1
|
Jiang P, Majerciak V, Hu J, Balogh K, Meyer TJ, Cam M, Shearer D, Lanza M, Christensen N, Zheng ZM. The full transcription map of cottontail rabbit papillomavirus in tumor tissues. PLoS Pathog 2024; 20:e1012649. [PMID: 39453974 DOI: 10.1371/journal.ppat.1012649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/08/2024] [Indexed: 10/27/2024] Open
Abstract
Cottontail rabbit papillomavirus (CRPV), the first papillomavirus associated with tumor development, has been used as a powerful model to study papillomavirus pathogenesis for more than 90 years. However, lack of a comprehensive analysis of the CRPV transcriptome has impeded the understanding of CRPV biology and molecular pathogenesis. Here, we report the construction of a complete CRPV transcription map from Hershey CRPV-induced skin tumor tissues. By using RNA-seq in combination with long-reads PacBio Iso-seq, 5' and 3' RACE, primer-walking RT-PCR, Northern blot, and RNA in situ hybridization, we demonstrated that the CRPV genome transcribes its early and late RNA transcripts unidirectionally from at least five distinct major promoters (P) and polyadenylates its transcripts at two major polyadenylation (pA) sites. The viral early transcripts are primarily transcribed from three "early" promoters, P90, P156, and P907 and polyadenylated at nt 4368 by using an early polyadenylation signal (PAS) at nt 4351. Like other low-risk human papillomaviruses and animal papillomaviruses, CRPV E6 and E7 transcripts are transcribed from three separate early promoters. Transcripts from two "late" promoters, P7525, and P1225, utilize either an early PAS for E1^E4 or a late PAS at 7399 for L2 and L1 RNA polyadenylation at nt 7415 to express capsid L2 and L1 proteins respectively. By using the mapped four 5' splice sites and three 3' splice sites, CRPV RNA transcripts undergo extensive alternative splicing to produce more than 33 viral RNA isoforms for production of at least 12 viral proteins, some of which without codon optimization are expressible in rabbit RK13 and human HEK293T cells. The constructed full CRPV transcription map in this study for the first time will enhance our understanding of the structures and expressions of CRPV genes and their contribution to molecular pathogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Pengfei Jiang
- Tumor Virus RNA Biology Section, The HIV Dynamics and Replication Program, NCI, NIH, Frederick, Maryland, United States of America
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, The HIV Dynamics and Replication Program, NCI, NIH, Frederick, Maryland, United States of America
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Karla Balogh
- The Jake Gittlen Laboratories for Cancer Research, Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Thomas J Meyer
- CCR Collaborative Bioinformatics Resource, NCI, NIH, Bethesda, Maryland, United States of America
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, NCI, NIH, Bethesda, Maryland, United States of America
| | - Debra Shearer
- The Jake Gittlen Laboratories for Cancer Research, Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Matthew Lanza
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Neil Christensen
- The Jake Gittlen Laboratories for Cancer Research, Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, The HIV Dynamics and Replication Program, NCI, NIH, Frederick, Maryland, United States of America
| |
Collapse
|
2
|
Han F, Guo XY, Jiang MX, Xia NS, Gu Y, Li SW. Structural biology of the human papillomavirus. Structure 2024:S0969-2126(24)00380-0. [PMID: 39368462 DOI: 10.1016/j.str.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
Human papillomavirus (HPV), known for its oncogenic properties, is the primary cause of cervical cancer and significantly contributes to mortality rates. It also plays a considerable role in the globally rising incidences of head and neck cancers. These cancers pose a substantial health burden worldwide. Current limitations in diagnostic and treatment strategies, along with inadequate coverage of preventive vaccines in low- and middle-income countries, hinder the progress toward the World Health Organization (WHO) HPV prevention and control targets set for 2030. In response to these challenges, extensive research in structural virology has explored the properties of HPV proteins, yielding crucial insights into the mechanisms of HPV infection that are important for the development of prevention and therapeutic strategies. This review highlights recent advances in understanding the structures of HPV proteins and discusses achievements and future opportunities for HPV vaccine development.
