1
|
Yao S, Li S, Zhan Y, Wan C. Proteome-wide analysis of stress response to temperature in Sulfolobus islandicus. J Proteomics 2022; 266:104681. [PMID: 35842219 DOI: 10.1016/j.jprot.2022.104681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Sulfolobus islandicus is thermophilic archaea that live in an extreme environment of 75 °C-80 °C and pH 2-3. Currently, the molecular mechanism of archaeal adaptation to high temperatures and the stability of proteins at high temperatures are still unclear. This study utilizes proteomics to analyze the differential expression of S. islandicus proteins at different temperatures. We found that ribosomes, glycolysis, nucleotide metabolism, RNA metabolism, transport system, and sulfur metabolism are all affected by temperature. Methylation modification of some proteins changed with temperature. Thermal proteome profiling (TPP) was used to analyze the thermal stability of proteins under 65 °C-85 °C growth conditions. It is suggested that the Tm values of proteins are mainly distributed around the optimum growth temperature (OGT). The proteins in the glycolysis pathway had high thermal stability. Meanwhile, proteins related to DNA replication and translation showed low thermal stability. The protein thermal stability of S. islandicus cultured under 65 °C and 85 °C was higher than that of 75 °C. Our study reveals that S. islandicus may adapt to temperature changes by regulating protein synthesis and carbon metabolism pathways, changing post-translational modifications, and improving protein stability at the same time. SIGNIFICANCE: The molecular mechanism of archaeal adaptation to high temperatures and the stability of proteins at high temperatures are still unclear. Our proteomics study identified 477 differentially expressed proteins of S. islandicus at different temperatures, suggesting that ribosomes, glycolysis, nucleotide metabolism, RNA metabolism, transport system, and sulfur metabolism are affected by temperature. Meanwhile, we found that methylation modification of some proteins changed with temperature. To evaluate the thermal stability of the proteome, we performed thermal proteome profiling to analyze the Tm of proteins under 65 °C-85 °C growth conditions. Tm values of proteins are mainly distributed around the optimum growth temperature. The proteins in the glycolysis pathway had high thermal stability. Meanwhile, proteins related to DNA replication and translation showed low thermal stability. Our study reveals that S. islandicus may adapt to temperature changes by regulating protein synthesis and carbon metabolism pathways, changing post-translational modifications, and improving protein stability at the same time.
Collapse
Affiliation(s)
- Sheng Yao
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Sige Li
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Yuyue Zhan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Cuihong Wan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China.
| |
Collapse
|
2
|
Dongre AV, Das S, Bellur A, Kumar S, Chandrashekarmath A, Karmakar T, Balaram P, Balasubramanian S, Balaram H. Structural basis for the hyperthermostability of an archaeal enzyme induced by succinimide formation. Biophys J 2021; 120:3732-3746. [PMID: 34302792 DOI: 10.1016/j.bpj.2021.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/18/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022] Open
Abstract
Stability of proteins from hyperthermophiles (organisms existing under boiling water conditions) enabled by a reduction of conformational flexibility is realized through various mechanisms. A succinimide (SNN) arising from the post-translational cyclization of the side chains of aspartyl/asparaginyl residues with the backbone amide -NH of the succeeding residue would restrain the torsion angle Ψ and can serve as a new route for hyperthermostability. However, such a succinimide is typically prone to hydrolysis, transforming to either an aspartyl or β-isoaspartyl residue. Here, we present the crystal structure of Methanocaldococcus jannaschii glutamine amidotransferase and, using enhanced sampling molecular dynamics simulations, address the mechanism of its increased thermostability, up to 100°C, imparted by an unexpectedly stable succinimidyl residue at position 109. The stability of SNN109 to hydrolysis is seen to arise from its electrostatic shielding by the side-chain carboxylate group of its succeeding residue Asp110, as well as through n → π∗ interactions between SNN109 and its preceding residue Glu108, both of which prevent water access to SNN. The stable succinimidyl residue induces the formation of an α-turn structure involving 13-atom hydrogen bonding, which locks the local conformation, reducing protein flexibility. The destabilization of the protein upon replacement of SNN with a Φ-restricted prolyl residue highlights the specificity of the succinimidyl residue in imparting hyperthermostability to the enzyme. The conservation of the succinimide-forming tripeptide sequence (E(N/D)(E/D)) in several archaeal GATases strongly suggests an adaptation of this otherwise detrimental post-translational modification as a harbinger of thermostability.
Collapse
Affiliation(s)
- Aparna Vilas Dongre
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Sudip Das
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Asutosh Bellur
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Sanjeev Kumar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Anusha Chandrashekarmath
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Tarak Karmakar
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India; Department of Chemistry and Applied Biosciences, ETH Zurich, Lugano, Ticino, Switzerland; Facoltà di Informatica, Istituto di Scienze Computationali, Università della Svizzera Italiana, Lugano, Ticino, Switzerland
| | - Padmanabhan Balaram
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India; Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| |
Collapse
|
3
|
Febbraio F, Ionata E, Marcolongo L. Forty years of study on the thermostable β-glycosidase from S. solfataricus: Production, biochemical characterization and biotechnological applications. Biotechnol Appl Biochem 2020; 67:602-618. [PMID: 32621790 DOI: 10.1002/bab.1982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of this paper is to make the point on the fortieth years study on the β-glycosidase from Sulfolobus solfataricus. This enzyme represents one of the thermophilic biocatalysts, which is more extensively studied as witnessed by the numerous literature reports available since 1980. Comprehensive biochemical studies highlighted its broad substrate specificity for β-d-galacto-, gluco-, and fuco-sides and also showed its remarkable exo-glucosidase and transglycosidase activities. The enzyme demonstrated to be active and stable over a wide range of temperature and pHs, withstanding to several drastic conditions comprising solvents and detergents. Over the years, a great deal of studies were focused on its homotetrameric tridimensional structure, elucidating several structural features involved in the enzyme stability, such as ion pairs and post-translational modifications. Several β-glycosidase mutants were produced in the years in order to understand its peculiar behavior in extreme conditions and/or to improve its functional properties. The β-glycosidase overproduction was also afforded reporting numerous studies dealing with its production in the mesophilic host Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, and Lactococcus lactis. Relevant applications in food, beverages, bioenergy, pharmaceuticals, and nutraceutical fields of this enzyme, both in free and immobilized forms, highlighted its biotechnological relevance.
