1
|
Artemyeva-Isman OV, Porter ACG. U5 snRNA Interactions With Exons Ensure Splicing Precision. Front Genet 2021; 12:676971. [PMID: 34276781 PMCID: PMC8283771 DOI: 10.3389/fgene.2021.676971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Imperfect conservation of human pre-mRNA splice sites is necessary to produce alternative isoforms. This flexibility is combined with the precision of the message reading frame. Apart from intron-termini GU_AG and the branchpoint A, the most conserved are the exon-end guanine and +5G of the intron start. Association between these guanines cannot be explained solely by base-pairing with U1 snRNA in the early spliceosome complex. U6 succeeds U1 and pairs +5G in the pre-catalytic spliceosome, while U5 binds the exon end. Current U5 snRNA reconstructions by CryoEM cannot explain the conservation of the exon-end G. Conversely, human mutation analyses show that guanines of both exon termini can suppress splicing mutations. Our U5 hypothesis explains the mechanism of splicing precision and the role of these conserved guanines in the pre-catalytic spliceosome. We propose: (1) optimal binding register for human exons and U5-the exon junction positioned at U5Loop1 C39|C38; (2) common mechanism for base-pairing of human U5 snRNA with diverse exons and bacterial Ll.LtrB intron with new loci in retrotransposition-guided by base pair geometry; and (3) U5 plays a significant role in specific exon recognition in the pre-catalytic spliceosome. Statistical analyses showed increased U5 Watson-Crick pairs with the 5'exon in the absence of +5G at the intron start. In 5'exon positions -3 and -5, this effect is specific to U5 snRNA rather than U1 snRNA of the early spliceosome. Increased U5 Watson-Crick pairs with 3'exon position +1 coincide with substitutions of the conserved -3C at the intron 3'end. Based on mutation and X-ray evidence, we propose that -3C pairs with U2 G31 juxtaposing the branchpoint and the 3'intron end. The intron-termini pair, formed in the pre-catalytic spliceosome to be ready for transition after branching, and the early involvement of the 3'intron end ensure that the 3'exon contacts U5 in the pre-catalytic complex. We suggest that splicing precision is safeguarded cooperatively by U5, U6, and U2 snRNAs that stabilize the pre-catalytic complex by Watson-Crick base pairing. In addition, our new U5 model explains the splicing effect of exon-start +1G mutations: U5 Watson-Crick pairs with exon +2C/+3G strongly promote exon inclusion. We discuss potential applications for snRNA therapeutics and gene repair by reverse splicing.
Collapse
Affiliation(s)
- Olga V Artemyeva-Isman
- Gene Targeting Group, Centre for Haematology, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Andrew C G Porter
- Gene Targeting Group, Centre for Haematology, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Hsiao HHT, Crichlow GV, Murphy JW, Folta-Stogniew EJ, Lolis EJ, Braddock DT. Unraveling the mechanism of recognition of the 3' splice site of the adenovirus major late promoter intron by the alternative splicing factor PUF60. PLoS One 2020; 15:e0242725. [PMID: 33253191 PMCID: PMC7703929 DOI: 10.1371/journal.pone.0242725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/06/2020] [Indexed: 11/18/2022] Open
Abstract
Pre-mRNA splicing is critical for achieving required amounts of a transcript at a given time and for regulating production of encoded protein. A given pre-mRNA may be spliced in many ways, or not at all, giving rise to multiple gene products. Numerous splicing factors are recruited to pre-mRNA splice sites to ensure proper splicing. One such factor, the 60 kDa poly(U)-binding splicing factor (PUF60), is recruited to sites that are not always spliced, but rather function as alternative splice sites. In this study, we characterized the interaction of PUF60 with a splice site from the adenovirus major late promoter (the AdML 3' splice site, AdML3’). We found that the PUF60–AdML3’ dissociation constants are in the micromolar range, with the binding affinity predominantly provided by PUF60’s two central RNA recognition motifs (RRMs). A 1.95 Å crystal structure of the two PUF60 RRMs in complex with AdML3’ revealed a dimeric organization placing two stretches of nucleic acid tracts in opposing directionalities, which can cause looping of nucleic acid and explain how PUF60 affects pre-mRNA geometry to effect splicing. Solution characterization of this complex by light-scattering and UV/Vis spectroscopy suggested a potential 2:1 (PUF602:AdML3’) stoichiometry, consistent with the crystal structure. This work defines the sequence specificity of the alternative splicing factor PUF60 at the pre-mRNA 3’ splice site. Our observations suggest that control of pre-mRNA directionality is important in the early stage of spliceosome assembly, and advance our understanding of the molecular mechanism by which alternative and constitutive splicing factors differentiate among 3’ splice sites.
Collapse
Affiliation(s)
- Hsin-hao T. Hsiao
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Gregg V. Crichlow
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - James W. Murphy
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ewa J. Folta-Stogniew
- W.M. Keck Biotechnology Research Laboratory, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Elias J. Lolis
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Demetrios T. Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
3
|
RNA recognition motifs of disease-linked RNA-binding proteins contribute to amyloid formation. Sci Rep 2019; 9:6171. [PMID: 30992467 PMCID: PMC6467989 DOI: 10.1038/s41598-019-42367-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Aberrant expression, dysfunction and particularly aggregation of a group of RNA-binding proteins, including TDP-43, FUS and RBM45, are associated with neurological disorders. These three disease-linked RNA-binding proteins all contain at least one RNA recognition motif (RRM). However, it is not clear if these RRMs contribute to their aggregation-prone character. Here, we compare the biophysical and fibril formation properties of five RRMs from disease-linked RNA-binding proteins and five RRMs from non-disease-associated proteins to determine if disease-linked RRMs share specific features making them prone to self-assembly. We found that most of the disease-linked RRMs exhibit reversible thermal unfolding and refolding, and have a slightly lower average thermal melting point compared to that of normal RRMs. The full domain of TDP-43 RRM1 and FUS RRM, as well as the β-peptides from these two RRMs, could self-assemble into fibril-like aggregates which are amyloids of parallel β-sheets as verified by X-ray diffraction and FT-IR spectroscopy. Our results suggest that some disease-linked RRMs indeed play important roles in amyloid formation and shed light on why RNA-binding proteins with RRMs are frequently identified in the cellular inclusions of neurodegenerative diseases.