Collapse
Affiliation(s)
- Feng Han
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Xin-Ying Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ming-Xia Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ning-Shao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
| | - Shao-Wei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Wu B, Koehler AN, Westcott PMK. New opportunities to overcome T cell dysfunction: the role of transcription factors and how to target them. Trends Biochem Sci 2024:S0968-0004(24)00189-0. [PMID: 39277450 DOI: 10.1016/j.tibs.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/17/2024]
Abstract
Immune checkpoint blockade (ICB) therapies, which block inhibitory receptors on T cells, can be efficacious in reinvigorating dysfunctional T cell responses. However, most cancers do not respond to these therapies and even in those that respond, tumors can acquire resistance. New strategies are needed to rescue and recruit T cell responses across patient populations and disease states. In this review, we define mechanisms of T cell dysfunction, focusing on key transcription factor (TF) networks. We discuss the complex and sometimes contradictory roles of core TFs in both T cell function and dysfunction. Finally, we review strategies to target TFs using small molecule modulators, which represent a challenging but highly promising opportunity to tune the T cell response toward sustained immunity.
Collapse
Affiliation(s)
- Bocheng Wu
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Angela N Koehler
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | |
Collapse
|
4
|
Duncan CL, Gunosewoyo H, Mocerino M, Payne AD. Small Molecule Inhibitors of Human Papillomavirus: A Review of Research from 1997 to 2021. Curr Med Chem 2024; 31:5308-5350. [PMID: 37448363 DOI: 10.2174/0929867331666230713165407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023]
Abstract
Human papillomavirus (HPV) infections are the cause of warts, lesions and cancer, with different types of HPV causing different symptoms. HPV infections are the primary cause of cervical cancer. There are over 220 different types of HPV, and only nine of these can currently be vaccinated. There is a need to treat these viral infections without just treating the symptoms of the infection, as is currently the main method. There is a wide range of small molecules that have been used to inhibit various stages of the HPV infectious cycle. This review examined 132 small molecules from 121 studies that specifically target aspects of HPV infections. HPV DNA encodes for six early genes (E1 to E7, skipping E3) and two late genes (L1 and L2). According to the results, these targets for small molecule inhibitors fall into three categories: those targeting E1 and E2, targeting E6 and E7 and, finally, targeting L1 and L2. Inhibitors of E6 and E7 are the most widely studied targets, with the majority of HPV inhibition in this area. While compounds targeting both E1/E2 and E6/E7 have made it to clinical trials, there has been no significant advancement on the topic.
Collapse
Affiliation(s)
- Caitlin L Duncan
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Hendra Gunosewoyo
- Curtin Medical School, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Mauro Mocerino
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Alan D Payne
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| |
Collapse
|
5
|
Santos TG, Silva KS, Lima RM, Silva LC, Pereira M. State of the art in protein-protein interactions within the fungi kingdom. Future Microbiol 2023; 18:1119-1131. [PMID: 37540069 DOI: 10.2217/fmb-2022-0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Proteins rarely exert their function by themselves. Protein-protein interactions (PPIs) regulate virtually every biological process that takes place in a cell. Such interactions are targets for new therapeutic agents against all sorts of diseases, through the screening and design of a variety of inhibitors. Here we discuss several aspects of PPIs that contribute to prediction of protein function and drug discovery. As the high-throughput techniques continue to release biological data, targets for fungal therapeutics that rely on PPIs are being proposed worldwide. Computational approaches have reduced the time taken to develop new therapeutic approaches. The near future brings the possibility of developing new PPI and interaction network inhibitors and a revolution in the way we treat fungal diseases.