Collapse
Affiliation(s)
- Ferdinando Febbraio
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Naples, Italy
| | - Elena Ionata
- Research Institute on Terrestrial Ecosystems, National Research Council (CNR), Naples, 80131, Italy
| | - Loredana Marcolongo
- Research Institute on Terrestrial Ecosystems, National Research Council (CNR), Naples, 80131, Italy
| |
Collapse
|
4
|
Gong P, Lei P, Wang S, Zeng A, Lou H. Post-Translational Modifications Aid Archaeal Survival. Biomolecules 2020; 10:biom10040584. [PMID: 32290118 PMCID: PMC7226565 DOI: 10.3390/biom10040584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/22/2022] Open
Abstract
Since the pioneering work of Carl Woese, Archaea have fascinated biologists of almost all areas given their unique evolutionary status, wide distribution, high diversity, and ability to grow in special environments. Archaea often thrive in extreme conditions such as high temperature, high/low pH, high salinity, and anoxic ecosystems. All of these are threats to the stability and proper functioning of biological molecules, especially proteins and nucleic acids. Post-translational modifications (PTMs), such as phosphorylation, methylation, acetylation, and glycosylation, are reportedly widespread in Archaea and represent a critical adaptive mechanism to extreme habitats. Here, we summarize our current understanding of the contributions of PTMs to aid in extremophile survival, with a particular focus on the maintenance of genome stability.
Collapse
Affiliation(s)
- Ping Gong
- Hunan Institute of Microbiology, Changsha 410009, China; (P.L.); (S.W.); (A.Z.)
- Correspondence: (P.G.); (H.L.)
| | - Ping Lei
- Hunan Institute of Microbiology, Changsha 410009, China; (P.L.); (S.W.); (A.Z.)
| | - Shengping Wang
- Hunan Institute of Microbiology, Changsha 410009, China; (P.L.); (S.W.); (A.Z.)
| | - Ao Zeng
- Hunan Institute of Microbiology, Changsha 410009, China; (P.L.); (S.W.); (A.Z.)
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, No.2 Yuan-Ming-Yuan West Road, Beijing 100193, China
- Correspondence: (P.G.); (H.L.)
| |
Collapse
|
5
|
Chang HW, Yen CY, Chen CH, Tsai JH, Tang JY, Chang YT, Kao YH, Wang YY, Yuan SSF, Lee SY. Evaluation of the mRNA expression levels of integrins α3, α5, β1 and β6 as tumor biomarkers of oral squamous cell carcinoma. Oncol Lett 2018; 16:4773-4781. [PMID: 30214610 DOI: 10.3892/ol.2018.9168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 05/01/2018] [Indexed: 12/16/2022] Open
Abstract
Integrin signaling may modulate several different functions involved in cell migration, invasion, proliferation and motility, and is a potential candidate biomarker for oral cancer. In the present study, a total of four integrin genes were evaluated as potential biomarkers of oral squamous cell carcinoma (OSCC). Gene expression was determined using the reverse transcription-quantitative polymerase chain reaction in 55 OSCC and 55 matched normal oral tissues. The performance of individual and combined biomarkers was analyzed by receiver operating characteristic (ROC) analysis based on the relative mRNA expression (OSCC vs. matched oral tissue from the tumor-free margin), which was calculated using the ΔΔCq value (ΔCq of OSCC-ΔCq of oral tissue from the tumor-free margin of the same patient). In the individual ROC analysis, the areas under the ROC curve (AUCs) of relative mRNA expression (ΔΔCq) of integrin subunit α3 (ITGA3), integrin subunit α5 (ITGA5), integrin subunit β1 (ITGB1) and integrin subunit β6 (ITGB6) in all tumor locations were 0.724, 0.698, 0.640 and 0.657, respectively. For locations 2 (tongue/mouth part) and 3 (edentulous ridge), their individual AUC values were 0.840, 0.765, 0.725 and 0.763, respectively. In the cumulative ROC analysis, ITGA3, ITGA5 and ITGB1 genes exhibited the highest combined AUC values (0.809 and 0.871 for all locations and locations 2 and 3 combined, respectively) compared with other biomarker combinations. In conclusion, the results of the present study identified that higher mRNA expressions of ITGA3, ITGA5, ITGB1 and ITGB6 genes are suitable for OSCC diagnosis biomarkers. Cumulative ROC analysis indicated an improved overall performance compared with the best individual integrin biomarker of OSCC.
Collapse
Affiliation(s)
- Hsueh-Wei Chang
- Department of Biomedical Sciences and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C.,Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C.,Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, R.O.C.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, R.O.C
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan, R.O.C.,School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Chung-Ho Chen
- Department of Dentistry, Kaohsiung Municipal Hsiao Kang Hospital, Kaohsiung 81267, Taiwan, R.O.C
| | - Jun-Hsu Tsai
- Department of Oral and Maxillofacial Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, R.O.C.,School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, R.O.C.,Department of Radiation Oncology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Yung-Ting Chang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C.,Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Nankang, Taipei 11574, Taiwan, R.O.C
| | - Yu-Hsun Kao
- Department of Oral and Maxillofacial Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, R.O.C.,School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Yen-Yun Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C.,Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, R.O.C
| | - Shyng-Shiou F Yuan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, R.O.C.,Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, R.O.C
| | - Sheng-Yang Lee
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan, R.O.C.,Division of Orthodontics, Wan-Fang Medical Center, Taipei Medical University, Taipei 11696, Taiwan, R.O.C
| |
Collapse
|
6
|
Cao KJ, Elbel KM, Cifelli JL, Cirera J, Sigurdson CJ, Paesani F, Theodorakis EA, Yang J. Solvation-Guided Design of Fluorescent Probes for Discrimination of Amyloids. Sci Rep 2018; 8:6950. [PMID: 29725045 PMCID: PMC5934448 DOI: 10.1038/s41598-018-25131-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/16/2018] [Indexed: 11/09/2022] Open
Abstract
The deposition of insoluble protein aggregates in the brain is a hallmark of many neurodegenerative diseases. While their exact role in neurodegeneration remains unclear, the presence of these amyloid deposits often precedes clinical symptoms. As a result, recent progress in imaging methods that utilize amyloid-specific small molecule probes have become a promising avenue for antemortem disease diagnosis. Here, we present a series of amino-aryl cyanoacrylate (AACA) fluorophores that show a turn-on fluorescence signal upon binding to amyloids in solution and in tissue. Using a theoretical model for environmental sensitivity of fluorescence together with ab initio computational modeling of the effects of polar environment on electron density distribution and conformational dynamics, we designed, synthesized, and evaluated a set of fluorophores that (1) bind to aggregated forms of Alzheimer’s-related β-amyloid peptides with low micromolar to high nanomolar affinities and (2) have the capability to fluorescently discriminate different amyloids based on differences in amino acid composition within the binding pocket through exploitation of their solvatochromic properties. These studies showcase the rational design of a family of amyloid-binding imaging agents that could be integrated with new optical approaches for the clinical diagnosis of amyloidoses, where accurate identification of the specific neurodegenerative disease could aid in the selection of a proper course for treatment.
