collapse
Affiliation(s)
- Weiqi Huang
- The Feinberg School of Medicine and The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
23
|
Capparelli R, Alfano F, Amoroso MG, Borriello G, Fenizia D, Bianco A, Roperto S, Roperto F, Iannelli D. Protective effect of the Nramp1 BB genotype against Brucella abortus in the water buffalo (Bubalus bubalis). Infect Immun 2007; 75:988-96. [PMID: 17145946 PMCID: PMC1828489 DOI: 10.1128/iai.00948-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 08/09/2006] [Accepted: 11/20/2006] [Indexed: 01/18/2023] Open
Abstract
We tested 413 water buffalo cows (142 cases and 271 controls) for the presence of anti-Brucella abortus antibodies (by the skin test, the agglutination test, and the complement fixation test) and the Nramp1 genotype (by capillary electrophoresis). Four alleles (Nramp1A, -B, -C, and -D) were detected in the 3' untranslated region of the Nramp1 gene. The BB genotype was represented among only controls, providing evidence that this genotype confers resistance to Brucella abortus. The monocytes from the BB (resistant) subjects displayed a higher basal level of Nramp1 mRNA and a lower number of viable intracellular bacteria than did the monocytes from AA (susceptible) subjects. The higher basal level of the antibacterial protein Nramp1 most probably provides the BB animals with the possibility of controlling bacteria immediately after their entry inside the cell.
Collapse
Affiliation(s)
- Rosanna Capparelli
- Faculty of Biotechnological Sciences, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dror N, Rave-Harel N, Burchert A, Azriel A, Tamura T, Tailor P, Neubauer A, Ozato K, Levi BZ. Interferon regulatory factor-8 is indispensable for the expression of promyelocytic leukemia and the formation of nuclear bodies in myeloid cells. J Biol Chem 2006; 282:5633-40. [PMID: 17189268 DOI: 10.1074/jbc.m607825200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Interferon (IFN) regulatory factor-8 (IRF-8), previously known as ICSBP, is a myeloid cell essential transcription factor. Mice with null mutation in IRF-8 are defective in the ability of myeloid progenitor cells to mature toward macrophage lineage. Accordingly, these mice develop chronic myelogenous leukemia (CML). We demonstrate here that IRF-8 is an obligatory regulator of the promyelocytic leukemia (PML) gene in activated macrophages, leading to the expression of the PML-I isoform. This regulation is most effective together with two other transcription factors, IRF-1 and PU.1. PML is a tumor suppressor gene that serves as a scaffold protein for nuclear bodies. IRF-8 is not only essential for the IFN-gamma-induced expression of PML in activated macrophages but also for the formation of nuclear bodies. Reduced IRF-8 transcript levels were reported in CML patients, and a recovery to normal levels was observed in patients in remission following treatment with IFN-alpha. We demonstrate a significant correlation between the levels of IRF-8 and PML in these CML patients. Together, our results indicate that some of the myeloleukemia suppressor activities of IRF-8 are mediated through the regulation of PML. When IRF-8 levels are compromised, the reduced PML expression may lead to genome instability and eventually to the leukemic phenotype.
Collapse
MESH Headings
- Animals
- Female
- Gene Expression Regulation, Leukemic/genetics
- Genomic Instability/genetics
- Humans
- Interferon Regulatory Factor-1/genetics
- Interferon Regulatory Factor-1/metabolism
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/metabolism
- Intranuclear Inclusion Bodies/genetics
- Intranuclear Inclusion Bodies/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice
- Mice, Mutant Strains
- Myeloid Progenitor Cells/metabolism
- Myeloid Progenitor Cells/pathology
- NIH 3T3 Cells
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Nuclear Proteins/biosynthesis
- Nuclear Proteins/genetics
- Promyelocytic Leukemia Protein
- Protein Isoforms
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Tumor Suppressor Proteins/biosynthesis
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
- Natalie Dror
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sechi LA, Gazouli M, Sieswerda LE, Molicotti P, Ahmed N, Ikonomopoulos J, Scanu AM, Paccagnini D, Zanetti S. Relationship between Crohn’s disease, infection with Mycobacterium avium subspecies paratuberculosis and SLC11A1 gene polymorphisms in Sardinian patients. World J Gastroenterol 2006; 12:7161-4. [PMID: 17131479 PMCID: PMC4087778 DOI: 10.3748/wjg.v12.i44.7161] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the association between Crohn’s disease (CD), Mycobacterium avium subspecies paratuberculosis (MAP), and genetic factors by examining the role of natural resistance-associated macrophage protein 1 (NRAMP1) gene polymorphisms (now SLC11A1) in Sardinian patients with CD and controls.