Collapse
|
4
|
Chen L, Weinmeister R, Kralovicova J, Eperon LP, Vorechovsky I, Hudson AJ, Eperon IC. Stoichiometries of U2AF35, U2AF65 and U2 snRNP reveal new early spliceosome assembly pathways. Nucleic Acids Res 2017; 45:2051-2067. [PMID: 27683217 PMCID: PMC5389562 DOI: 10.1093/nar/gkw860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/16/2016] [Indexed: 12/24/2022] Open
Abstract
The selection of 3΄ splice sites (3΄ss) is an essential early step in mammalian RNA splicing reactions, but the processes involved are unknown. We have used single molecule methods to test whether the major components implicated in selection, the proteins U2AF35 and U2AF65 and the U2 snRNP, are able to recognize alternative candidate sites or are restricted to one pre-specified site. In the presence of adenosine triphosphate (ATP), all three components bind in a 1:1 stoichiometry with a 3΄ss. Pre-mRNA molecules with two alternative 3΄ss can be bound concurrently by two molecules of U2AF or two U2 snRNPs, so none of the components are restricted. However, concurrent occupancy inhibits splicing. Stoichiometric binding requires conditions consistent with coalescence of the 5΄ and 3΄ sites in a complex (I, initial), but if this cannot form the components show unrestricted and stochastic association. In the absence of ATP, when complex E forms, U2 snRNP association is unrestricted. However, if protein dephosphorylation is prevented, an I-like complex forms with stoichiometric association of U2 snRNPs and the U2 snRNA is base-paired to the pre-mRNA. Complex I differs from complex A in that the formation of complex A is associated with the loss of U2AF65 and 35.
Collapse
Affiliation(s)
- Li Chen
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| | - Robert Weinmeister
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| | - Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Lucy P Eperon
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Andrew J Hudson
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Chemistry, Leicester LE1 7RH, UK
| | - Ian C Eperon
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| |
Collapse
|
5
|
Jenkins JL, Kielkopf CL. Splicing Factor Mutations in Myelodysplasias: Insights from Spliceosome Structures. Trends Genet 2017; 33:336-348. [PMID: 28372848 PMCID: PMC5447463 DOI: 10.1016/j.tig.2017.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 01/08/2023]
Abstract
Somatic mutations of pre-mRNA splicing factors recur among patients with myelodysplastic syndrome (MDS) and related malignancies. Although these MDS-relevant mutations alter the splicing of a subset of transcripts, the mechanisms by which these single amino acid substitutions change gene expression remain controversial. New structures of spliceosome intermediates and associated protein complexes shed light on the molecular interactions mediated by 'hotspots' of the SF3B1 and U2AF1 pre-mRNA splicing factors. The frequently mutated SF3B1 residues contact the pre-mRNA splice site. Based on structural homology with other spliceosome subunits, and recent findings of altered RNA binding by mutant U2AF1 proteins, we suggest that affected U2AF1 residues also contact pre-mRNA. Altered pre-mRNA recognition emerges as a molecular theme among MDS-relevant mutations of pre-mRNA splicing factors.
Collapse
Affiliation(s)
- Jermaine L Jenkins
- Center for RNA Biology and Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Clara L Kielkopf
- Center for RNA Biology and Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
6
|
Chen CK, Blanco M, Jackson C, Aznauryan E, Ollikainen N, Surka C, Chow A, Cerase A, McDonel P, Guttman M. Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing. Science 2016; 354:468-472. [PMID: 27492478 DOI: 10.1126/science.aae0047] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 07/25/2016] [Indexed: 12/12/2022]
Abstract
The Xist long noncoding RNA orchestrates X chromosome inactivation, a process that entails chromosome-wide silencing and remodeling of the three-dimensional (3D) structure of the X chromosome. Yet, it remains unclear whether these changes in nuclear structure are mediated by Xist and whether they are required for silencing. Here, we show that Xist directly interacts with the Lamin B receptor, an integral component of the nuclear lamina, and that this interaction is required for Xist-mediated silencing by recruiting the inactive X to the nuclear lamina and by doing so enables Xist to spread to actively transcribed genes across the X. Our results demonstrate that lamina recruitment changes the 3D structure of DNA, enabling Xist and its silencing proteins to spread across the X to silence transcription.
Collapse
Affiliation(s)
- Chun-Kan Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mario Blanco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Constanza Jackson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Erik Aznauryan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Noah Ollikainen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christine Surka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Amy Chow
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrea Cerase
- European Molecular Biology Laboratory-Monterotondo, Via Ramarini 32, 00015 Monterotondo (RM), Italy
| | - Patrick McDonel
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
7
|
Stepanyuk GA, Serrano P, Peralta E, Farr CL, Axelrod HL, Geralt M, Das D, Chiu HJ, Jaroszewski L, Deacon AM, Lesley SA, Elsliger MA, Godzik A, Wilson IA, Wüthrich K, Salomon DR, Williamson JR. UHM-ULM interactions in the RBM39-U2AF65 splicing-factor complex. Acta Crystallogr D Struct Biol 2016; 72:497-511. [PMID: 27050129 PMCID: PMC4822562 DOI: 10.1107/s2059798316001248] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 01/19/2016] [Indexed: 01/14/2023] Open
Abstract
RNA-binding protein 39 (RBM39) is a splicing factor and a transcriptional co-activator of estrogen receptors and Jun/AP-1, and its function has been associated with malignant progression in a number of cancers. The C-terminal RRM domain of RBM39 belongs to the U2AF homology motif family (UHM), which mediate protein-protein interactions through a short tryptophan-containing peptide known as the UHM-ligand motif (ULM). Here, crystal and solution NMR structures of the RBM39-UHM domain, and the crystal structure of its complex with U2AF65-ULM, are reported. The RBM39-U2AF65 interaction was confirmed by co-immunoprecipitation from human cell extracts, by isothermal titration calorimetry and by NMR chemical shift perturbation experiments with the purified proteins. When compared with related complexes, such as U2AF35-U2AF65 and RBM39-SF3b155, the RBM39-UHM-U2AF65-ULM complex reveals both common and discriminating recognition elements in the UHM-ULM binding interface, providing a rationale for the known specificity of UHM-ULM interactions. This study therefore establishes a structural basis for specific UHM-ULM interactions by splicing factors such as U2AF35, U2AF65, RBM39 and SF3b155, and a platform for continued studies of intermolecular interactions governing disease-related alternative splicing in eukaryotic cells.