Collapse
Affiliation(s)
- Kevin J Cao
- Department of Chemistry and Biochemistry, UC San Diego, La Jolla, CA, 92093-0358, USA
| | - Kristyna M Elbel
- Department of Chemistry and Biochemistry, UC San Diego, La Jolla, CA, 92093-0358, USA
| | - Jessica L Cifelli
- Department of Chemistry and Biochemistry, UC San Diego, La Jolla, CA, 92093-0358, USA
| | - Jordi Cirera
- Department of Chemistry and Biochemistry, UC San Diego, La Jolla, CA, 92093-0358, USA.,Departament de Química Inorgànica i Orgànica (Secció d'Inorgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona,c/Martí i Franquès 1-11, 08028, Barcelona, Spain
| | | | - Francesco Paesani
- Department of Chemistry and Biochemistry, UC San Diego, La Jolla, CA, 92093-0358, USA
| | | | - Jerry Yang
- Department of Chemistry and Biochemistry, UC San Diego, La Jolla, CA, 92093-0358, USA.
| |
Collapse
|
7
|
Ionata E, Marcolongo L, La Cara F, Cetrangolo GP, Febbraio F. Improvement of functional properties of a thermostable β-glycosidase for milk lactose hydrolysis. Biopolymers 2018; 109:e23118. [DOI: 10.1002/bip.23118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Elena Ionata
- Institute of Agro-Environmental and Forest Biology-Consiglio Nazionale delle Ricerche (CNR), via P. Castellino 111; Naples 80131 Italy
| | - Loredana Marcolongo
- Institute of Agro-Environmental and Forest Biology-Consiglio Nazionale delle Ricerche (CNR), via P. Castellino 111; Naples 80131 Italy
| | - Francesco La Cara
- Institute of Agro-Environmental and Forest Biology-Consiglio Nazionale delle Ricerche (CNR), via P. Castellino 111; Naples 80131 Italy
| | - Giovanni P. Cetrangolo
- Institute of Protein Biochemistry-Consiglio Nazionale delle Ricerche (CNR), via P. Castellino 111; Naples 80131 Italy
| | - Ferdinando Febbraio
- Institute of Protein Biochemistry-Consiglio Nazionale delle Ricerche (CNR), via P. Castellino 111; Naples 80131 Italy
| |
Collapse
|
8
|
Stiefler-Jensen D, Schwarz-Linnet T, de Lichtenberg C, Nguyen TTTN, Rand KD, Huang L, She Q, Teilum K. The extraordinary thermal stability of EstA from S. islandicus is independent of post translational modifications. Protein Sci 2017; 26:1819-1827. [PMID: 28681456 DOI: 10.1002/pro.3220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/09/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022]
Abstract
Enzymes from thermophilic and hyper-thermophilic organisms have an intrinsic high stability. Understanding the mechanisms behind their high stability will be important knowledge for the engineering of novel enzymes with high stability. Lysine methylation of proteins is prevalent in Sulfolobus, a genus of hyperthermophilic and acidophilic archaea. Both unspecific and temperature dependent lysine methylations are seen, but the significance of this post-translational modification has not been investigated. Here, we test the effect of eliminating in vivo lysine methylation on the stability of an esterase (EstA). The enzyme was purified from the native host S. islandicus as well as expressed as a recombinant protein in E. coli, a mesophilic host that does not code for any machinery for in vivo lysine methylation. We find that lysine mono methylation indeed has a positive effect on the stability of EstA, but the effect is small. The effect of the lysine methylation on protein stability is secondary to that of protein expression in E. coli, as the E. coli recombinant enzyme is compromised both on stability and activity. We conclude that these differences are not attributed to any covalent difference between the protein expressed in hyperthermophilic versus mesophilic hosts.
Collapse
Affiliation(s)
| | - Troels Schwarz-Linnet
- Structural Biology and NMR Laboratory and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, København, Denmark
| | - Casper de Lichtenberg
- Structural Biology and NMR Laboratory and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, København, Denmark
| | - Tam T T N Nguyen
- Department of Pharmacology, University of Copenhagen, København, Denmark
| | - Kasper D Rand
- Department of Pharmacology, University of Copenhagen, København, Denmark
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qunxin She
- Archaea Centre, Department of Biology, University of Copenhagen, København, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, København, Denmark
| |
Collapse
|
9
|
Proteome-wide identification of lysine propionylation in thermophilic and mesophilic bacteria: Geobacillus kaustophilus, Thermus thermophilus, Escherichia coli, Bacillus subtilis, and Rhodothermus marinus. Extremophiles 2016; 21:283-296. [DOI: 10.1007/s00792-016-0901-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/27/2016] [Indexed: 12/22/2022]
|
10
|
Vorontsov EA, Rensen E, Prangishvili D, Krupovic M, Chamot-Rooke J. Abundant Lysine Methylation and N-Terminal Acetylation in Sulfolobus islandicus Revealed by Bottom-Up and Top-Down Proteomics. Mol Cell Proteomics 2016; 15:3388-3404. [PMID: 27555370 PMCID: PMC5098037 DOI: 10.1074/mcp.m116.058073] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/06/2016] [Indexed: 12/18/2022] Open
Abstract
Protein post-translational methylation has been reported to occur in archaea, including members of the genus Sulfolobus, but has never been characterized on a proteome-wide scale. Among important Sulfolobus proteins carrying such modification are the chromatin proteins that have been described to be methylated on lysine side chains, resembling eukaryotic histones in that aspect. To get more insight into the extent of this modification and its dynamics during the different growth steps of the thermoacidophylic archaeon S. islandicus LAL14/1, we performed a global and deep proteomic analysis using a combination of high-throughput bottom-up and top-down approaches on a single high-resolution mass spectrometer. 1,931 methylation sites on 751 proteins were found by the bottom-up analysis, with methylation sites on 526 proteins monitored throughout three cell culture growth stages: early-exponential, mid-exponential, and stationary. The top-down analysis revealed 3,978 proteoforms arising from 681 proteins, including 292 methylated proteoforms, 85 of which were comprehensively characterized. Methylated proteoforms of the five chromatin proteins (Alba1, Alba2, Cren7, Sul7d1, Sul7d2) were fully characterized by a combination of bottom-up and top-down data. The top-down analysis also revealed an increase of methylation during cell growth for two chromatin proteins, which had not been evidenced by bottom-up. These results shed new light on the ubiquitous lysine methylation throughout the S. islandicus proteome. Furthermore, we found that S. islandicus proteins are frequently acetylated at the N terminus, following the removal of the N-terminal methionine. This study highlights the great value of combining bottom-up and top-down proteomics for obtaining an unprecedented level of accuracy in detecting differentially modified intact proteoforms. The data have been deposited to the ProteomeXchange with identifiers PXD003074 and PXD004179.