Collapse
Affiliation(s)
- Thaynara G Santos
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74 000, Brazil
| | - Kleber Sf Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74 000, Brazil
| | - Raisa M Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74 000, Brazil
| | - Lívia C Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74 000, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74 000, Brazil
| |
Collapse
|
6
|
Yilmaz G, Biswas-Fiss EE, Biswas SB. Sequence-Dependent Interaction of the Human Papillomavirus E2 Protein with the DNA Elements on Its DNA Replication Origin. Int J Mol Sci 2023; 24:ijms24076555. [PMID: 37047526 PMCID: PMC10095481 DOI: 10.3390/ijms24076555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The human papillomavirus (HPV) E2 protein is essential for regulating the initiation of viral DNA replication as well as the regulation of transcription of certain HPV-encoded genes. Its ability to recognize and bind to its four recognition sequences in the viral origin is a key step in the initiation of HPV DNA replication. Thus, understanding the mechanism of DNA binding by E2 protein and the unique roles played by individual DNA sequence elements of the replication origin is essential. We have purified the recombinant full-length HPV type 11 E2 protein. Quantitative DNA binding analysis indicated E2 protein bound all four DNA binding sites with reasonably high affinities but with distinct preferences. It bound its cognate binding sites 1, 2, and 4 with higher affinities, but bound binding site 3 with lower affinity. Analysis of binding to these sites unraveled multiple sequence elements that appeared to influence E2 binding affinity and target discrimination, including the sequence of spacer region, flanking sequences, and proximity of E2 binding sites. Thermodynamic analysis indicated hydrophobic interaction in the protein-DNA complex formation. Our studies indicate a large multi-protein complex formation on the HPV-origin DNA, likely due to reasonably high binding affinities as well as intrinsic oligomerization propensity of E2 dimers.
Collapse
Affiliation(s)
- Gulden Yilmaz
- Department of Molecular Biology, Rowan University, Stratford, NJ 08084, USA
| | - Esther E. Biswas-Fiss
- Department of Medical and Molecular Sciences, University of Delaware, College of Health Sciences, Newark, DE 19716, USA
- Ammon Pinizzotto Biopharmaceutical Innovation Center, 590 Avenue 1743, Newark, DE 19713, USA
| | - Subhasis B. Biswas
- Department of Molecular Biology, Rowan University, Stratford, NJ 08084, USA
- Department of Medical and Molecular Sciences, University of Delaware, College of Health Sciences, Newark, DE 19716, USA
- Ammon Pinizzotto Biopharmaceutical Innovation Center, 590 Avenue 1743, Newark, DE 19713, USA
- Correspondence: ; Tel.: +1-856-264-1999
| |
Collapse
|
7
|
The Interaction of Human Papillomavirus Infection and Prostaglandin E2 Signaling in Carcinogenesis: A Focus on Cervical Cancer Therapeutics. Cells 2022; 11:cells11162528. [PMID: 36010605 PMCID: PMC9406919 DOI: 10.3390/cells11162528] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic infection by high-risk human papillomaviruses (HPV) and chronic inflammation are factors associated with the onset and progression of several neoplasias, including cervical cancer. Oncogenic proteins E5, E6, and E7 from HPV are the main drivers of cervical carcinogenesis. In the present article, we review the general mechanisms of HPV-driven cervical carcinogenesis, as well as the involvement of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) and downstream effectors in this pathology. We also review the evidence on the crosstalk between chronic HPV infection and PGE2 signaling, leading to immune response weakening and cervical cancer development. Finally, the last section updates the current therapeutic and preventive options targeting PGE2-derived inflammation and HPV infection in cervical cancer. These treatments include nonsteroidal anti-inflammatory drugs, prophylactic and therapeutical vaccines, immunomodulators, antivirals, and nanotechnology. Inflammatory signaling pathways are closely related to the carcinogenic nature of the virus, highlighting inflammation as a co-factor for HPV-dependent carcinogenesis. Therefore, blocking inflammatory signaling pathways, modulating immune response against HPV, and targeting the virus represent excellent options for anti-tumoral therapies in cervical cancer.