Collapse
Affiliation(s)
- Galina A. Stepanyuk
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pedro Serrano
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Joint Center for Structural Genomics, http://www.jcsg.org
| | - Eigen Peralta
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Carol L. Farr
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Joint Center for Structural Genomics, http://www.jcsg.org
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Herbert L. Axelrod
- Joint Center for Structural Genomics, http://www.jcsg.org
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Michael Geralt
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Joint Center for Structural Genomics, http://www.jcsg.org
| | - Debanu Das
- Joint Center for Structural Genomics, http://www.jcsg.org
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Hsiu-Ju Chiu
- Joint Center for Structural Genomics, http://www.jcsg.org
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Lukasz Jaroszewski
- Joint Center for Structural Genomics, http://www.jcsg.org
- Program on Bioinformatics and Systems Biology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA 92093-0446, USA
| | - Ashley M. Deacon
- Joint Center for Structural Genomics, http://www.jcsg.org
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Scott A. Lesley
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Joint Center for Structural Genomics, http://www.jcsg.org
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Marc-André Elsliger
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Joint Center for Structural Genomics, http://www.jcsg.org
| | - Adam Godzik
- Joint Center for Structural Genomics, http://www.jcsg.org
- Program on Bioinformatics and Systems Biology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA 92093-0446, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Joint Center for Structural Genomics, http://www.jcsg.org
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kurt Wüthrich
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Joint Center for Structural Genomics, http://www.jcsg.org
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel R. Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James R. Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
8
|
An extended U2AF(65)-RNA-binding domain recognizes the 3' splice site signal. Nat Commun 2016; 7:10950. [PMID: 26952537 PMCID: PMC4786784 DOI: 10.1038/ncomms10950] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 02/03/2016] [Indexed: 12/12/2022] Open
Abstract
How the essential pre-mRNA splicing factor U2AF65 recognizes the polypyrimidine (Py) signals of the major class of 3′ splice sites in human gene transcripts remains incompletely understood. We determined four structures of an extended U2AF65–RNA-binding domain bound to Py-tract oligonucleotides at resolutions between 2.0 and 1.5 Å. These structures together with RNA binding and splicing assays reveal unforeseen roles for U2AF65 inter-domain residues in recognizing a contiguous, nine-nucleotide Py tract. The U2AF65 linker residues between the dual RNA recognition motifs (RRMs) recognize the central nucleotide, whereas the N- and C-terminal RRM extensions recognize the 3′ terminus and third nucleotide. Single-molecule FRET experiments suggest that conformational selection and induced fit of the U2AF65 RRMs are complementary mechanisms for Py-tract association. Altogether, these results advance the mechanistic understanding of molecular recognition for a major class of splice site signals. The pre-mRNA splicing factor U2AF65 recognizes 3′ splice sites in human gene transcripts, but the details are not fully understood. Here, the authors report U2AF65 structures and single molecule FRET that reveal mechanistic insights into splice site recognition.
Collapse
|
9
|
Wang W, Maucuer A, Gupta A, Manceau V, Thickman KR, Bauer WJ, Kennedy SD, Wedekind JE, Green MR, Kielkopf CL. Structure of phosphorylated SF1 bound to U2AF⁶⁵ in an essential splicing factor complex. Structure 2012; 21:197-208. [PMID: 23273425 DOI: 10.1016/j.str.2012.10.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/26/2012] [Accepted: 10/26/2012] [Indexed: 11/15/2022]
Abstract
The essential splicing factors U2AF⁶⁵ and SF1 cooperatively bind consensus sequences at the 3' end of introns. Phosphorylation of SF1 on a highly conserved "SPSP" motif enhances its interaction with U2AF⁶⁵ and the pre-mRNA. Here, we reveal that phosphorylation induces essential conformational changes in SF1 and in the SF1/U2AF⁶⁵/3' splice site complex. Crystal structures of the phosphorylated (P)SF1 domain bound to the C-terminal domain of U2AF⁶⁵ at 2.29 Å resolution and of the unphosphorylated SF1 domain at 2.48 Å resolution demonstrate that phosphorylation induces a disorder-to-order transition within a previously unknown SF1/U2AF⁶⁵ interface. We find by small-angle X-ray scattering that the local folding of the SPSP motif transduces into global conformational changes in the nearly full-length (P)SF1/U2AF⁶⁵/3' splice site assembly. We further determine that SPSP phosphorylation and the SF1/U2AF⁶⁵ interface are essential in vivo. These results offer a structural prototype for phosphorylation-dependent control of pre-mRNA splicing factors.
Collapse
Affiliation(s)
- Wenhua Wang
- Center for RNA Biology and Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Manceau V, Kremmer E, Nabel EG, Maucuer A. The protein kinase KIS impacts gene expression during development and fear conditioning in adult mice. PLoS One 2012; 7:e43946. [PMID: 22937132 PMCID: PMC3427225 DOI: 10.1371/journal.pone.0043946] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/27/2012] [Indexed: 11/18/2022] Open
Abstract
The brain-enriched protein kinase KIS (product of the gene UHMK1) has been shown to phosphorylate the human splicing factor SF1 in vitro. This phosphorylation in turn favors the formation of a U2AF65-SF1-RNA complex which occurs at the 3′ end of introns at an early stage of spliceosome assembly. Here, we analyzed the effects of KIS knockout on mouse SF1 phosphorylation, physiology, adult behavior, and gene expression in the neonate brain. We found SF1 isoforms are differently expressed in KIS-ko mouse brains and fibroblasts. Re-expression of KIS in fibroblasts restores a wild type distribution of SF1 isoforms, confirming the link between KIS and SF1. Microarray analysis of transcripts in the neonate brain revealed a subtle down-regulation of brain specific genes including cys-loop ligand-gated ion channels and metabolic enzymes. Q-PCR analyses confirmed these defects and point to an increase of pre-mRNA over mRNA ratios, likely due to changes in splicing efficiency. While performing similarly in prepulse inhibition and most other behavioral tests, KIS-ko mice differ in spontaneous activity and contextual fear conditioning. This difference suggests that disregulation of gene expression due to KIS inactivation affects specific brain functions.