METHODS: Thirty-seven CD patients and 34 controls with no inflammatory bowel disease (IBD) were recruited at the University of Sassari after giving written consent. Six SCL11A1 polymorphisms previously reported to be the most significantly associated with IBD were searched. M. paratuberculosis was identified by IS900 PCR and sequencing. Logistic regression was used to calculate odds ratios (OR) for the associations among CD, presence of MAP, and 6 loci described above.
RESULTS: For the first time, a strong association was observed between polymorphisms at NRAMP1 locus 823C/T and CD. While CD was strongly associated with both NRAMP1 and MAP, NRAMP1 polymorphisms and MAP themselves were not correlated.
CONCLUSION: Combined with previous work on the NOD2/CARD15 gene, it is clear that the interplay of genetic, infectious, and immunologic factors in the etiology of CD is complex.
Collapse
Affiliation(s)
- Leonardo-A Sechi
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia Sperimentale e Clinica, Università degli studi di Sassari, Viale S. Pietro 43/B, 07100 Sassari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dror N, Alter-Koltunoff M, Azriel A, Amariglio N, Jacob-Hirsch J, Zeligson S, Morgenstern A, Tamura T, Hauser H, Rechavi G, Ozato K, Levi BZ. Identification of IRF-8 and IRF-1 target genes in activated macrophages. Mol Immunol 2006; 44:338-46. [PMID: 16597464 DOI: 10.1016/j.molimm.2006.02.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 02/26/2006] [Accepted: 02/26/2006] [Indexed: 12/12/2022]
Abstract
Interferon regulatory factor 1 (IRF-1) and IRF-8, also known as interferon consensus sequence binding protein (ICSBP), are important regulators of macrophage differentiation and function. These factors exert their activities through the formation of heterocomplexes. As such, they are coactivators of various interferon-inducible genes in macrophages. To gain better insights into the involvement of these two transcription factors in the onset of the innate immune response and to identify their regulatory network in activated macrophages, DNA microarray was employed. Changes in the expression profile were analyzed in peritoneal macrophages from wild type mice and compared to IRF-1 and IRF-8 null mice, before and following 4 h exposure to IFN-gamma and LPS. The expression pattern of 265 genes was significantly changed (up/down) in peritoneal macrophages extracted from wild type mice following treatment with IFN-gamma and LPS, while no changes in the expression levels of these genes were observed in samples of the same cell-type from both IRF-1 and IRF-8 null mice. Among these putative target genes, numerous genes are involved in macrophage activity during inflammation. The expression profile of 10 of them was further examined by quantitative RT-PCR. In addition, the promoter regions of three of the identified genes were analyzed by reporter gene assay for the ability to respond to IRF-1 and IRF-8. Together, our results suggest that both IRF-1 and IRF-8 are involved in the transcriptional regulation of these genes. We therefore suggest a broader role for IRF-1 and IRF-8 in macrophages differentiation and maturation, being important inflammatory mediators.
