1
|
Cohen Y, Adar S. Novel insights into bulky DNA damage formation and nucleotide excision repair from high-resolution genomics. DNA Repair (Amst) 2023; 130:103549. [PMID: 37566959 DOI: 10.1016/j.dnarep.2023.103549] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
DNA damages compromise cell function and fate. Cells of all organisms activate a global DNA damage response that includes a signaling stress response, activation of checkpoints, and recruitment of repair enzymes. Especially deleterious are bulky, helix-distorting damages that block transcription and replication. Due to their miscoding nature, these damages lead to mutations and cancer. In human cells, bulky DNA damages are repaired by nucleotide excision repair (NER). To date, the basic mechanism of NER in naked DNA is well defined. Still, there is a fundamental gap in our understanding of how repair is orchestrated despite the packaging of DNA in chromatin, and how it is coordinated with active transcription and replication. The last decade has brought forth huge advances in our ability to detect and assay bulky DNA damages and their repair at single nucleotide resolution across the human genome. Here we review recent findings on the effect of chromatin and DNA-binding proteins on the formation of bulky DNA damages, and novel insights on NER, provided by the recent application of genomic methods.
Collapse
Affiliation(s)
- Yuval Cohen
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| |
Collapse
|
2
|
Mielko Z, Zhang Y, Sahay H, Liu Y, Schaich MA, Schnable B, Morrison AM, Burdinski D, Adar S, Pufall M, Van Houten B, Gordân R, Afek A. UV irradiation remodels the specificity landscape of transcription factors. Proc Natl Acad Sci U S A 2023; 120:e2217422120. [PMID: 36888663 PMCID: PMC10089200 DOI: 10.1073/pnas.2217422120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/09/2023] [Indexed: 03/09/2023] Open
Abstract
Somatic mutations are highly enriched at transcription factor (TF) binding sites, with the strongest trend being observed for ultraviolet light (UV)-induced mutations in melanomas. One of the main mechanisms proposed for this hypermutation pattern is the inefficient repair of UV lesions within TF-binding sites, caused by competition between TFs bound to these lesions and the DNA repair proteins that must recognize the lesions to initiate repair. However, TF binding to UV-irradiated DNA is poorly characterized, and it is unclear whether TFs maintain specificity for their DNA sites after UV exposure. We developed UV-Bind, a high-throughput approach to investigate the impact of UV irradiation on protein-DNA binding specificity. We applied UV-Bind to ten TFs from eight structural families, and found that UV lesions significantly altered the DNA-binding preferences of all the TFs tested. The main effect was a decrease in binding specificity, but the precise effects and their magnitude differ across factors. Importantly, we found that despite the overall reduction in DNA-binding specificity in the presence of UV lesions, TFs can still compete with repair proteins for lesion recognition, in a manner consistent with their specificity for UV-irradiated DNA. In addition, for a subset of TFs, we identified a surprising but reproducible effect at certain nonconsensus DNA sequences, where UV irradiation leads to a high increase in the level of TF binding. These changes in DNA-binding specificity after UV irradiation, at both consensus and nonconsensus sites, have important implications for the regulatory and mutagenic roles of TFs in the cell.
Collapse
Affiliation(s)
- Zachery Mielko
- Program in Genetics and Genomics, Duke University School of Medicine, Durham, NC 27708
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27708
- Department of Computer Science, Duke University, Durham, NC 27708
| | - Yuning Zhang
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27708
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27708
| | - Harshit Sahay
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27708
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham NC 27708
| | - Yiling Liu
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27708
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham NC 27708
| | - Matthew A Schaich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- UPMC-Hillman Cancer Center, Pittsburgh, PA 15213
| | - Brittani Schnable
- UPMC-Hillman Cancer Center, Pittsburgh, PA 15213
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Abigail M Morrison
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Debbie Burdinski
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Miles Pufall
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242
| | - Bennett Van Houten
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham NC 27708
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- UPMC-Hillman Cancer Center, Pittsburgh, PA 15213
- Molecular Biophysics and Structural Biology Program, University of Pittsburgh, Pittsburgh, PA 15213
| | - Raluca Gordân
- Department of Computer Science, Duke University, Durham, NC 27708
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27708
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27708
| | - Ariel Afek
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Roberts SA, Brown AJ, Wyrick JJ. Recurrent Noncoding Mutations in Skin Cancers: UV Damage Susceptibility or Repair Inhibition as Primary Driver? Bioessays 2019; 41:e1800152. [PMID: 30801747 PMCID: PMC6571124 DOI: 10.1002/bies.201800152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/05/2018] [Indexed: 12/14/2022]
Abstract
Somatic mutations arising in human skin cancers are heterogeneously distributed across the genome, meaning that certain genomic regions (e.g., heterochromatin or transcription factor binding sites) have much higher mutation densities than others. Regional variations in mutation rates are typically not a consequence of selection, as the vast majority of somatic mutations in skin cancers are passenger mutations that do not promote cell growth or transformation. Instead, variations in DNA repair activity, due to chromatin organization and transcription factor binding, have been proposed to be a primary driver of mutational heterogeneity in melanoma. However, as discussed in this review here, recent studies indicate that chromatin organization and transcription factor binding also significantly modulate the rate at which UV lesions form in DNA. The authors propose that local variations in lesion susceptibility may be an important driver of mutational hotspots in melanoma and other skin cancers, particularly at binding sites for ETS transcription factors.