Collapse
Affiliation(s)
- Valérie Manceau
- INSERM, UMR-S 839, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Zentrum München, München, Germany
| | - Elizabeth G. Nabel
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alexandre Maucuer
- INSERM, UMR-S 839, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Institut du Fer à Moulin, Paris, France
- * E-mail:
| |
Collapse
|
11
|
Tavanez JP, Madl T, Kooshapur H, Sattler M, Valcárcel J. hnRNP A1 proofreads 3' splice site recognition by U2AF. Mol Cell 2012; 45:314-29. [PMID: 22325350 DOI: 10.1016/j.molcel.2011.11.033] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 08/01/2011] [Accepted: 11/23/2011] [Indexed: 01/03/2023]
Abstract
One of the earliest steps in metazoan pre-mRNA splicing involves binding of U2 snRNP auxiliary factor (U2AF) 65 KDa subunit to the polypyrimidine (Py) tract and of the 35 KDa subunit to the invariant AG dinucleotide at the intron 3' end. Here we use in vitro and in vivo depletion, as well as reconstitution assays using purified components, to identify hnRNP A1 as an RNA binding protein that allows U2AF to discriminate between pyrimidine-rich RNA sequences followed or not by a 3' splice site AG. Biochemical and NMR data indicate that hnRNP A1 forms a ternary complex with the U2AF heterodimer on AG-containing/uridine-rich RNAs, while it displaces U2AF from non-AG-containing/uridine-rich RNAs, an activity that requires the glycine-rich domain of hnRNP A1. Consistent with the functional relevance of this activity for splicing, proofreading assays reveal a role for hnRNP A1 in U2AF-mediated recruitment of U2 snRNP to the pre-mRNA.
Collapse
Affiliation(s)
- Joao Paulo Tavanez
- Centre de Regulació Genòmica, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
12
|
Taliaferro JM, Alvarez N, Green RE, Blanchette M, Rio DC. Evolution of a tissue-specific splicing network. Genes Dev 2011; 25:608-20. [PMID: 21406555 DOI: 10.1101/gad.2009011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alternative splicing of precursor mRNA (pre-mRNA) is a strategy employed by most eukaryotes to increase transcript and proteomic diversity. Many metazoan splicing factors are members of multigene families, with each member having different functions. How these highly related proteins evolve unique properties has been unclear. Here we characterize the evolution and function of a new Drosophila splicing factor, termed LS2 (Large Subunit 2), that arose from a gene duplication event of dU2AF(50), the large subunit of the highly conserved heterodimeric general splicing factor U2AF (U2-associated factor). The quickly evolving LS2 gene has diverged from the splicing-promoting, ubiquitously expressed dU2AF(50) such that it binds a markedly different RNA sequence, acts as a splicing repressor, and is preferentially expressed in testes. Target transcripts of LS2 are also enriched for performing testes-related functions. We therefore propose a path for the evolution of a new splicing factor in Drosophila that regulates specific pre-mRNAs and contributes to transcript diversity in a tissue-specific manner.
Collapse
Affiliation(s)
- J Matthew Taliaferro
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
13
|
Corrionero A, Miñana B, Valcárcel J. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev 2011; 25:445-59. [PMID: 21363963 DOI: 10.1101/gad.2014311] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spliceostatin A (SSA) is a stabilized derivative of a Pseudomonas bacterial fermentation product that displays potent anti-proliferative and anti-tumor activities in cancer cells and animal models. The drug inhibits pre-mRNA splicing in vitro and in vivo and binds SF3b, a protein subcomplex of U2 small nuclear ribonucleoprotein (snRNP), which is essential for recognition of the pre-mRNA branch point. We report that SSA prevents interaction of an SF3b 155-kDa subunit with the pre-mRNA, concomitant with nonproductive recruitment of U2 snRNP to sequences 5' of the branch point. Differences in base-pairing potential with U2 snRNA in this region lead to different sensitivity of 3' splice sites to SSA, and to SSA-induced changes in alternative splicing. Indeed, rather than general splicing inhibition, splicing-sensitive microarray analyses reveal specific alternative splicing changes induced by the drug that significantly overlap with those induced by knockdown of SF3b 155. These changes lead to down-regulation of genes important for cell division, including cyclin A2 and Aurora A kinase, thus providing an explanation for the anti-proliferative effects of SSA. Our results reveal a mechanism that prevents nonproductive base-pairing interactions in the spliceosome, and highlight the regulatory and cancer therapeutic potential of perturbing the fidelity of splice site recognition.
Collapse
|
14
|
Corrionero A, Raker VA, Izquierdo JM, Valcárcel J. Strict 3' splice site sequence requirements for U2 snRNP recruitment after U2AF binding underlie a genetic defect leading to autoimmune disease. RNA (NEW YORK, N.Y.) 2011; 17:401-411. [PMID: 21233219 PMCID: PMC3039140 DOI: 10.1261/rna.2444811] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/10/2010] [Indexed: 05/30/2023]
Abstract
We report that the 3' splice site associated with the alternatively spliced exon 6 of the Fas receptor CD95 displays strict sequence requirements and that a mutation that disrupts this particular sequence arrangement leads to constitutive exon 6 skipping in a patient suffering from autoimmune lymphoproliferative syndrome (ALPS). Specifically, we find an absolute requirement for RCAG/G at the 3' splice site (where R represents purine, and / indicates the intron/exon boundary) and the balance between exon inclusion and skipping is exquisitely sensitive to single nucleotide variations in the uridine content of the upstream polypyrimidine (Py)-tract. Biochemical experiments revealed that the ALPS patient mutation reduces U2 snRNP recruitment to the 3' splice site region and that this effect cannot be explained by decreased interaction with the U2 snRNP Auxiliary Factor U2AF, whose 65- and 35-kDa subunits recognize the Py-tract and 3' splice site AG, respectively. The effect of the mutation, which generates a tandem of two consecutive AG dinucleotides at the 3' splice site, can be suppressed by increasing the distance between the AGs, mutating the natural 3' splice site AG or increasing the uridine content of the Py-tract at a position distal from the 3' splice site. The suppressive effects of these additional mutations correlate with increased recruitment of U2 snRNP but not with U2AF binding, again suggesting that the strict architecture of Fas intron 5 3' splice site region is tuned to regulate alternative exon inclusion through modulation of U2 snRNP assembly after U2AF binding.