Collapse
|
8
|
Structure-based assessment and druggability classification of protein-protein interaction sites. Sci Rep 2022; 12:7975. [PMID: 35562538 PMCID: PMC9106675 DOI: 10.1038/s41598-022-12105-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/20/2022] [Indexed: 11/08/2022] Open
Abstract
The featureless interface formed by protein–protein interactions (PPIs) is notorious for being considered a difficult and poorly druggable target. However, recent advances have shown PPIs to be druggable, with the discovery of potent inhibitors and stabilizers, some of which are currently being clinically tested and approved for medical use. In this study, we assess the druggability of 12 commonly targeted PPIs using the computational tool, SiteMap. After evaluating 320 crystal structures, we find that the PPI binding sites have a wide range of druggability scores. This can be attributed to the unique structural and physiochemical features that influence their ligand binding and concomitantly, their druggability predictions. We then use these features to propose a specific classification system suitable for assessing PPI targets based on their druggability scores and measured binding-affinity. Interestingly, this system was able to distinguish between different PPIs and correctly categorize them into four classes (i.e. very druggable, druggable, moderately druggable, and difficult). We also studied the effects of protein flexibility on the computed druggability scores and found that protein conformational changes accompanying ligand binding in ligand-bound structures result in higher protein druggability scores due to more favorable structural features. Finally, the drug-likeness of many published PPI inhibitors was studied where it was found that the vast majority of the 221 ligands considered here, including orally tested/marketed drugs, violate the currently acceptable limits of compound size and hydrophobicity parameters. This outcome, combined with the lack of correlation observed between druggability and drug-likeness, reinforces the need to redefine drug-likeness for PPI drugs. This work proposes a PPI-specific classification scheme that will assist researchers in assessing the druggability and identifying inhibitors of the PPI interface.
Collapse
|
9
|
Truong J, George A, Holien JK. Analysis of physicochemical properties of protein-protein interaction modulators suggests stronger alignment with the "rule of five". RSC Med Chem 2021; 12:1731-1749. [PMID: 34778774 DOI: 10.1039/d1md00213a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/27/2021] [Indexed: 11/21/2022] Open
Abstract
Despite the important roles played by protein-protein interactions (PPIs) in disease, they have been long considered as 'undruggable'. However, recent advances have suggested that PPIs are druggable but may not follow conventional rules of 'drug ability'. Here we explore which physicochemical parameters are essential for a PPI modulator to be a clinical drug by analysing the physicochemical properties of small-molecule PPI modulators in the market, in clinical trials, and published. Our analysis reveals that those compounds currently on the market have a larger range of values for most of the physicochemical parameters, whereas those in clinical trials fit much more stringently to standard drug-like parameters. This observation was particularly true for molecular weight, clog P and topological polar surface area, where aside from a few outliers, most of the compounds in clinical trials fit within standard drug-like parameters. This implies that the newer PPI modulators are more drug-like than those currently on the market, suggesting that designing new PPI-specific screening libraries should remain within standard drug-like parameters in order to obtain a clinical candidate. Taken together, our analysis has important implications for designing future drug discovery campaigns aimed at targeting PPIs.
Collapse
Affiliation(s)
- Jia Truong
- STEM College, RMIT University Vic Australia
| | | | | |
Collapse
|
10
|
Bolz SN, Adasme MF, Schroeder M. Toward an Understanding of Pan-Assay Interference Compounds and Promiscuity: A Structural Perspective on Binding Modes. J Chem Inf Model 2021; 61:2248-2262. [PMID: 33899463 DOI: 10.1021/acs.jcim.0c01227] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pan-assay interference compounds (PAINS) are promiscuous compound classes that produce false positive hits in high-throughput screenings. Yet, the mechanisms of PAINS activity are poorly understood. Although PAINS are often associated with protein reactivity, several recent studies have shown that they also mediate noncovalent interactions. Aiming at a deep understanding of PAINS promiscuity, we performed an analysis of the Protein Data Bank to characterize the binding modes of PAINS. We explored the binding mode conservation of 34 PAINS classes present in 871 ligands and among 517 protein targets. The two major findings of this work are the following: First, different PAINS classes exhibit different levels of binding mode conservation. Our novel classification of PAINS based on binding mode similarity enables a rational assessment of PAINS from a structural perspective. Second, PAINS classes with variable binding modes can bind with high affinity. The evaluation of noncovalent binding modes of PAINS-like compounds sheds light on the mechanisms of promiscuous binding. Our findings could facilitate the decisions on how to deal with PAINS and help scientists to understand why PAINS produce hits in their screenings.