Collapse
Affiliation(s)
- Egor A Vorontsov
- From the ‡Structural Mass Spectrometry and Proteomics Unit, Structural Biology and Chemistry Department, Institut Pasteur, 75015 Paris, France
| | - Elena Rensen
- §Unit of the Molecular Biology of Gene in Extremophiles, Department of Microbiology, Institut Pasteur, 75015 Paris, France
| | - David Prangishvili
- §Unit of the Molecular Biology of Gene in Extremophiles, Department of Microbiology, Institut Pasteur, 75015 Paris, France
| | - Mart Krupovic
- §Unit of the Molecular Biology of Gene in Extremophiles, Department of Microbiology, Institut Pasteur, 75015 Paris, France; julia.chamot-rooke@pasteur
| | - Julia Chamot-Rooke
- From the ‡Structural Mass Spectrometry and Proteomics Unit, Structural Biology and Chemistry Department, Institut Pasteur, 75015 Paris, France; julia.chamot-rooke@pasteur
- ¶UMR3528 CNRS, Paris, France
| |
Collapse
|
11
|
Monhemi H, Housaindokht MR. Chemical modification of biocatalyst for function in supercritical CO2: In silico redesign of stable lipase. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2016.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Chu Y, Zhu Y, Chen Y, Li W, Zhang Z, Liu D, Wang T, Ma J, Deng H, Liu ZJ, Ouyang S, Huang L. aKMT Catalyzes Extensive Protein Lysine Methylation in the Hyperthermophilic Archaeon Sulfolobus islandicus but is Dispensable for the Growth of the Organism. Mol Cell Proteomics 2016; 15:2908-23. [PMID: 27329856 DOI: 10.1074/mcp.m115.057778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Indexed: 11/06/2022] Open
Abstract
Protein methylation is believed to occur extensively in creanarchaea. Recently, aKMT, a highly conserved crenarchaeal protein lysine methyltransferase, was identified and shown to exhibit broad substrate specificity in vitro Here, we have constructed an aKMT deletion mutant of the hyperthermophilic crenarchaeon Sulfolobus islandicus The mutant was viable but showed a moderately slower growth rate than the parental strain under non-optimal growth conditions. Consistent with the moderate effect of the lack of aKMT on the growth of the cell, expression of a small number of genes, which encode putative functions in substrate transportation, energy metabolism, transcriptional regulation, stress response proteins, etc, was differentially regulated by more than twofold in the mutant strain, as compared with that in the parental strain. Analysis of the methylation of total cellular protein by mass spectrometry revealed that methylated proteins accounted for ∼2/3 (1,158/1,751) and ∼1/3 (591/1,757) of the identified proteins in the parental and the mutant strains, respectively, indicating that there is extensive protein methylation in S. islandicus and that aKMT is a major protein methyltransferase in this organism. No significant sequence preference was detected at the sites of methylation by aKMT. Methylated lysine residues, when visible in the structure, are all located on the surface of the proteins. The crystal structure of aKMT in complex with S-adenosyl-l-methionine (SAM) or S-adenosyl homocysteine (SAH) reveals that the protein consists of four α helices and seven β sheets, lacking a substrate recognition domain found in PrmA, a bacterial homolog of aKMT, in agreement with the broad substrate specificity of aKMT. Our results suggest that aKMT may serve a role in maintaining the methylation status of cellular proteins required for the efficient growth of the organism under certain non-optimal conditions.
Collapse
Affiliation(s)
- Yindi Chu
- From the ‡State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanping Zhu
- §National Laboratory of Biomacromolecules,Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,
| | - Yuling Chen
- ¶MOE Key Laboratory of Bioinformatics, School of Life Sciences,Tsinghua University, Beijing, China
| | - Wei Li
- ‖Network Information Center,Institute of Microbiology,Chinese Academy of Sciences, Beijing, China
| | - Zhenfeng Zhang
- From the ‡State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Di Liu
- ‖Network Information Center,Institute of Microbiology,Chinese Academy of Sciences, Beijing, China
| | - Tongkun Wang
- From the ‡State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Juncai Ma
- From the ‡State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; ‖Network Information Center,Institute of Microbiology,Chinese Academy of Sciences, Beijing, China
| | - Haiteng Deng
- ¶MOE Key Laboratory of Bioinformatics, School of Life Sciences,Tsinghua University, Beijing, China
| | - Zhi-Jie Liu
- §National Laboratory of Biomacromolecules,Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,; **iHuman Institute,Shanghai Tech University, Shanghai, China
| | - Songying Ouyang
- §National Laboratory of Biomacromolecules,Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,;
| | - Li Huang
- From the ‡State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China;
| |
Collapse
|
13
|
Jia H, Gao Z, Ma Y, Zhong C, Wang C, Zhou H, Wei P. Preparation and characterization of a highly stable phenoxazinone synthase nanogel. Chem Cent J 2016; 10:34. [PMID: 27239225 PMCID: PMC4884384 DOI: 10.1186/s13065-016-0178-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 05/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phenoxazinone synthase (PHS) is a laccase-like multicopper oxidase originating from Streptomyces with great industrial application potential. In this paper, we prepared the PHS nanogel retaining 82 % of its initial activity by aqueous in situ polymerization at pH 9.3. RESULTS The average diameter of the PHS nanogel was 50.8 nm based on dynamic light scattering (DLS) analysis. Fluorescence analysis indicated the impressive preservation of the enzyme molecular structure upon modification. The PHS nanogel exhibited the most activity at pH 4.0-4.5 and 50 °C while the corresponding values were pH 4.5 and 40 °C for the native PHS. The K m and V max of the PHS nanogel were found to be 0.052 mM and 0.018 mM/min, whereas those of the native PHS were 0.077 mM and 0.021 mM/min, respectively. In addition, the PHS nanogel possessed higher thermal and storage stability and solvent tolerance compared with the native one. The half-life of the PHS nanogel was 1.71 h and multiplied around ninefold compared to 0.19 h for the native one. CONCLUSION In summary, the PHS nanogel could be a promising biocatalyst in industry.