Collapse
Affiliation(s)
- Steven A. Roberts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - Alexander J. Brown
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - John J. Wyrick
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| |
Collapse
|
4
|
Mao P, Wyrick JJ, Roberts SA, Smerdon MJ. UV-Induced DNA Damage and Mutagenesis in Chromatin. Photochem Photobiol 2016; 93:216-228. [PMID: 27716995 DOI: 10.1111/php.12646] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022]
Abstract
UV radiation induces photolesions that distort the DNA double helix and, if not repaired, can cause severe biological consequences, including mutagenesis or cell death. In eukaryotes, both the formation and repair of UV damage occur in the context of chromatin, in which genomic DNA is packaged with histones into nucleosomes and higher order chromatin structures. Here, we review how chromatin impacts the formation of UV photoproducts in eukaryotic cells. We describe the initial discovery that nucleosomes and other DNA binding proteins induce characteristic "photofootprints" during the formation of UV photoproducts. We also describe recent progress in genomewide methods for mapping UV damage, which echoes early biochemical studies, and highlights the role of nucleosomes and transcription factors in UV damage formation and repair at unprecedented resolution. Finally, we discuss our current understanding of how the distribution and repair of UV-induced DNA damage influence mutagenesis in human skin cancers.
Collapse
Affiliation(s)
- Peng Mao
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA.,Center for Reproductive Biology, Washington State University, Pullman, WA
| | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Michael J Smerdon
- School of Molecular Biosciences, Washington State University, Pullman, WA
| |
Collapse
|
5
|
Gamma Radiation-Induced Damage in the Zinc Finger of the Transcription Factor IIIA. Bioinorg Chem Appl 2016; 2016:1642064. [PMID: 27803644 PMCID: PMC5075647 DOI: 10.1155/2016/1642064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/18/2016] [Indexed: 11/24/2022] Open
Abstract
A zinc finger motif is an element of proteins that can specifically recognize and bind to DNA. Because they contain multiple cysteine residues, zinc finger motifs possess redox properties. Ionizing radiation generates a variety of free radicals in organisms. Zinc finger motifs, therefore, may be a target of ionizing radiation. The effect of gamma radiation on the zinc finger motifs in transcription factor IIIA (TFIIIA), a zinc finger protein, was investigated. TFIIIA was exposed to different gamma doses from 60Co sources. The dose rates were 0.20 Gy/min and 800 Gy/h, respectively. The binding capacity of zinc finger motifs in TFIIIA was determined using an electrophoretic mobility shift assay. We found that 1000 Gy of gamma radiation impaired the function of the zinc finger motifs in TFIIIA. The sites of radiation-induced damage in the zinc finger were the thiol groups of cysteine residues and zinc (II) ions. The thiol groups were oxidized to form disulfide bonds and the zinc (II) ions were indicated to be reduced to zinc atoms. These results indicate that the zinc finger motif is a target domain for gamma radiation, which may decrease 5S rRNA expression via impairment of the zinc finger motifs in TFIIIA.
Collapse
|
6
|
Abstract
In eukaryotic cells, DNA associates with histones and exists in the form of a chromatin hierarchy. Thus, it is generally believed that many eukaryotic cellular DNA processing events such as replication, transcription, recombination and DNA repair are influenced by the packaging of DNA into chromatin. This mini-review covers the current knowledge of DNA damage and repair in chromatin based on in vitro studies. Specifically, nucleosome assembly affects DNA damage formation in both random sequences and sequences with strong nucleosome-positioning signals such as 5S rDNA. At least three systems have been used to analyze the effect of nucleosome folding on nucleotide excision repair (NER) in vitro: (a) human cell extracts that have to rely on labeling of repair synthesis to monitor DNA repair, due to very low repair efficacy; (b) Xenopus oocyte nuclear extracts, that have very robust DNA repair efficacy, have been utilized to follow direct removal of DNA damage; (c) six purified human DNA repair factors (RPA, XPA, XPC, TFIIH, XPG, and XPF-ERCC1) that have been used to reconstitute excision repair in vitro. In general, the results have shown that nucleosome folding inhibits NER and, therefore, its activity must be enhanced by chromatin remodeling factors like SWI/SNF. In addition, binding of transcription factors such as TFIIIA to the 5S rDNA promoter also modulates NER efficacy.