Collapse
Affiliation(s)
- Sarah Naomi Bolz
- Biotechnology Center (BIOTEC), Technische Universität Dresden, 01307 Dresden, Germany
| | - Melissa F Adasme
- Biotechnology Center (BIOTEC), Technische Universität Dresden, 01307 Dresden, Germany
| | - Michael Schroeder
- Biotechnology Center (BIOTEC), Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
11
|
Rosell M, Fernández-Recio J. Docking-based identification of small-molecule binding sites at protein-protein interfaces. Comput Struct Biotechnol J 2020; 18:3750-3761. [PMID: 33250973 PMCID: PMC7679229 DOI: 10.1016/j.csbj.2020.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022] Open
Abstract
Protein-protein interactions play an essential role in many biological processes, and their perturbation is a major cause of disease. The use of small molecules to modulate them is attracting increased attention, but protein interfaces generally do not have clear cavities for binding small compounds. A proposed strategy is to target interface hot-spot residues, but their identification through computational approaches usually require the complex structure, which is not often available. In this context, pyDock energy-based docking and scoring can predict hot-spots on the unbound proteins, thus not requiring the complex structure. Here, we have devised a new strategy to detect protein–protein inhibitor binding sites, based on the integration of molecular dynamics for the generation of transient cavities, and docking-based interface hot-spot prediction for the selection of the suitable cavities. This integrative approach has been validated on a test set formed by protein–protein complexes with known inhibitors for which complete structural data of unbound molecules and complexes is available. The results show that local conformational sampling with short molecular dynamics can generate transient cavities similar to the known inhibitor binding sites, and that docking simulations can identify the best cavities with similar predictive accuracy as when knowing the real interface. In a few cases, these predicted pockets are shown to be suitable for protein–ligand docking. The proposed strategy will be useful for many protein–protein complexes for which there is no available structure, as long as the the unbound proteins do not deviate dramatically from the bound conformations.
Collapse
Affiliation(s)
- Mireia Rosell
- Barcelona Supercomputing Center (BSC), Barcelona, Spain.,Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de La Rioja, Gobierno de La Rioja, Logroño, Spain
| | - Juan Fernández-Recio
- Barcelona Supercomputing Center (BSC), Barcelona, Spain.,Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de La Rioja, Gobierno de La Rioja, Logroño, Spain
| |
Collapse
|
12
|
Gemovic B, Sumonja N, Davidovic R, Perovic V, Veljkovic N. Mapping of Protein-Protein Interactions: Web-Based Resources for Revealing Interactomes. Curr Med Chem 2019; 26:3890-3910. [PMID: 29446725 DOI: 10.2174/0929867325666180214113704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/14/2017] [Accepted: 01/29/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND The significant number of protein-protein interactions (PPIs) discovered by harnessing concomitant advances in the fields of sequencing, crystallography, spectrometry and two-hybrid screening suggests astonishing prospects for remodelling drug discovery. The PPI space which includes up to 650 000 entities is a remarkable reservoir of potential therapeutic targets for every human disease. In order to allow modern drug discovery programs to leverage this, we should be able to discern complete PPI maps associated with a specific disorder and corresponding normal physiology. OBJECTIVE Here, we will review community available computational programs for predicting PPIs and web-based resources for storing experimentally annotated interactions. METHODS We compared the capacities of prediction tools: iLoops, Struck2Net, HOMCOS, COTH, PrePPI, InterPreTS and PRISM to predict recently discovered protein interactions. RESULTS We described sequence-based and structure-based PPI prediction tools and addressed their peculiarities. Additionally, since the usefulness of prediction algorithms critically depends on the quality and quantity of the experimental data they are built on; we extensively discussed community resources for protein interactions. We focused on the active and recently updated primary and secondary PPI databases, repositories specialized to the subject or species, as well as databases that include both experimental and predicted PPIs. CONCLUSION PPI complexes are the basis of important physiological processes and therefore, possible targets for cell-penetrating ligands. Reliable computational PPI predictions can speed up new target discoveries through prioritization of therapeutically relevant protein-protein complexes for experimental studies.