Collapse
Affiliation(s)
- Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Zhen Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Yingying Ma
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Chao Zhong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Chunming Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Hua Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| |
Collapse
|
14
|
Xia Y, Niu Y, Cui J, Fu Y, Chen XS, Lou H, Cao Q. The Helicase Activity of Hyperthermophilic Archaeal MCM is Enhanced at High Temperatures by Lysine Methylation. Front Microbiol 2015; 6:1247. [PMID: 26617586 PMCID: PMC4639711 DOI: 10.3389/fmicb.2015.01247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022] Open
Abstract
Lysine methylation and methyltransferases are widespread in the third domain of life, archaea. Nevertheless, the effects of methylation on archaeal proteins wait to be defined. Here, we report that recombinant sisMCM, an archaeal homolog of Mcm2-7 eukaryotic replicative helicase, is methylated by aKMT4 in vitro. Mono-methylation of these lysine residues occurs coincidently in the endogenous sisMCM protein purified from the hyperthermophilic Sulfolobus islandicus cells as indicated by mass spectra. The helicase activity of mini-chromosome maintenance (MCM) is stimulated by methylation, particularly at temperatures over 70°C. The methylated MCM shows optimal DNA unwinding activity after heat-treatment between 76 and 82°C, which correlates well with the typical growth temperatures of hyperthermophilic Sulfolobus. After methylation, the half life of MCM helicase is dramatically extended at 80°C. The methylated sites are located on the accessible protein surface, which might modulate the intra- and inter- molecular interactions through changing the hydrophobicity and surface charge. Furthermore, the methylation-mimic mutants of MCM show heat resistance helicase activity comparable to the methylated MCM. These data provide the biochemical evidence that posttranslational modifications such as methylation may enhance kinetic stability of proteins under the elevated growth temperatures of hyperthermophilic archaea.
Collapse
Affiliation(s)
- Yisui Xia
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| | - Yanling Niu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| | - Jiamin Cui
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| | - Yang Fu
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles CA, USA ; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles CA, USA ; Department of Chemistry, University of Southern California, Los Angeles CA, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles CA, USA ; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles CA, USA ; Department of Chemistry, University of Southern California, Los Angeles CA, USA
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| | - Qinhong Cao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| |
Collapse
|
15
|
Lanouette S, Mongeon V, Figeys D, Couture JF. The functional diversity of protein lysine methylation. Mol Syst Biol 2014; 10:724. [PMID: 24714364 PMCID: PMC4023394 DOI: 10.1002/msb.134974] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Large‐scale characterization of post‐translational modifications (PTMs), such as phosphorylation, acetylation and ubiquitination, has highlighted their importance in the regulation of a myriad of signaling events. While high‐throughput technologies have tremendously helped cataloguing the proteins modified by these PTMs, the identification of lysine‐methylated proteins, a PTM involving the transfer of one, two or three methyl groups to the ε‐amine of a lysine side chain, has lagged behind. While the initial findings were focused on the methylation of histone proteins, several studies have recently identified novel non‐histone lysine‐methylated proteins. This review provides a compilation of all lysine methylation sites reported to date. We also present key examples showing the impact of lysine methylation and discuss the circuitries wired by this important PTM.
Collapse
Affiliation(s)
- Sylvain Lanouette
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | | | | | | |
Collapse
|
16
|
Azkargorta M, Wojtas MN, Abrescia NGA, Elortza F. Lysine methylation mapping of crenarchaeal DNA-directed RNA polymerases by collision-induced and electron-transfer dissociation mass spectrometry. J Proteome Res 2014; 13:2637-48. [PMID: 24625205 DOI: 10.1021/pr500084p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzymatic machineries fundamental for information processing (e.g., transcription, replication, translation) in Archaea are simplified versions of their eukaryotic counterparts. This is clearly noticeable in the conservation of sequence and structure of corresponding enzymes (see for example the archaeal DNA-directed RNA polymerase (RNAP)). In Eukarya, post-translational modifications (PTMs) often serve as functional regulatory factors for various enzymes and complexes. Among the various PTMs, methylation and acetylation have been recently attracting most attention. Nevertheless, little is known about such PTMs in Archaea, and cross-methodological studies are scarce. We examined methylation and N-terminal acetylation of endogenously purified crenarchaeal RNA polymerase from Sulfolobus shibatae (Ssh) and Sulfolobus acidocaldarius (Sac). In-gel and in-solution protein digestion methods were combined with collision-induced dissociation (CID) and electron-transfer dissociation (ETD) mass spectrometry analysis. Overall, 20 and 26 methyl-lysines for S. shibatae and S. acidocaldarius were identified, respectively. Furthermore, two N-terminal acetylation sites for each of these organisms were assessed. As a result, we generated a high-confidence data set for the mapping of methylation and acetylation sites in both Sulfolobus species, allowing comparisons with the data previously obtained for RNAP from Sulfolobus solfataricus (Sso). We confirmed that all observed methyl-lysines are on the surface of the RNAP.
Collapse
Affiliation(s)
- Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, ProteoRed-ISCIII, CIBERehd, 48160 Derio, Spain
| | | | | | | |
Collapse
|
17
|
Moore KE, Gozani O. An unexpected journey: lysine methylation across the proteome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1395-403. [PMID: 24561874 DOI: 10.1016/j.bbagrm.2014.02.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/11/2014] [Indexed: 12/17/2022]
Abstract
The dynamic modification of histone proteins by lysine methylation has emerged over the last decade as a key regulator of chromatin functions. In contrast, our understanding of the biological roles for lysine methylation of non-histone proteins has progressed more slowly. Though recently it has attracted less attention, ε-methyl-lysine in non-histone proteins was first observed over 50 years ago. In that time, it has become clear that, like the case for histones, non-histone methylation represents a key and common signaling process within the cell. Recent work suggests that non-histone methylation occurs on hundreds of proteins found in both the nucleus and the cytoplasm, and with important biomedical implications. Technological advances that allow us to identify lysine methylation on a proteomic scale are opening new avenues in the non-histone methylation field, which is poised for dramatic growth. Here, we review historical and recent findings in non-histone lysine methylation signaling, highlight new methods that are expanding opportunities in the field, and discuss outstanding questions and future challenges about the role of this fundamental post-translational modification (PTM).