Collapse
Affiliation(s)
- Xiaoqi Liu
- Department of Biochemistry and Center for Cancer Research, Purdue University, 175 S. University Street, West Lafayette, IN 47907, United States.
| |
Collapse
|
7
|
Hinz AK, Wang Y, Smerdon MJ. Base excision repair in a glucocorticoid response element: effect of glucocorticoid receptor binding. J Biol Chem 2010; 285:28683-90. [PMID: 20628060 PMCID: PMC2937895 DOI: 10.1074/jbc.m110.113530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
DNA repair takes place in the context of chromatin. Previous studies showed that histones impair base excision repair (BER) of modified bases at both the excision and synthesis steps. We examined BER of uracil in a glucocorticoid response element (GRE) complexed with the glucocorticoid receptor DNA binding domain (GR-DBD). Five substrates were designed, each containing a unique C→U substitution within the mouse mammary tumor virus promoter, one located within each GRE half-site and the others located outside the GRE. To examine distinct steps of BER, DNA cleavage by uracil-DNA glycosylase and Ape1 endonuclease was used to assess initiation, dCTP incorporation by DNA polymerase (pol) β was used to measure repair synthesis, and DNA ligase I was used to seal the nick. For uracil sites within the GRE, there was a reduced rate of uracil-DNA glycosylase/Ape1 activity following GR-DBD binding. Cleavage in the right half-site, with higher GR-DBD binding affinity, was reduced ∼5-fold, whereas cleavage in the left half-site was reduced ∼3.8-fold. Conversely, uracil-directed cleavage outside the GRE was unaffected by GR-DBD binding. Surprisingly, there was no reduction in the rate of pol β synthesis or DNA ligase activity on any of the fragments bound to GR-DBD. Indeed, we observed a small increase (∼1.5–2.2-fold) in the rate of pol β synthesis at uracil residues in both the GRE and one site six nucleotides downstream. These results highlight the potential for both positive and negative impacts of DNA-transcription factor binding on the rate of BER.
Collapse
Affiliation(s)
- Angela K Hinz
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520, USA
| | | | | |
Collapse
|
8
|
Gong F, Kwon Y, Smerdon MJ. Nucleotide excision repair in chromatin and the right of entry. DNA Repair (Amst) 2007; 4:884-96. [PMID: 15961354 DOI: 10.1016/j.dnarep.2005.04.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2005] [Indexed: 11/22/2022]
Abstract
DNA is packaged with histones and other accessory proteins into chromatin in eukaryotic cells. It is well established that the assembly of DNA into chromatin affects induction of DNA damage as well as repair of the damage. How the DNA repair machinery detects a lesion and 'fixes it' in chromatin has been an intriguing question since the dawn of understanding DNA packaging in chromatin. Direct recognition/binding by damaged DNA binding proteins is one obvious tactic to detect a lesion. Rearrangement of chromatin structure during DNA repair was reported more than two decades ago. This early observation suggests that unfolding of chromatin structure may be required to facilitate DNA repair after lesions are detected. Cells can also exploit DNA processing events to assist DNA repair. Transcription coupled repair (TCR) is such an example. During TCR, an RNA polymerase blocked by a lesion, may act as a signal to recruit DNA repair machinery. Possible roles of histone modification enzymes, ATP-dependent chromatin remodeling complexes and chromatin assembly factors in DNA repair are discussed.
Collapse
Affiliation(s)
- Feng Gong
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, USA
| | | | | |
Collapse
|
9
|
Jiang G, Sancar A. Recruitment of DNA damage checkpoint proteins to damage in transcribed and nontranscribed sequences. Mol Cell Biol 2006; 26:39-49. [PMID: 16354678 PMCID: PMC1317637 DOI: 10.1128/mcb.26.1.39-49.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed a chromatin immunoprecipitation method for analyzing the binding of repair and checkpoint proteins to DNA base lesions in any region of the human genome. Using this method, we investigated the recruitment of DNA damage checkpoint proteins RPA, Rad9, and ATR to base damage induced by UV and acetoxyacetylaminofluorene in transcribed and nontranscribed regions in wild-type and excision repair-deficient human cells in G1 and S phases of the cell cycle. We find that all 3 damage sensors tested assemble at the site or in the vicinity of damage in the absence of DNA replication or repair and that transcription enhances recruitment of checkpoint proteins to the damage site. Furthermore, we find that UV irradiation of human cells defective in excision repair leads to phosphorylation of Chk1 kinase in both G1 and S phase of the cell cycle, suggesting that primary DNA lesions as well as stalled transcription complexes may act as signals to initiate the DNA damage checkpoint response.