Collapse
|
15
|
Gupta A, Jenkins JL, Kielkopf CL. RNA induces conformational changes in the SF1/U2AF65 splicing factor complex. J Mol Biol 2011; 405:1128-38. [PMID: 21146534 PMCID: PMC3037027 DOI: 10.1016/j.jmb.2010.11.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/02/2010] [Accepted: 11/27/2010] [Indexed: 10/18/2022]
Abstract
Spliceosomes assemble on pre-mRNA splice sites through a series of dynamic ribonucleoprotein complexes, yet the nature of the conformational changes remains unclear. Splicing factor 1 (SF1) and U2 auxiliary factor (U2AF(65)) cooperatively recognize the 3' splice site during the initial stages of pre-mRNA splicing. Here, we used small-angle X-ray scattering to compare the molecular dimensions and ab initio shape restorations of SF1 and U2AF(65) splicing factors, as well as the SF1/U2AF(65) complex in the absence and presence of AdML (adenovirus major late) splice site RNAs. The molecular dimensions of the SF1/U2AF(65)/RNA complex substantially contracted by 15 Å in the maximum dimension, relative to the SF1/U2AF(65) complex in the absence of RNA ligand. In contrast, no detectable changes were observed for the isolated SF1 and U2AF(65) splicing factors or their individual complexes with RNA, although slight differences in the shapes of their molecular envelopes were apparent. We propose that the conformational changes that are induced by assembly of the SF1/U2AF(65)/RNA complex serve to position the pre-mRNA splice site optimally for subsequent stages of splicing.
Collapse
Affiliation(s)
- Ankit Gupta
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | |
Collapse
|
16
|
Grillari J, Löscher M, Denegri M, Lee K, Fortschegger K, Eisenhaber F, Ajuh P, Lamond AI, Katinger H, Grillari-Voglauer R. Blom7alpha is a novel heterogeneous nuclear ribonucleoprotein K homology domain protein involved in pre-mRNA splicing that interacts with SNEVPrp19-Pso4. J Biol Chem 2009; 284:29193-204. [PMID: 19641227 PMCID: PMC2781463 DOI: 10.1074/jbc.m109.036632] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 07/28/2009] [Indexed: 02/05/2023] Open
Abstract
The removal of introns from pre-mRNA is performed by the spliceosome that stepwise assembles on the pre-mRNA before performing two catalytic steps. The spliceosome-associated CDC5L-SNEV(Prp19-Pso4) complex is implicated in activation of the second catalytic step of pre-mRNA splicing, and one of its members, SNEV(Prp19-Pso4), is also implicated in spliceosome assembly. To identify interaction partners of SNEVPrp19-Pso4, we have performed yeast two-hybrid screenings. Among the putative binding partners was a so far uncharacterized protein carrying two heterogeneous nuclear ribonucleoprotein K homology domains that we termed Blom7alpha. Blom7alpha is expressed in all tissues tested, and at least three splice variants exist. After confirming direct and physical interaction of SNEV and Blom7alpha, we investigated if it plays a functional role during pre-mRNA splicing. Indeed, Blom7alpha co-localizes and co-precipitates with splicing factors and pre-mRNA and is present in affinity-purified spliceosomes. More importantly, addition of Blom7alpha to HeLa nuclear extracts increased splicing activity in a dose-dependent manner. Furthermore, we tested if Blom7alpha influences splice site selection using two different minigene constructs. Indeed, both 5'- as well as 3'-site selection was altered upon Blom7alpha overexpression. Thus we suggest that Blom7alpha is a novel splicing factor of the K homology domain family that might be implicated in alternative splicing by helping to position the CDC5L-SNEV(Prp19-Pso4) complex at the splice sites.
Collapse
Affiliation(s)
- Johannes Grillari
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Vienna A-1190, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ritchie DB, Schellenberg MJ, MacMillan AM. Spliceosome structure: piece by piece. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:624-33. [PMID: 19733268 DOI: 10.1016/j.bbagrm.2009.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/22/2009] [Accepted: 08/27/2009] [Indexed: 10/20/2022]
Abstract
Processing of pre-mRNAs by RNA splicing is an essential step in the maturation of protein coding RNAs in eukaryotes. Structural studies of the cellular splicing machinery, the spliceosome, are a major challenge in structural biology due to the size and complexity of the splicing ensemble. Specifically, the structural details of splice site recognition and the architecture of the spliceosome active site are poorly understood. X-ray and NMR techniques have been successfully used to address these questions defining the structure of individual domains, isolated splicing proteins, spliceosomal RNA fragments and recently the U1 snRNP multiprotein.RNA complex. These results combined with extant biochemical and genetic data have yielded important insights as well as posing fresh questions with respect to the regulation and mechanism of this critical gene regulatory process.
Collapse
Affiliation(s)
- Dustin B Ritchie
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | |
Collapse
|
18
|
Jenkins JL, Shen H, Green MR, Kielkopf CL. Solution conformation and thermodynamic characteristics of RNA binding by the splicing factor U2AF65. J Biol Chem 2008; 283:33641-9. [PMID: 18842594 DOI: 10.1074/jbc.m806297200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The U2 auxiliary factor large subunit (U2AF65) is an essential pre-mRNA splicing factor for the initial stages of spliceosome assembly. Tandem RNA recognition motifs (RRM)s of U2AF65 recognize polypyrimidine tract signals adjacent to 3' splice sites. Despite the central importance of U2AF65 for splice site recognition, the relative arrangement of the U2AF65 RRMs and the energetic forces driving polypyrimidine tract recognition remain unknown. Here, the solution conformation of the U2AF65 RNA binding domain determined using small angle x-ray scattering reveals a bilobal shape without apparent interdomain contacts. The proximity of the N and C termini within the inter-RRM configuration is sufficient to explain the action of U2AF65 on spliceosome components located both 5' and 3' to its binding site. Isothermal titration calorimetry further demonstrates that an unusually large enthalpy-entropy compensation underlies U2AF65 recognition of an optimal polyuridine tract. Qualitative similarities were observed between the pairwise distance distribution functions of the U2AF65 RNA binding domain and those either previously observed for N-terminal RRMs of Py tract-binding protein that lack interdomain contacts or calculated from the high resolution coordinates of a U2AF65 deletion variant bound to RNA. To further test this model, the shapes and RNA interactions of the wild-type U2AF65 RNA binding domain were compared with those of U2AF65 variants containing either Py tract-binding protein linker sequences or a deletion within the inter-RRM linker. Results of these studies suggest inter-RRM conformational plasticity as a possible means for U2AF65 to universally identify diverse pre-mRNA splice sites.