Collapse
Affiliation(s)
- Kaitlyn E Moore
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
18
|
Kumar S, Maiti S. Effect of different arginine methylations on the thermodynamics of Tat peptide binding to HIV-1 TAR RNA. Biochimie 2013; 95:1422-31. [PMID: 23541506 DOI: 10.1016/j.biochi.2013.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 03/18/2013] [Indexed: 11/18/2022]
Abstract
RNA-binding proteins are an important class of mediators that regulate cell function and differentiation. Methylation of arginine, a post-translational modification (PTM) found in these proteins, can modulate their function. Arginine can be monomethylated or dimethylated, depending on the type of methyl transferases involved. This paper describes a comparative study of the thermodynamics of unmodified and modified Tat peptide interaction with TAR RNA, where the peptide is methylated at epsilon (ɛ) and eta (η) nitrogen atoms of guanidinium group of arginine side chain at position 52 or 53. The results indicate that monomethylation of arginine at epsilon (ɛ) nitrogen atom enhances binding affinity, owing to a more favourable enthalpy component which overrides the less favourable entropy change. In contrast, monomethylation of arginine residue at η nitrogen results in reduced binding affinity originating exclusively from a less favourable enthalpy change leaving entropic component unaffected. However, in case of simultaneous methylation at ɛ and η positions, the binding parameters remain almost unaffected, when compared to the unmodified peptide. In case of symmetric dimethylation at η position the observed enthalpy change of the binding was found to be smaller than the values obtained for the unmodified peptide. Asymmetric dimethylation at η position showed the most reduced binding affinities owing to less favourable enthalpy changes. These results provide insights that enable elucidation of the biological outcome of arginine methylation as PTMs that regulate protein function, and will contribute to our understanding of how these PTMs are established in vitro and in vivo.
Collapse
Affiliation(s)
- Santosh Kumar
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India
| | | |
Collapse
|
19
|
Identification and characterization of a highly conserved crenarchaeal protein lysine methyltransferase with broad substrate specificity. J Bacteriol 2012; 194:6917-26. [PMID: 23086207 DOI: 10.1128/jb.01535-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Protein lysine methylation occurs extensively in the Crenarchaeota, a major kingdom in the Archaea. However, the enzymes responsible for this type of posttranslational modification have not been found. Here we report the identification and characterization of the first crenarchaeal protein lysine methyltransferase, designated aKMT, from the hyperthermophilic crenarchaeon Sulfolobus islandicus. The enzyme was capable of transferring methyl groups to selected lysine residues in a substrate protein using S-adenosyl-l-methionine (SAM) as the methyl donor. aKMT, a non-SET domain protein, is highly conserved among crenarchaea, and distantly related homologs also exist in Bacteria and Eukarya. aKMT was active over a wide range of temperatures, from ~25 to 90 °C, with an optimal temperature at ~60 to 70 °C. Amino acid residues Y9 and T12 at the N terminus appear to be the key residues in the putative active site of aKMT, as indicated by sequence conservation and site-directed mutagenesis. Although aKMT was identified based on its methylating activity on Cren7, the crenarchaeal chromatin protein, it exhibited broad substrate specificity and was capable of methylating a number of recombinant Sulfolobus proteins overproduced in Escherichia coli. The finding of aKMT will help elucidate mechanisms underlining extensive protein lysine methylation and the functional significance of posttranslational protein methylation in crenarchaea.
Collapse
|
20
|
Mei Y, Peng N, Zhao S, Hu Y, Wang H, Liang Y, She Q. Exceptional thermal stability and organic solvent tolerance of an esterase expressed from a thermophilic host. Appl Microbiol Biotechnol 2011; 93:1965-74. [PMID: 21847512 DOI: 10.1007/s00253-011-3504-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 07/07/2011] [Accepted: 07/19/2011] [Indexed: 11/29/2022]
Abstract
A protein expression system recently developed for the thermophilic crenarchaeon Sulfolobus islandicus was employed to produce recombinant protein for EstA, a thermophilic esterase encoded in the same organism. Large amounts of protein were readily obtained by an affinity protein purification, giving SisEstA. Upon Escherichia coli expression, only the thioredoxin-tagged EstA recombinant protein was soluble. The fusion protein was then purified, and removing the protein tag yielded EcSisEstA. Both forms of the thermophilic EstA enzyme were characterized. We found that SisEstA formed dimer exclusively in solution, whereas EcSisEstA appeared solely as monomer. The former exhibited a stronger resistance to organic solvents than the latter in general, having a much higher temperature optimum (90°C vs. 65°C). More strikingly, SisEstA exhibited a half-life that was more than 32-fold longer than that of EcSisEstA at 90°C. This indicated that thermophilic enzymes yielded from homologous expression should be better biocatalysts than those obtained from mesophilic expression.
Collapse
Affiliation(s)
- Yuxia Mei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
21
|
Rodrigues RC, Berenguer-Murcia Á, Fernandez-Lafuente R. Coupling Chemical Modification and Immobilization to Improve the Catalytic Performance of Enzymes. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100163] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Webb KJ, Al-Hadid Q, Zurita-Lopez CI, Young BD, Lipson RS, Clarke SG. The ribosomal l1 protuberance in yeast is methylated on a lysine residue catalyzed by a seven-beta-strand methyltransferase. J Biol Chem 2011; 286:18405-13. [PMID: 21460220 DOI: 10.1074/jbc.m110.200410] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modification of proteins of the translational apparatus is common in many organisms. In the yeast Saccharomyces cerevisiae, we provide evidence for the methylation of Rpl1ab, a well conserved protein forming the ribosomal L1 protuberance of the large subunit that functions in the release of tRNA from the exit site. We show that the intact mass of Rpl1ab is 14 Da larger than its calculated mass with the previously described loss of the initiator methionine residue and N-terminal acetylation. We determined that the increase in mass of yeast Rpl1ab is consistent with the addition of a methyl group to lysine 46 using top-down mass spectrometry. Lysine modification was confirmed by detecting (3)H-N-ε-monomethyllysine in hydrolysates of Rpl1ab purified from yeast cells radiolabeled in vivo with S-adenosyl-l-[methyl-(3)H]methionine. Mass spectrometric analysis of intact Rpl1ab purified from 37 deletion strains of known and putative yeast methyltransferases revealed that only the deletion of the YLR137W gene, encoding a seven-β-strand methyltransferase, results in the loss of the +14-Da modification. We expressed the YLR137W gene as a His-tagged protein in Escherichia coli and showed that it catalyzes N-ε-monomethyllysine formation within Rpl1ab on ribosomes from the ΔYLR137W mutant strain lacking the methyltransferase activity but not from wild-type ribosomes. We also showed that the His-tagged protein could catalyze monomethyllysine formation on a 16-residue peptide corresponding to residues 38-53 of Rpl1ab. We propose that the YLR137W gene be given the standard name RKM5 (ribosomal lysine (K) methyltransferase 5). Orthologs of RKM5 are found only in fungal species, suggesting a role unique to their survival.