Collapse
Affiliation(s)
- Guochun Jiang
- Department of Biochemistry and Biophysics, Mary Ellen Jones Building CB 7260, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
10
|
Kwon Y, Smerdon MJ. DNA repair in a protein-DNA complex: searching for the key to get in. Mutat Res 2005; 577:118-30. [PMID: 15913668 DOI: 10.1016/j.mrfmmm.2005.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 02/12/2005] [Accepted: 02/12/2005] [Indexed: 11/20/2022]
Abstract
An obstacle encountered by nucleotide excision repair (NER) proteins during repair of the genome is the masking of bulky lesions by DNA binding proteins. For example, certain transcription factors are known to be impediments, and suppress damage removal at their recognition sequences. We have used well-defined protein-DNA complexes to study the molecular mechanism(s) used by repair proteins in gaining access to DNA lesions in chromatin. Using transcription factor IIIA (TFIIIA) and the 5S ribosomal RNA gene (5S rDNA), we previously measured position-dependent effects of cyclobutane pyrimidine dimers (CPDs) at five different sites within the internal control region (ICR) on complex formation [Y. Kwon, M.J. Smerdon, Binding of zinc finger protein transcription factor IIIA to its cognate DNA sequence with single UV photoproducts at specific sites and its effect on DNA repair, J. Biol. Chem. 278 (2003) 45451-45459]. We found that CPDs at two of these sites enhance the TFIIIA-rDNA dissociation rate, which correlates with enhanced repair at these two sites. Here, we used a novel approach to directly compare dissociation of randomly damaged rDNA with NER. We refined the relationship between dissociation and repair of the complex by examining all CPD sites in the transcribed strand. A 214 bp 5S rDNA fragment was irradiated with UV light to produce CPDs at dipyrimidine sites and approximately 1 CPD per fragment. Positions of CPDs that alter binding of TFIIIA were determined by T4 endonuclease V mapping of TFIIIA-bound and unbound fractions of UV-irradiated DNA. As expected, the results reveal that dissociation of TFIIIA from the complex is significantly enhanced by CPDs within the ICR. Moreover, the levels of dissociation induced by CPDs were quantitatively compared with their repair efficiency, and indicate that repair rates of most CPDs in the complex closely correlate with the dissociation rates. In addition, changes in dissociation rate are similar to changes in CPD frequency induced by TFIIIA binding. These findings indicate that structural compatibility of a DNA lesion within a protein-DNA complex can determine both lesion frequency and repair efficiency.
Collapse
Affiliation(s)
- Youngho Kwon
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, USA
| | | |
Collapse
|
11
|
Adair JE, Kwon Y, Dement GA, Smerdon MJ, Reeves R. Inhibition of nucleotide excision repair by high mobility group protein HMGA1. J Biol Chem 2005; 280:32184-92. [PMID: 16033759 DOI: 10.1074/jbc.m505600200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian non-histone "high mobility group" A (HMGA) proteins are the primary nuclear proteins that bind to the minor groove of AT-rich DNA. They may, therefore, influence the formation and/or repair of DNA lesions that occur in AT-rich DNA, such as cyclobutane pyrimidine dimers (CPDs) induced by UV radiation. Employing both stably transfected lines of human MCF7 cells containing tetracycline-regulated HMGA1 transgenes and primary Hs578T tumor cells, which naturally overexpress HMGA1 proteins, we have shown that cells overexpressing HMGA1a protein exhibit increased UV sensitivity. Moreover, we demonstrated that knockdown of intracellular HMGA1 concentrations via two independent methods abrogated this sensitivity. Most significantly, we observed that HMGA1a overexpression inhibited global genomic nucleotide excision repair of UV-induced CPD lesions in MCF-7 cells. Consistent with these findings in intact cells, DNA repair experiments employing Xenopus oocyte nuclear extracts and lesion-containing DNA substrates demonstrated that binding of HMGA1a markedly inhibits removal of CPDs in vitro. Furthermore, UV "photo-foot-printing" demonstrated that CPD formation within a long run of Ts (T(18)-tract) in a DNA substrate changes significantly when HMGA1 is bound prior to UV irradiation. Together, these results suggest that HMGA1 directly influences both the formation and repair of UV-induced DNA lesions in intact cells. These findings have important implications for the role that HMGA protein overexpression might play in the accumulation of mutations and genomic instabilities associated with many types of human cancers.
Collapse
Affiliation(s)
- Jennifer E Adair
- School of Molecular Biosciences, Biochemistry, and Biophysics, Washingston State University, Pullman, 99164-4660, USA
| | | | | | | | | |
Collapse
|