Collapse
Affiliation(s)
- Natalie Dror
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lee CH, Melchers M, Wang H, Torrey TA, Slota R, Qi CF, Kim JY, Lugar P, Kong HJ, Farrington L, van der Zouwen B, Zhou JX, Lougaris V, Lipsky PE, Grammer AC, Morse HC. Regulation of the germinal center gene program by interferon (IFN) regulatory factor 8/IFN consensus sequence-binding protein. J Exp Med 2006; 203:63-72. [PMID: 16380510 PMCID: PMC2118063 DOI: 10.1084/jem.20051450] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 11/21/2005] [Indexed: 12/24/2022] Open
Abstract
Interferon (IFN) consensus sequence-binding protein/IFN regulatory factor 8 (IRF8) is a transcription factor that regulates the differentiation and function of macrophages, granulocytes, and dendritic cells through activation or repression of target genes. Although IRF8 is also expressed in lymphocytes, its roles in B cell and T cell maturation or function are ill defined, and few transcriptional targets are known. Gene expression profiling of human tonsillar B cells and mouse B cell lymphomas showed that IRF8 transcripts were expressed at highest levels in centroblasts, either from secondary lymphoid tissue or transformed cells. In addition, staining for IRF8 was most intense in tonsillar germinal center (GC) dark-zone centroblasts. To discover B cell genes regulated by IRF8, we transfected purified primary tonsillar B cells with enhanced green fluorescent protein-tagged IRF8, generated small interfering RNA knockdowns of IRF8 expression in a mouse B cell lymphoma cell line, and examined the effects of a null mutation of IRF8 on B cells. Each approach identified activation-induced cytidine deaminase (AICDA) and BCL6 as targets of transcriptional activation. Chromatin immunoprecipitation studies demonstrated in vivo occupancy of 5' sequences of both genes by IRF8 protein. These results suggest previously unappreciated roles for IRF8 in the transcriptional regulation of B cell GC reactions that include direct regulation of AICDA and BCL6.
Collapse
Affiliation(s)
- Chang Hoon Lee
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Forbes J, Lam-Yuk-Tseung S, Gros P. Modulation of Iron Availability at the Host-Pathogen Interface in Phagocytic Cells. EcoSal Plus 2006; 2. [PMID: 26443573 DOI: 10.1128/ecosalplus.8.8.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Indexed: 06/05/2023]
Abstract
This review summarizes recent data on iron metabolism in macrophages, with a special emphasis on possible bacteriostatic and bactericidal consequences for intracellular pathogens. It includes the role of biological chelators and transporters in normal macrophage physiology and antimicrobial defense. Iron is an essential metal cofactor for many biochemical pathways in mammals. However, excess iron promotes the formation of cytotoxic oxygen derivatives so that systemic iron levels must be tightly regulated. The mechanism of iron recycling by macrophages including iron efflux from erythrocyte-containing phagosomes, iron release from macrophages, and entry into the transferrin (Tf) cycle remain poorly understood. Ferroportin expression in the liver, spleen, and bone marrow cells appears to be restricted to macrophages. Mutant mice bearing a conditional deletion of the ferroportin gene in macrophages show retention of iron by hepatic Kupffer cells and splenic macrophages. Hepcidin is induced by lipopolysaccharide (LPS) in mouse spleens and splenic macrophage in vitro and appears to mediate the LPS-induced down-regulation of ferroportin in the intestine and in splenic macrophages, suggesting that inflammatory agents may regulate iron metabolism through modulation of ferroportin expression. The host transporter Nramp1 may compete directly with bacterial divalent-metal transport systems for the acquisition of divalent metals within the phagosomal space. The ultimate outcome of these competing interactions influences the ability of pathogens to survive and replicate intracellularly. This seems particularly relevant to the Salmonella, Leishmania, and Mycobacterium spp., in which inactivating mutations in Nramp1 abrogate the natural resistance of macrophages to these pathogens.