Collapse
Affiliation(s)
- Kristofor J Webb
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California 90095-1569, USA
| | | | | | | | | | | |
Collapse
|
23
|
Extensive lysine methylation in hyperthermophilic crenarchaea: potential implications for protein stability and recombinant enzymes. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010. [PMID: 20811616 PMCID: PMC2929605 DOI: 10.1155/2010/106341] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 07/01/2010] [Indexed: 11/18/2022]
Abstract
In eukarya and bacteria, lysine methylation is relatively rare and is catalysed by sequence-specific lysine methyltransferases that typically have only a single-protein target. Using RNA polymerase purified from the thermophilic crenarchaeum Sulfolobus solfataricus, we identified 21 methyllysines distributed across 9 subunits of the enzyme. The modified lysines were predominantly in alpha-helices and showed no conserved sequence context. A limited survey of the Thermoproteus tenax proteome revealed widespread modification with 52 methyllysines in 30 different proteins. These observations suggest the presence of an unusual lysine methyltransferase with relaxed specificity in the crenarchaea. Since lysine methylation is known to enhance protein thermostability, this may be an adaptation to a thermophilic lifestyle. The implications of this modification for studies and applications of recombinant crenarchaeal enzymes are discussed.
Collapse
|
24
|
Castrec B, Laurent S, Henneke G, Flament D, Raffin JP. The glycine-rich motif of Pyrococcus abyssi DNA polymerase D is critical for protein stability. J Mol Biol 2010; 396:840-8. [PMID: 20070946 DOI: 10.1016/j.jmb.2010.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/03/2009] [Accepted: 01/05/2010] [Indexed: 12/11/2022]
Abstract
A glycine-rich motif described as being involved in human polymerase delta proliferating cell nuclear antigen (PCNA) binding has also been identified in all euryarchaeal DNA polymerase D (Pol D) family members. We redefined the motif as the (G)-PYF box. In the present study, Pol D (G)-PYF box motif mutants from Pyrococcus abyssi were generated to investigate its role in functional interactions with the cognate PCNA. We demonstrated that this motif is not essential for interactions between PabPol D (P. abyssi Pol D) and PCNA, using surface plasmon resonance and primer extension studies. Interestingly, the (G)-PYF box is located in a hydrophobic region close to the active site. The (G)-PYF box mutants exhibited altered DNA binding properties. In addition, the thermal stability of all mutants was reduced compared to that of wild type, and this effect could be attributed to increased exposure of the hydrophobic region. These studies suggest that the (G)-PYF box motif mediates intersubunit interactions and that it may be crucial for the thermostability of PabPol D.
Collapse
Affiliation(s)
- Benoît Castrec
- Université de Bretagne Occidentale, UMR 6197, Laboratoire de Microbiologie et Environnements Extrêmes, BP 70, F-29280 Plouzané, France
| | | | | | | | | |
Collapse
|
25
|
Hawe A, Sutter M, Jiskoot W. Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res 2008; 25:1487-99. [PMID: 18172579 PMCID: PMC2440933 DOI: 10.1007/s11095-007-9516-9] [Citation(s) in RCA: 885] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 12/05/2007] [Indexed: 11/16/2022]
Abstract
Noncovalent, extrinsic fluorescent dyes are applied in various fields of protein analysis, e.g. to characterize folding intermediates, measure surface hydrophobicity, and detect aggregation or fibrillation. The main underlying mechanisms, which explain the fluorescence properties of many extrinsic dyes, are solvent relaxation processes and (twisted) intramolecular charge transfer reactions, which are affected by the environment and by interactions of the dyes with proteins. In recent time, the use of extrinsic fluorescent dyes such as ANS, Bis-ANS, Nile Red, Thioflavin T and others has increased, because of their versatility, sensitivity and suitability for high-throughput screening. The intention of this review is to give an overview of available extrinsic dyes, explain their spectral properties, and show illustrative examples of their various applications in protein characterization.
Collapse
Affiliation(s)
- Andrea Hawe
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Marc Sutter
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- Novartis Pharma AG, WSJ-316.4.14, CH-4056 Basel, Switzerland
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
26
|
Assiddiq BF, Snijders APL, Chong PK, Wright PC, Dickman MJ. Identification and Characterization of Sulfolobus solfataricus P2 Proteome Using Multidimensional Liquid Phase Protein Separations. J Proteome Res 2008; 7:2253-61. [DOI: 10.1021/pr7006472] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Bobby F. Assiddiq
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Ambrosius P. L. Snijders
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Poh Kuan Chong
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Phillip C. Wright
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Mark. J. Dickman
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| |
Collapse
|
27
|
Serological reactivity and biochemical characterization of methylated and unmethylated forms of a recombinant protein fragment derived from outer membrane protein B of Rickettsia typhi. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:684-90. [PMID: 18287575 DOI: 10.1128/cvi.00281-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rickettsia typhi, an obligate intracellular bacterium that causes murine typhus, possesses a heavily methylated outer membrane protein B (OmpB) antigen. This immunodominant antigen is responsible for serological reactions and is capable of eliciting protective immune responses with a guinea pig model. Western blot analysis of partially digested OmpB with patient sera revealed that most of the reactive fragments are larger than 20 kDa. One of these fragments, which is located at the N terminus (amino acids 33 to 273), fragment A (At), has been expressed in Escherichia coli. The expressed protein (rAt) was purified by chromatography and properly refolded by sequential dialysis. The refolded rAt protein was recognized by at least 87% of the typhus group patient sera as determined by enzyme-linked immunosorbent assay (ELISA). However, the titers were lower than those obtained with OmpB of R. typhi. Since native OmpB is hypermethylated at lysine residues, we chemically methylated the lysine residues in rAt. The methylation was confirmed by amino acid composition analysis, and the methylation pattern of the methylated rAt (mrAt) protein was similar to that of native At from OmpB, as revealed by liquid chromatography-mass spectrometry analysis. Both rAt and mrAt were evaluated in an ELISA for their serological reactivity with patient sera. Among patient sera tested, 83% exhibited higher titers with mrAt than with rAt. These results suggest that rAt, with or without methylation, can potentially replace rickettsia-derived OmpB or whole-cell antigen for the diagnosis of R. typhi infection.
Collapse
|
28
|
León M, Isorna P, Menéndez M, Sanz-Aparicio J, Polaina J. Comparative study and mutational analysis of distinctive structural elements of hyperthermophilic enzymes. Protein J 2007; 26:435-44. [PMID: 17503162 DOI: 10.1007/s10930-007-9083-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Comparison of the three-dimensional structure of hyperthermophilic and mesophilic beta-glycosidases shows differences in secondary structure composition. The enzymes from hyperthermophilic archaea have a significantly larger number of beta-strands arranged in supernumerary beta-sheets compared to mesophilic enzymes from bacteria and other organisms. Amino acid replacements designed to alter the structure of the supernumerary beta-strands were introduced by site directed mutagenesis into the sequence encoding the beta-glycosidase from Sulfolobus solfataricus. Most of the replacements caused almost complete loss of activity but some yielded enzyme variants whose activities were affected specifically at higher temperatures. Far-UV CD spectra recorded as a function of temperature for both wild type beta-glycosidase and mutant V349G, one of the mutants with reduced activity at higher temperatures, were similar, showing that the protein structure of the mutant was stable at the highest temperatures assayed. The properties of mutant V349G show a difference between thermostability (stability of the protein structure at high temperatures) and thermophilicity (optimal activity at high temperatures).