Collapse
Affiliation(s)
- Jermaine L Jenkins
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
19
|
Kent OA, Macmillan AM. Proteins specifically modified with a chemical nuclease as probes of RNA-protein interaction. Methods Mol Biol 2008; 488:191-200. [PMID: 18982292 DOI: 10.1007/978-1-60327-475-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Oliver A Kent
- Department of Biochemistry, University of Alberta, Alberta, Canada
| | | |
Collapse
|
20
|
Dönmez G, Hartmuth K, Kastner B, Will CL, Lührmann R. The 5′ End of U2 snRNA Is in Close Proximity to U1 and Functional Sites of the Pre-mRNA in Early Spliceosomal Complexes. Mol Cell 2007; 25:399-411. [PMID: 17289587 DOI: 10.1016/j.molcel.2006.12.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 12/06/2006] [Accepted: 12/20/2006] [Indexed: 10/23/2022]
Abstract
Recognition and pairing of the correct 5' and 3' splice sites (ss) of a pre-mRNA are critical events that occur early during spliceosome assembly. Little is known about the spatial organization in early spliceosomal complexes of the U1 and U2 snRNPs, which together with several non-snRNP proteins, are involved in juxtapositioning the functional sites of the pre-mRNA. To better understand the molecular mechanisms of splice-site recognition/pairing, we have examined the organization of U2 relative to U1 and pre-mRNA in spliceosomal complexes via hydroxyl-radical probing with Fe-BABE-tethered U2 snRNA. These studies reveal that functional sites of the pre-mRNA are located close to the 5' end of U2 both in E and A complexes. U2 is also positioned close to U1 in a defined orientation already in the E complex, and their relative spatial organization remains largely unchanged during the E to A transition.
Collapse
Affiliation(s)
- Gizem Dönmez
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
21
|
Matlin AJ, Moore MJ. Spliceosome assembly and composition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:14-35. [PMID: 18380338 DOI: 10.1007/978-0-387-77374-2_2] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cells control alternative splicing by modulating assembly of the pre-mRNA splicing machinery at competing splice sites. Therefore, a working knowledge of spliceosome assembly is essential for understanding how alternative splice site choices are achieved. In this chapter, we review spliceosome assembly with particular emphasis on the known steps and factors subject to regulation during alternative splice site selection in mammalian cells. We also review recent advances regarding similarities and differences between the in vivo and in vitro assembly pathways, as well as proofreading mechanisms contributing to the fidelity of splice site selection.
Collapse
Affiliation(s)
- Arianne J Matlin
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | | |
Collapse
|
22
|
Abstract
U2 snRNP auxiliary factor (U2AF) is an essential heterodimeric splicing factor composed of two subunits, U2AF(65) and U2AF(35). During the past few years, a number of proteins related to both U2AF(65) and U2AF(35) have been discovered. Here, we review the conserved structural features that characterize the U2AF protein families and their evolutionary emergence. We perform a comprehensive database search designed to identify U2AF protein isoforms produced by alternative splicing, and we discuss the potential implications of U2AF protein diversity for splicing regulation.
Collapse
Affiliation(s)
- Inês Mollet
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenue Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | | | | | | |
Collapse
|
23
|
Vorechovský I. Aberrant 3' splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization. Nucleic Acids Res 2006; 34:4630-41. [PMID: 16963498 PMCID: PMC1636351 DOI: 10.1093/nar/gkl535] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The frequency distribution of mutation-induced aberrant 3' splice sites (3'ss) in exons and introns is more complex than for 5' splice sites, largely owing to sequence constraints upstream of intron/exon boundaries. As a result, prediction of their localization remains a challenging task. Here, nucleotide sequences of previously reported 218 aberrant 3'ss activated by disease-causing mutations in 131 human genes were compared with their authentic counterparts using currently available splice site prediction tools. Each tested algorithm distinguished authentic 3'ss from cryptic sites more effectively than from de novo sites. The best discrimination between aberrant and authentic 3'ss was achieved by the maximum entropy model. Almost one half of aberrant 3'ss was activated by AG-creating mutations and approximately 95% of the newly created AGs were selected in vivo. The overall nucleotide structure upstream of aberrant 3'ss was characterized by higher purine content than for authentic sites, particularly in position -3, that may be compensated by more stringent requirements for positive and negative nucleotide signatures centred around position -11. A newly developed online database of aberrant 3'ss will facilitate identification of splicing mutations in a gene or phenotype of interest and future optimization of splice site prediction tools.
Collapse
Affiliation(s)
- Igor Vorechovský
- University of Southampton School of Medicine, Division of Human Genetics, Mailpoint 808, Southampton SO16 6YD, UK
| |
Collapse
|
24
|
Sickmier EA, Frato KE, Shen H, Paranawithana SR, Green MR, Kielkopf CL. Structural basis for polypyrimidine tract recognition by the essential pre-mRNA splicing factor U2AF65. Mol Cell 2006; 23:49-59. [PMID: 16818232 PMCID: PMC2043114 DOI: 10.1016/j.molcel.2006.05.025] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Revised: 04/13/2006] [Accepted: 05/08/2006] [Indexed: 11/18/2022]
Abstract
The essential pre-mRNA splicing factor, U2AF(65), guides the early stages of splice site choice by recognizing a polypyrimidine (Py) tract consensus sequence near the 3' splice site. Since Py tracts are relatively poorly conserved in higher eukaryotes, U2AF(65) is faced with the problem of specifying uridine-rich sequences, yet tolerating a variety of nucleotide substitutions found in natural Py tracts. To better understand these apparently contradictory RNA binding characteristics, the X-ray structure of the U2AF(65) RNA binding domain bound to a Py tract composed of seven uridines has been determined at 2.5 A resolution. Specific hydrogen bonds between U2AF(65) and the uracil bases provide an explanation for polyuridine recognition. Flexible side chains and bound water molecules form the majority of the base contacts and potentially could rearrange when the U2AF(65) structure adapts to different Py tract sequences. The energetic importance of conserved residues for Py tract binding is established by analysis of site-directed mutant U2AF(65) proteins using surface plasmon resonance.
Collapse
Affiliation(s)
- E. Allen Sickmier
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Katherine E. Frato
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Haihong Shen
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Shanthi R. Paranawithana
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Michael R. Green
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Clara L. Kielkopf
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| |
Collapse
|
25
|
Izquierdo JM, Valcárcel J. A simple principle to explain the evolution of pre-mRNA splicing. Genes Dev 2006; 20:1679-84. [PMID: 16818600 DOI: 10.1101/gad.1449106] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- José-María Izquierdo
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | | |
Collapse
|
26
|
Singh R, Valcárcel J. Building specificity with nonspecific RNA-binding proteins. Nat Struct Mol Biol 2005; 12:645-53. [PMID: 16077728 DOI: 10.1038/nsmb961] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 06/10/2005] [Indexed: 12/23/2022]
Abstract
Specificity is key to biological regulation. Two families of RNA binding proteins, heterogeneous nuclear ribonucleoproteins and serine-arginine-rich proteins, were initially thought to have redundant or nonspecific biochemical functions. Recently, members of these families have been found as components of distinct regulatory complexes with highly specific and essential roles in mRNA metabolism. Here we discuss the basis for their functional specificity and the mechanisms of action of some of their characteristic protein domains.