Collapse
|
29
|
Lehtonen A, Veckman V, Nikula T, Lahesmaa R, Kinnunen L, Matikainen S, Julkunen I. Differential Expression of IFN Regulatory Factor 4 Gene in Human Monocyte-Derived Dendritic Cells and Macrophages. THE JOURNAL OF IMMUNOLOGY 2005; 175:6570-9. [PMID: 16272311 DOI: 10.4049/jimmunol.175.10.6570] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In vitro human monocyte differentiation to macrophages or dendritic cells (DCs) is driven by GM-CSF or GM-CSF and IL-4, respectively. IFN regulatory factors (IRFs), especially IRF1 and IRF8, are known to play essential roles in the development and functions of macrophages and DCs. In the present study, we performed cDNA microarray and Northern blot analyses to characterize changes in gene expression of selected genes during cytokine-stimulated differentiation of human monocytes to macrophages or DCs. The results show that the expression of IRF4 mRNA, but not of other IRFs, was specifically up-regulated during DC differentiation. No differences in IRF4 promoter histone acetylation could be found between macrophages and DCs, suggesting that the gene locus was accessible for transcription in both cell types. Computer analysis of the human IRF4 promoter revealed several putative STAT and NF-kappaB binding sites, as well as an IRF/Ets binding site. These sites were found to be functional in transcription factor-binding and chromatin immunoprecipitation experiments. Interestingly, Stat4 and NF-kappaB p50 and p65 mRNAs were expressed at higher levels in DCs as compared with macrophages, and enhanced binding of these factors to their respective IRF4 promoter elements was found in DCs. IRF4, together with PU.1, was also found to bind to the IRF/Ets response element in the IRF4 promoter, suggesting that IRF4 protein provides a positive feedback signal for its own gene expression in DCs. Our results suggest that IRF4 is likely to play an important role in myeloid DC differentiation and gene regulatory functions.
Collapse
Affiliation(s)
- Anne Lehtonen
- Department of Viral Diseases and Immunology, National Public Health Institute, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
30
|
Theurl I, Fritsche G, Ludwiczek S, Garimorth K, Bellmann-Weiler R, Weiss G. The Macrophage: A Cellular Factory at the Interphase Between Iron and Immunity for the Control of Infections. Biometals 2005; 18:359-67. [PMID: 16158228 DOI: 10.1007/s10534-005-3710-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Igor Theurl
- Department of General Internal Medicine, Clinical Immunology and Infectious Diseases Medical University, A-6020, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
31
|
Lapham AS, Phillips ES, Barton CH. Transcriptional control of Nramp1: a paradigm for the repressive action of c-Myc. Biochem Soc Trans 2005; 32:1084-6. [PMID: 15506972 DOI: 10.1042/bst0321084] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Slc11a1/Nramp1 (solute carrier family 11 member a1/murine natural resistance-associated macrophage protein 1 gene) encodes a divalent cation transporter that resides within lysosomes/late endosomes of macrophages. Nramp1 modulates the cellular distribution of divalent cations in response to cell activation by intracellular pathogens. Nramp1 expression is repressed and activated by the proto-oncogene c-Myc and Miz-1 (c-Myc-interacting zinc finger protein 1) respectively. Here we demonstrate, using a c-Myc mutant (V394D, Val(394)-->Asp) that is incapable of binding Miz-1, that c-Myc repression of Nramp1 transcription is dependent on its interaction with Miz-1. An oligo pull-down assay demonstrates specific binding of recombinant Miz-1 to the Nramp1 Miz-1-binding site or initiator element(s), and Miz-1-dependent c-Myc recruitment.
Collapse
Affiliation(s)
- A S Lapham
- Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, U.K
| | | | | |
Collapse
|
32
|
Yeung IYL, Phillips E, Mann DA, Barton CH. Oxidant regulation of the bivalent cation transporter Nramp1. Biochem Soc Trans 2004; 32:1008-10. [PMID: 15506949 DOI: 10.1042/bst0321008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nramp1 (murine natural resistance-associated macrophage protein 1 gene)/Slc11a1 (solute carrier family 11 member a1 gene) encodes a bivalent-metal/iron transporter that is expressed within late endosomes/lysosomes of macrophages. A functionally null Nramp1 allele that exhibits impaired bivalent cation transport enables excessive growth of intracellular pathogens. Iron is important for many cellular activities, including defence against pathogens; however, redox-active/free iron can participate in Fenton chemistry that generates reactive oxygen species. Using Raw264.7 cells, non-functional for Nramp1, and stable Nramp1 transfectants, we have examined the effects of impaired bivalent cation transport on macrophage function using glutathione depletion as OS (oxidant stress). Our results demonstrate that OS itself is a signal for increasing Nramp1 transcription and that Nramp1 expression protects against OS. We suggest that OS-mediated protection by Nramp1 function may arise from direct removal of redox-active bivalent cations from a cytosolic pool. We show that OS transcriptional responses are probably mediated by the Sp1 transcription factor.
Collapse
Affiliation(s)
- I Y L Yeung
- Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | | | |
Collapse
|