1
|
Crotty KM, Yeligar SM. Hyaladherins May be Implicated in Alcohol-Induced Susceptibility to Bacterial Pneumonia. Front Immunol 2022; 13:865522. [PMID: 35634317 PMCID: PMC9133445 DOI: 10.3389/fimmu.2022.865522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Although the epidemiology of bacterial pneumonia and excessive alcohol use is well established, the mechanisms by which alcohol induces risk of pneumonia are less clear. Patterns of alcohol misuse, termed alcohol use disorders (AUD), affect about 15 million people in the United States. Compared to otherwise healthy individuals, AUD increase the risk of respiratory infections and acute respiratory distress syndrome (ARDS) by 2-4-fold. Levels and fragmentation of hyaluronic acid (HA), an extracellular glycosaminoglycan of variable molecular weight, are increased in chronic respiratory diseases, including ARDS. HA is largely involved in immune-assisted wound repair and cell migration. Levels of fragmented, low molecular weight HA are increased during inflammation and decrease concomitant with leukocyte levels following injury. In chronic respiratory diseases, levels of fragmented HA and leukocytes remain elevated, inflammation persists, and respiratory infections are not cleared efficiently, suggesting a possible pathological mechanism for prolonged bacterial pneumonia. However, the role of HA in alcohol-induced immune dysfunction is largely unknown. This mini literature review provides insights into understanding the role of HA signaling in host immune defense following excessive alcohol use. Potential therapeutic strategies to mitigate alcohol-induced immune suppression in bacterial pneumonia and HA dysregulation are also discussed.
Collapse
Affiliation(s)
- Kathryn M Crotty
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Samantha M Yeligar
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| |
Collapse
|
2
|
Dawn A, Khatri KS, Karmakar S, Deep S. Interaction of TGFβ3 ligand with its receptors type II (TβRII) and type I (TβRI): A unique mechanism of protein-protein association. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140485. [PMID: 32652126 DOI: 10.1016/j.bbapap.2020.140485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/18/2020] [Accepted: 07/01/2020] [Indexed: 11/18/2022]
Abstract
The proper orchestration of transforming growth factor beta (TGFβ) mediated signal transduction depends upon a delicate set of interactions between specific ligands and their receptors. Here we present an in-depth profiling of the binding mechanism of TGFβ3 ligand with its type II and type I receptors (TβRII and TβRI) using isothermal titration calorimetry (ITC). Studies were carried out in acidic pH as it has great physiological relevance for TGFβ3 activity. Our findings reveal an unusual positive enthalpy (∆H) compensated by a large favourable entropy (∆S) during TGFβ3-TβRII interaction. In addition to the hydrophobic effect, we propose that a distinct conformational switch from "closed" to "open" form as experienced by TGFβ3 on binding to TβRII is contributing significantly to the increase in overall entropy of the system. Binding studies of TGFβ3 and TβRII were carried out at different pH values and salt concentrations to gain further insight into the thermodynamics of the interaction. Furthermore, the importance of hydrophobic interactions on the binding affinity of TβRII with TGFβ3 was confirmed by two TβRII variants (interfacial). Finally, a distinct shift from entropy to enthalpy dominated interaction was observed upon recruitment of TβRI to the binary complex forming the ternary complex.
Collapse
Affiliation(s)
- Amrita Dawn
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India
| | - Komal S Khatri
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India
| | - Sandip Karmakar
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India.