Collapse
Affiliation(s)
- Ravinder Singh
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA.
| | | |
Collapse
|
27
|
Mackereth CD, Simon B, Sattler M. Extending the Size of Protein-RNA Complexes Studied by Nuclear Magnetic Resonance Spectroscopy. Chembiochem 2005; 6:1578-84. [PMID: 16075426 DOI: 10.1002/cbic.200500106] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Chusainow J, Ajuh PM, Trinkle-Mulcahy L, Sleeman JE, Ellenberg J, Lamond AI. FRET analyses of the U2AF complex localize the U2AF35/U2AF65 interaction in vivo and reveal a novel self-interaction of U2AF35. RNA (NEW YORK, N.Y.) 2005; 11:1201-14. [PMID: 16043505 PMCID: PMC1370804 DOI: 10.1261/rna.7277705] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have analyzed the interaction between the U2AF subunits U2AF35 and U2AF65 in vivo using fluorescence resonance energy transfer (FRET) microscopy. U2 snRNP Auxiliary Factor (U2AF) is an essential pre-mRNA splicing factor complex, comprising 35-kDa (U2AF35) and 65-kDa (U2AF65) subunits. U2AF65 interacts directly with the polypyrimidine tract and promotes binding of U2 snRNP to the pre-mRNA branchpoint, while U2AF35 associates with the conserved AG dinucleotide at the 3' end of the intron and has multiple functions in the splicing process. Using two different approaches for measuring FRET, we have identified and spatially localized sites of direct interaction between U2AF35 and U2AF65 in vivo in live cell nuclei. While U2AF is thought to function as a heterodimeric complex, the FRET data have also revealed a novel U2AF35 self-interaction in vivo, which is confirmed in vitro using biochemical assays. These results suggest that the stoichiometry of the U2AF complex may, at least in part, differ in vivo from the expected heterodimeric complex. The data show that FRET studies offer a valuable approach for probing interactions between pre-mRNA splicing factors in vivo.
Collapse
Affiliation(s)
- Janet Chusainow
- Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
29
|
Henscheid KL, Shin DS, Cary SC, Berglund JA. The splicing factor U2AF65 is functionally conserved in the thermotolerant deep-sea worm Alvinella pompejana. ACTA ACUST UNITED AC 2005; 1727:197-207. [PMID: 15777616 DOI: 10.1016/j.bbaexp.2005.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 01/13/2005] [Accepted: 01/19/2005] [Indexed: 10/25/2022]
Abstract
Due to their inherent stability, thermophilic bacteria and archaea serve as important resources for biochemical and biophysical analyses of many biological processes. Unfortunately, scientists characterizing eukaryote-specific processes, such as nuclear pre-mRNA splicing, are unable to take advantage of these sources of thermostable proteins. To identify and provide a source of thermostable eukaryotic proteins, we are characterizing splicing factors in the thermotolerant deep-sea vent polychaete, Alvinella pompejana. This worm, also known as the Pompeii worm, is found in the extreme environment of deep-sea hydrothermal vents, and is one of the most thermotolerant eukaryotic organisms known. We report on detailed analyses of U2AF65, the large subunit of the U2 small nuclear ribonucleoprotein auxiliary factor, an essential splicing factor important for intron definition and alternative splicing. The cloning and characterization of Pompeii U2AF65 show it is highly similar to human U2AF65 in sequence and function and is more thermostable than the human protein when bound to RNA in vitro. Notably, Pompeii U2AF65 can restore splicing in a human extract depleted of human U2AF. We also determine that the general splicing mechanisms and signal sequences are conserved in the Pompeii worm, an annelid which has previously been uncharacterized in terms of splicing factors and signals.
Collapse
Affiliation(s)
- Kristy L Henscheid
- Department of Chemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | | | | | |
Collapse
|
30
|
Kol G, Lev-Maor G, Ast G. Human-mouse comparative analysis reveals that branch-site plasticity contributes to splicing regulation. Hum Mol Genet 2005; 14:1559-68. [PMID: 15857856 DOI: 10.1093/hmg/ddi164] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The formation of base-pairing between the branch-site (BS) sequence and the U2 snRNP is an important step in mRNA splicing. We developed a new algorithm to identify both the BS sequence and the polypyrimidine tract (PPT) and validated its predictions experimentally. To assess BS conservation between human and mouse, we assembled and analyzed 46 812 and 242 constitutively and alternatively spliced orthologs of human-mouse intron pairs, respectively. Combinations of BSs and PPTs can be found in most of the constitutive and alternative introns. The average distance between the BS and the 3' splice site (3'ss) is 33-34 nt. Acceptor-like AG dinucleotides that resided between the predicted BS and the 3'ss were found to appear mostly within 5 nt, but not more than 19 nt, downstream of the BS. However, although 32% of homologous alternatively spliced BS sequences were fully conserved between human and mouse, only a small fraction (3%) of homologous constitutive counterparts was fully conserved. This indicates that the full sequence of the BS is under weak purifying selection in constitutively spliced introns and further strengthens the view that the BS sequence is just one of several factors determining the ability of the splicing machinery to identify the BS location. Mutations in the putative BS revealed a shift from constitutive to alternative splicing, and it also controls the inclusion/skipping ratio in alternative splicing. This suggests a role for BS sequences in regulated splicing.