Collapse
Affiliation(s)
- Maela León
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Apdo. de Correos 73, Burjassot, Valencia, E46100, Spain
| | | | | | | | | |
Collapse
|
29
|
Zhou XX, Wang YB, Pan YJ, Li WF. Differences in amino acids composition and coupling patterns between mesophilic and thermophilic proteins. Amino Acids 2007; 34:25-33. [PMID: 17710363 DOI: 10.1007/s00726-007-0589-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 07/12/2007] [Indexed: 10/22/2022]
Abstract
Thermophilic proteins show substantially higher intrinsic thermal stability than their mesophilic counterparts. Amino acid composition is believed to alter the intrinsic stability of proteins. Several investigations and mutagenesis experiment have been carried out to understand the amino acid composition for the thermostability of proteins. This review presents some generalized features of amino acid composition found in thermophilic proteins, including an increase in residue hydrophobicity, a decrease in uncharged polar residues, an increase in charged residues, an increase in aromatic residues, certain amino acid coupling patterns and amino acid preferences for thermophilic proteins. The differences of amino acids composition between thermophilic and mesophilic proteins are related to some properties of amino acids. These features provide guidelines for engineering mesophilic protein to thermophilic protein.
Collapse
Affiliation(s)
- X-X Zhou
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou, China
| | | | | | | |
Collapse
|
30
|
Dirk LMA, Trievel RC, Houtz RL. 7 Non-histone protein lysine methyltransferases: Structure and catalytic roles. Enzymes 2007; 24:179-228. [PMID: 26718041 DOI: 10.1016/s1874-6047(06)80009-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Non-histone protein lysine methyltransferases (PKMTs) represent an exceptionally diverse and large group of PKMTs. Even accepting the possibility of multiple protein substrates, if the number of different proteins with methylated lysyl residues and the number of residues modified is indicative of individual PKMTs there are well over a hundred uncharacterized PKMTs. Astoundingly, only a handful of PKMTs have been studied, and of these only a few with identifiable and well-characterized structure and biochemical properties. Four representative PKMTs responsible for trimethyllysyl residues in ribosomal protein LI 1, calmodulin, cytochrome c, and Rubisco are herein examined for enzymological properties, polypeptide substrate specificity, functional significance, and structural characteristics. Although representative of non-histone PKMTs, and enzymes for whichcollectively there is a large amount of information, individually each of the PKMTs discussed in this chapter suffers from a lack of at least some critical information. Other than the obvious commonality in the AdoMet substrate cofactor and methyl group transfer, these enzymes do not have common structural features, polypeptide substrate specificity, or protein sequence. However, there may be a commonality that supports the hypothesis that methylated lysyl residues act as global determinants regulating specific protein-protein interactions.
Collapse
Affiliation(s)
- Lynnette M A Dirk
- Department of Horticulture University of Kentucky 407 Plant Science Building Lexington, KY 40546, USA
| | - Raymond C Trievel
- Department of Biological Chemistry University of Michigan Medical School Medical Science Building 1 Ann Arbor, MI 48109, USA
| | - Robert L Houtz
- Department of Horticulture University of Kentucky 407 Plant Science Building Lexington, KY 40546, USA
| |
Collapse
|
31
|
Herman P, Staiano M, Marabotti A, Varriale A, Scirè A, Tanfani F, Vecer J, Rossi M, D'Auria S. D-Trehalose/D-maltose-binding protein from the hyperthermophilic archaeon Thermococcus litoralis: The binding of trehalose and maltose results in different protein conformational states. Proteins 2006; 63:754-67. [PMID: 16532450 DOI: 10.1002/prot.20952] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this work, we used fluorescence spectroscopy, molecular dynamics simulation, and Fourier transform infrared spectroscopy for investigating the effect of trehalose binding and maltose binding on the structural properties and the physical parameters of the recombinant D-trehalose/D-maltose binding protein (TMBP) from the hyperthermophilic archaeon Thermococcus litoralis. The binding of the two sugars to TMBP was studied in the temperature range 20 degrees-100 degrees C. The results show that TMBP possesses remarkable temperature stability and its secondary structure does not melt up to 90 degrees C. Although both the secondary structure itself and the sequence of melting events were not significantly affected by the sugar binding, the protein assumes different conformations with different physical properties depending whether maltose or trehalose is bound to the protein. At low and moderate temperatures, TMBP possesses a structure that is highly compact both in the absence and in the presence of two sugars. At about 90 degrees C, the structure of the unliganded TMBP partially relaxes whereas both the TMBP/maltose and the TMBP/trehalose complexes remain in the compact state. In addition, Fourier transform infrared results show that the population of alpha-helices exposed to the solvent was smaller in the absence than in the presence of the two sugars. The spectroscopic results are supported by molecular dynamics simulations. Our data on dynamics and stability of TMBP can contribute to a better understanding of transport-related functions of TMBP and constitute ground for targeted modifications of this protein for potential biotechnological applications.
Collapse
Affiliation(s)
- Petr Herman
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
One of the first hurdles to be negotiated in the postgenomic era involves the description of the entire protein content of the cell, the proteome. Such efforts are presently complicated by the various posttranslational modifications that proteins can experience, including glycosylation, lipid attachment, phosphorylation, methylation, disulfide bond formation, and proteolytic cleavage. Whereas these and other posttranslational protein modifications have been well characterized in Eucarya and Bacteria, posttranslational modification in Archaea has received far less attention. Although archaeal proteins can undergo posttranslational modifications reminiscent of what their eucaryal and bacterial counterparts experience, examination of archaeal posttranslational modification often reveals aspects not previously observed in the other two domains of life. In some cases, posttranslational modification allows a protein to survive the extreme conditions often encountered by Archaea. The various posttranslational modifications experienced by archaeal proteins, the molecular steps leading to these modifications, and the role played by posttranslational modification in Archaea form the focus of this review.
Collapse
Affiliation(s)
- Jerry Eichler
- Dept. of Life Sciences, Ben Gurion University, P.O. Box 653, Beersheva 84105, Israel.
| | | |
Collapse
|