| |
Collapse
|
3
|
Saha P, Datta K. Multi-functional, multicompartmental hyaluronan-binding protein 1 (HABP1/p32/gC1qR): implication in cancer progression and metastasis. Oncotarget 2018. [PMID: 29535843 PMCID: PMC5828189 DOI: 10.18632/oncotarget.24082] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cancer is a complex, multi-factorial, multi-stage disease and a global threat to human health. Early detection of nature and stage of cancer is highly crucial for disease management. Recent studies have proved beyond any doubt about the involvement of the ubiquitous, myriad ligand binding, multi-functional human protein, hyaluronan-binding protein 1 (HABP1), which is identical to the splicing factor associated protein (p32) and the receptor of the globular head of the complement component (gC1qR) in tumorigenesis and cancer metastasis. Simultaneously three laboratories have discovered and named this protein separately as mentioned. Subsequently, different scientists have worked on the distinct functions in cellular processes ranging from immunological response, splicing mechanism, sperm-oocyte interactions, cell cycle regulation to cancer and have concentrated in their respective area of interest, referring it as either p32 or gC1qR or HABP1. HABP1 overexpression has been reported in almost all the tissue-specific forms of cancer and correlated with stage and poor prognosis in patients. In order to tackle this deadly disease and for therapeutic intervention, it is imperative to focus on all the regulatory aspects of this protein. Hence, this work is an attempt to combine an assortment of information on this protein to have an overview, which suggests its use as a diagnostic marker for cancer. The knowledge might assist in the designing of drugs for therapeutic intervention of HABP1/p32/gC1qR regulated specific ligand mediated pathways in cancer.
Collapse
Affiliation(s)
- Paramita Saha
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kasturi Datta
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
4
|
Saha P, Kaul R, Datta K. Human gene encoding hyaluronan binding protein 1 (HABP1/p32/gC1qR): involvement in signaling cascade. THE NUCLEUS 2017. [DOI: 10.1007/s13237-017-0207-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
5
|
Miller CR, Lee KH, Wichman HA, Ytreberg FM. Changing folding and binding stability in a viral coat protein: a comparison between substitutions accessible through mutation and those fixed by natural selection. PLoS One 2014; 9:e112988. [PMID: 25405628 PMCID: PMC4236103 DOI: 10.1371/journal.pone.0112988] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 10/23/2014] [Indexed: 11/29/2022] Open
Abstract
Previous studies have shown that most random amino acid substitutions destabilize protein folding (i.e. increase the folding free energy). No analogous studies have been carried out for protein-protein binding. Here we use a structure-based model of the major coat protein in a simple virus, bacteriophage φX174, to estimate the free energy of folding of a single coat protein and binding of five coat proteins within a pentameric unit. We confirm and extend previous work in finding that most accessible substitutions destabilize both protein folding and protein-protein binding. We compare the pool of accessible substitutions with those observed among the φX174-like wild phage and in experimental evolution with φX174. We find that observed substitutions have smaller effects on stability than expected by chance. An analysis of adaptations at high temperatures suggests that selection favors either substitutions with no effect on stability or those that simultaneously stabilize protein folding and slightly destabilize protein binding. We speculate that these mutations might involve adjusting the rate of capsid assembly. At normal laboratory temperature there is little evidence of directional selection. Finally, we show that cumulative changes in stability are highly variable; sometimes they are well beyond the bounds of single substitution changes and sometimes they are not. The variation leads us to conclude that phenotype selection acts on more than just stability. Instances of larger cumulative stability change (never via a single substitution despite their availability) lead us to conclude that selection views stability at a local, not a global, level.
Collapse
Affiliation(s)
- Craig R. Miller
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
- Department of Mathematics, University of Idaho, Moscow, Idaho
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho
| | - Kuo Hao Lee
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas
| | - Holly A. Wichman
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho
| | - F. Marty Ytreberg
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho
- Department of Physics, University of Idaho, Moscow, Idaho
- * E-mail:
| |
Collapse
|
6
|
Reed MJ, Damodarasamy M, Chan CK, Johnson MNR, Wight TN, Vernon RB. Cleavage of hyaluronan is impaired in aged dermal wounds. Matrix Biol 2012; 32:45-51. [PMID: 23022999 DOI: 10.1016/j.matbio.2012.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 09/18/2012] [Accepted: 09/19/2012] [Indexed: 10/27/2022]
Abstract
Changes in extracellular matrix (ECM) are one of many components that contribute to impaired wound healing in aging. This study examined the effect of age on the glycosaminoglycan hyaluronan (HA) in normal and wounded dermis from young (4-6 month-old) and aged (22-24 month-old) mice. HA content and size were similar in the normal dermis of young and aged mice. Dermal explants labeled with [(3)H]-glucosamine showed decreased generation of smaller forms of HA in aged explants relative to young explants. Aged mice exhibited delayed wound repair compared with young mice with the greatest differential at 5 days. Expression of hyaluronan synthase (HAS) 2 and 3, and hyaluronidase (HYAL) 1-3 mRNA in wounds of young and aged mice was similar. There was a trend toward a decreased HYAL protein expression in aged wound dermis, which was accompanied by changes in detectable HYAL activity. Total HA content was similar in young and aged wound dermis. There was significantly less HA in the lower MW range (~250 kDa and smaller) in 5-day wound dermis, but not in 9-day wound dermis, from aged mice relative to young mice. We propose that decreased cleavage of HA is an additional component of impaired dermal wound healing in aging.