Collapse
Affiliation(s)
- Branislava Gemovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences Vinca, University of Belgrade, Belgrade, Serbia
| | - Neven Sumonja
- Center for Multidisciplinary Research, Institute of Nuclear Sciences Vinca, University of Belgrade, Belgrade, Serbia
| | - Radoslav Davidovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences Vinca, University of Belgrade, Belgrade, Serbia
| | - Vladimir Perovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences Vinca, University of Belgrade, Belgrade, Serbia
| | - Nevena Veljkovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences Vinca, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
13
|
Liu Y, Li H, Pi R, Yang Y, Zhao X, Qi X. Current strategies against persistent human papillomavirus infection (Review). Int J Oncol 2019; 55:570-584. [PMID: 31364734 DOI: 10.3892/ijo.2019.4847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/16/2019] [Indexed: 11/06/2022] Open
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted infection, exhibiting a tropism for the epidermis and mucosae. The link between persistent HPV infection and malignancies involving the anogenital tract as well as the head and neck has been well‑established, and it is estimated that HPV‑related cancers involving various anatomical sites account for 4.5% of all human cancers. Current prophylactic vaccines against HPV have enabled the prevention of associated malignancies. However, the sizeable population base of current infection in whom prophylactic vaccines are not applicable, certain high‑risk HPV types not included in vaccines, and the vast susceptible population in developing countries who do not have access to the costly prophylactic vaccines, put forward an imperative need for effective therapies targeting persistent infection. In this article, the life cycle of HPV, the mechanisms facilitating HPV evasion of recognition and clearance by the host immune system, and the promising therapeutic strategies currently under investigation, particularly antiviral drugs and therapeutic vaccines, are reviewed.
Collapse
Affiliation(s)
- Yu Liu
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ruyu Pi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yang Yang
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
14
|
Abstract
Prominent in the current stage of drug development, antiviral compounds can be efficiently prepared through cycloaddition reactions. The chapter reports the use of classical Diels–Alder and their hetero version for the design and synthesis of compounds that were tested for their antiviral activities against a variety of viruses. Furthermore, 1,3-dipolar cycloaddition reactions of selected 1,3-dipoles, such as azides, nitrones, and nitrile oxides, are reviewed in the light of their application in the preparation of key intermediates for antiviral synthesis. A few examples of [2+2] cycloaddition reactions are also presented. The products obtained from these pericyclic reaction approaches were all tested for their activities in terms of blocking the virus replication, and the relevant biological data are highlighted.
Collapse
|
15
|
Al-Saad D, Memeo MG, Quadrelli P. Pericyclic Reactions for Anti-HPV Antivirals: Unconventional Nucleoside Analogue Synthesis via Nitrosocarbonyl Chemistry. ChemistrySelect 2017. [DOI: 10.1002/slct.201702059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dalya Al-Saad
- orcid.org/0000-0001-5369; Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 - Pavia Italy
| | - Misal Giuseppe Memeo
- orcid.org/0000-0001-5369; Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 - Pavia Italy
| | - Paolo Quadrelli
- orcid.org/0000-0001-5369; Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 - Pavia Italy
| |
Collapse
|
16
|
Mitchell MO. Discovering protein-ligand chalcogen bonding in the protein data bank using endocyclic sulfur-containing heterocycles as ligand search subsets. J Mol Model 2017; 23:287. [PMID: 28942498 DOI: 10.1007/s00894-017-3452-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/05/2017] [Indexed: 01/27/2023]
Abstract
The chalcogen bond, the noncovalent, electrostatic attraction between covalently bonded atoms in group 16 and Lewis bases, is present in protein-ligand interactions based on X-ray structures deposited in the Protein Data Bank (PDB). Discovering protein-ligand chalcogen bonding in the PDB employed a strategy that focused on searching the database for protein complexes of five-membered, heterocyclic ligands containing endocyclic sulfur with endo electron-withdrawing groups (isothiazoles; thiazoles; 1,2,3-, 1,2.4-, 1,2,5-, 1,3,4-thiadiazoles) and thiophenes with exo electron-withdrawing groups, e.g., 2-chloro, 2-bromo, 2-amino, 2-alkylthio. Out of 930 ligands investigated, 33 or 3.5% have protein-ligand S---O interactions of which 31 are chalcogen bonds and two appear to be S---HO hydrogen bonds. The bond angles for some of the chalcogen bonds found in the PDB are less than 90°, and an electrostatic model is proposed to explain this phenomenon.