Collapse
Affiliation(s)
- Guy Kol
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | | | | |
Collapse
|
31
|
Kent OA, Ritchie DB, Macmillan AM. Characterization of a U2AF-independent commitment complex (E') in the mammalian spliceosome assembly pathway. Mol Cell Biol 2005; 25:233-40. [PMID: 15601845 PMCID: PMC538778 DOI: 10.1128/mcb.25.1.233-240.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Early recognition of pre-mRNA during spliceosome assembly in mammals proceeds through the association of U1 small nuclear ribonucleoprotein particle (snRNP) with the 5' splice site as well as the interactions of the branch binding protein SF1 with the branch region and the U2 snRNP auxiliary factor U2AF with the polypyrimidine tract and 3' splice site. These factors, along with members of the SR protein family, direct the ATP-independent formation of the early (E) complex that commits the pre-mRNA to splicing. We report here the observation in U2AF-depleted HeLa nuclear extract of a distinct, ATP-independent complex designated E' which can be chased into E complex and itself commits a pre-mRNA to the splicing pathway. The E' complex is characterized by a U1 snRNA-5' splice site base pairing, which follows the actual commitment step, an interaction of SF1 with the branch region, and a close association of the 5' splice site with the branch region. These results demonstrate that both commitment to splicing and the early proximity of conserved sequences within pre-mRNA substrates can occur in a minimal complex lacking U2AF, which may function as a precursor to E complex in spliceosome assembly.
Collapse
Affiliation(s)
- Oliver A Kent
- 4-39 Medical Sciences Building, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | |
Collapse
|
32
|
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012 Trieste, Italy
| | | |
Collapse
|
33
|
Shen H, Green MR. A Pathway of Sequential Arginine-Serine-Rich Domain-Splicing Signal Interactions during Mammalian Spliceosome Assembly. Mol Cell 2004; 16:363-73. [PMID: 15525510 DOI: 10.1016/j.molcel.2004.10.021] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 08/17/2004] [Accepted: 10/12/2004] [Indexed: 11/23/2022]
Abstract
Serine-arginine (SR) proteins are general splicing factors and can function through binding to exonic splicing enhancers (ESEs). SR proteins and several other mammalian splicing factors contain an arginine-serine-rich (RS) domain required to promote splicing. We have recently found that the ESE bound RS domain functions by contacting the branchpoint. Here, we perform RNA-protein crosslinking experiments to show that the branchpoint is sequentially contacted first in complex E by the RS domain of the essential splicing factor U2AF(65) and then in the prespliceosome by the ESE bound RS domain. Although the ESE bound RS domain can promote formation of the prespliceosome, at least one additional SR protein is required for complete spliceosome assembly. We show that the RS domain of this additional SR protein contacts the 5' splice site specifically in the mature spliceosome. We propose that direct contact with splicing signals is a general mechanism by which RS domains promote splicing.
Collapse
Affiliation(s)
- Haihong Shen
- Howard Hughes Medical Institute, Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
34
|
Ujvári A, Luse DS. Newly Initiated RNA encounters a factor involved in splicing immediately upon emerging from within RNA polymerase II. J Biol Chem 2004; 279:49773-9. [PMID: 15377657 DOI: 10.1074/jbc.m409087200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We employed RNA-protein cross-linking to map the path of the nascent RNA as it emerges from within RNA polymerase II. A UV-cross-linkable uridine analog was incorporated at two positions within the first five nucleotides of the transcript. Only the two largest subunits of RNA polymerase II cross-linked to the transcript in complexes containing 17-24-nucleotide (nt) RNAs. Extension of the RNA to 26 or 28 nt revealed an additional strong cross-link to the splicing factor U2AF65. In U17 complexes, in which the RNA is still contained within the polymerase, U2AF65 is tightly bound. In contrast, U2AF65 is more loosely bound in C28 transcription complexes, in which about 10 nt of transcript have emerged from the RNA polymerase. Cross-linking of U2AF65 to RNA in a C28 complex was eliminated by the addition of an excess of an RNA oligonucleotide containing the consensus U2AF65 binding site, but U2AF65 was not displaced by a nonconsensus RNA. These findings indicate that U2AF65 shifts from protein-protein to protein-RNA interactions as the RNA emerges from the polymerase. During transcription of one particular template at low UTP concentration, RNA polymerase II pauses just after synthesizing a transcript segment that is a U2AF65 binding site. Dwell time of the polymerase at this pause site was significantly and specifically reduced by the addition of recombinant U2AF65 to the transcription reaction. Therefore, the association of U2AF65 with RNA polymerase II may function not only to deliver U2AF65 to the nascent transcript but also to modulate efficient transcript elongation.
Collapse
Affiliation(s)
- Andrea Ujvári
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
35
|
Ding H, Schertzer M, Wu X, Gertsenstein M, Selig S, Kammori M, Pourvali R, Poon S, Vulto I, Chavez E, Tam PPL, Nagy A, Lansdorp PM. Regulation of murine telomere length by Rtel: an essential gene encoding a helicase-like protein. Cell 2004; 117:873-86. [PMID: 15210109 DOI: 10.1016/j.cell.2004.05.026] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 04/23/2004] [Accepted: 04/28/2004] [Indexed: 11/19/2022]
Abstract
Little is known about the genes that regulate telomere length diversity between mammalian species. A candidate gene locus was previously mapped to a region on distal mouse Chr 2q. Within this region, we identified a gene similar to the dog-1 DNA helicase-like gene in C. elegans. We cloned this Regulator of telomere length (Rtel) gene and inactivated its expression in mice. Rtel(-/-) mice died between days 10 and 11.5 of gestation with defects in the nervous system, heart, vasculature, and extraembryonic tissues. Rtel(-/-) embryonic stem cells showed telomere loss and displayed many chromosome breaks and fusions upon differentiation in vitro. Crosses of Rtel(+/-) mice with Mus spretus showed that Rtel from the Mus musculus parent is required for telomere elongation of M. spretus chromosomes in F1 cells. We conclude that Rtel is an essential gene that regulates telomere length and prevents genetic instability.
Collapse
MESH Headings
- Abnormalities, Multiple
- Alternative Splicing
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Cell Differentiation
- Chromosome Aberrations
- Chromosome Mapping
- Conserved Sequence
- Crosses, Genetic
- DNA Helicases/chemistry
- DNA Helicases/genetics
- Exons
- Gene Expression
- Gene Expression Regulation, Developmental
- Genes, Essential
- Genes, Regulator
- Mice
- Mice, Knockout
- Mice, Mutant Strains
- Models, Biological
- Molecular Sequence Data
- Muridae/genetics
- Protein Structure, Tertiary
- Recombination, Genetic
- Sequence Homology, Amino Acid
- Stem Cells/cytology
- Telomere
- Tissue Distribution
Collapse
Affiliation(s)
- Hao Ding
- Mount Sinai Hospital, Samuel Lunenfeld Research Institute, Toronto, Ontario, M5G 1X5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|