Collapse
Affiliation(s)
- May J Reed
- Department of Medicine, University of Washington, Harborview Medical Center, 325 9th Ave., Seattle, WA 98104, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Jiang D, Liang J, Noble PW. Hyaluronan as an immune regulator in human diseases. Physiol Rev 2011; 91:221-64. [PMID: 21248167 DOI: 10.1152/physrev.00052.2009] [Citation(s) in RCA: 751] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Accumulation and turnover of extracellular matrix components are the hallmarks of tissue injury. Fragmented hyaluronan stimulates the expression of inflammatory genes by a variety of immune cells at the injury site. Hyaluronan binds to a number of cell surface proteins on various cell types. Hyaluronan fragments signal through both Toll-like receptor (TLR) 4 and TLR2 as well as CD44 to stimulate inflammatory genes in inflammatory cells. Hyaluronan is also present on the cell surface of epithelial cells and provides protection against tissue damage from the environment by interacting with TLR2 and TLR4. Hyaluronan and hyaluronan-binding proteins regulate inflammation, tissue injury, and repair through regulating inflammatory cell recruitment, release of inflammatory cytokines, and cell migration. This review focuses on the role of hyaluronan as an immune regulator in human diseases.
Collapse
Affiliation(s)
- Dianhua Jiang
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
8
|
Richard AJ, Liu CC, Klinger AL, Todd MJ, Mezzasalma TM, LiCata VJ. Thermal stability landscape for Klenow DNA polymerase as a function of pH and salt concentration. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1546-52. [PMID: 17015045 DOI: 10.1016/j.bbapap.2006.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 08/10/2006] [Accepted: 08/14/2006] [Indexed: 11/24/2022]
Abstract
The thermal denaturation of Klenow DNA polymerase has been characterized over a wide variety of solution conditions to obtain a relative stability landscape for the protein. Measurements were conducted utilizing a miniaturized fluorescence assay that measures Tm based on the increase in the fluorescence of 1,8-anilinonaphthalene sulfonate (ANS) when the protein denatures. The melting temperature (Tm) for Klenow increases as the salt concentration is increased and as the pH is decreased. Klenow's Tm spans a range of over 20 degrees C, from 40 to 62 degrees C, depending upon the solution conditions. The landscape reconciles and extends previously measured Tm values for Klenow. Salt effects on the stability of Klenow show strong cation dependence overlaid onto a more typical Hofmeister anion type dependence. Cationic stabilization of proteins has been far less frequently documented than anionic stabilization. The monovalent cations tested stabilize Klenow with the following hierarchy: NH4+>Na+>Li+>K+. Of the divalent cations tested: Mg+2 and Mn+2 significantly stabilize the protein, while Ni+2 dramatically destabilizes the protein. Stability measurements performed in combined Mg+2 plus Na+ salts suggest that the stabilizing effects of these monovalent and divalent cations are synergistic. The cationic stabilization of Klenow can be well explained by a model postulating dampening of repulsion within surface anionic patches on the protein.
Collapse
Affiliation(s)
- Allison J Richard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | | | |
Collapse
|