Collapse
Affiliation(s)
- Miguel O Mitchell
- American Institutes for Research, 1000 Thomas Jefferson St. NW, Washington, DC, 20007-3835, USA.
| |
Collapse
|
17
|
Why Human Papillomaviruses Activate the DNA Damage Response (DDR) and How Cellular and Viral Replication Persists in the Presence of DDR Signaling. Viruses 2017; 9:v9100268. [PMID: 28934154 PMCID: PMC5691620 DOI: 10.3390/v9100268] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
Human papillomaviruses (HPV) require the activation of the DNA damage response (DDR) in order to undergo a successful life cycle. This activation presents a challenge for the virus and the infected cell: how does viral and host replication proceed in the presence of a DDR that ordinarily arrests replication; and how do HPV16 infected cells retain the ability to proliferate in the presence of a DDR that ordinarily arrests the cell cycle? This raises a further question: why do HPV activate the DDR? The answers to these questions are only partially understood; a full understanding could identify novel therapeutic strategies to target HPV cancers. Here, we propose that the rapid replication of an 8 kb double stranded circular genome during infection creates aberrant DNA structures that attract and activate DDR proteins. Therefore, HPV replication in the presence of an active DDR is a necessity for a successful viral life cycle in order to resolve these DNA structures on viral genomes; without an active DDR, successful replication of the viral genome would not proceed. We discuss the essential role of TopBP1 in this process and also how viral and cellular replication proceeds in HPV infected cells in the presence of DDR signals.
Collapse
|
18
|
Voter AF, Keck JL. Development of Protein-Protein Interaction Inhibitors for the Treatment of Infectious Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 111:197-222. [PMID: 29459032 DOI: 10.1016/bs.apcsb.2017.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Protein-protein interaction (PPI) inhibitors are a rapidly expanding class of therapeutics. Recent advances in our understanding of PPIs and success of early examples of PPI inhibitors demonstrate the feasibility of targeting PPIs. This review summarizes the techniques used for the discovery and optimization of a diverse set PPI inhibitors, focusing on the development of PPI inhibitors as new antibacterial and antiviral agents. We close with a summary of the advances responsible for making PPI inhibitors realistic targets for therapeutic intervention and brief outlook of the field.
Collapse
Affiliation(s)
- Andrew F Voter
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - James L Keck
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.
| |
Collapse
|
19
|
Tan X, Liu N, Yang M, Duan M, Zeng J. Design of peptide inhibitors of human papillomavirus 16 (HPV16) transcriptional regulator E1–E2 formation. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2017. [DOI: 10.1142/s0219633617500262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Here, we have proposed a new scheme of the computational combinatorial design approach to identify potential inhibitor peptides. It consists of four steps: (i) using “multiple copy simultaneous search” (MCSS) procedure to locate specific functional groups on the protein surface; (ii) the peptide main chain is constructed based on the location of favored N-methylacetamide (NMA) groups; (iii) molecular dynamics simulations of the complex formed between the constructed peptides with the target protein in explicit water molecules are carried to select the peptides with strong binding to the protein and (iv) the sequences of the stable peptides selected from (iii) are aligned and the frequencies of the amino acids at each position of peptide are calculated. Sequence patterns of potential inhibitors are determined based on the frequency of amino acids at each position. It was applied to design peptide inhibitors that bind to the E2 protein of HPV16 so as to disrupt its transcriptional regulator of E1–E2 complex formation. The sequence pattern of these potential inhibitors is in agreement with known inhibitors obtained from phage display, and the MCSS calculations indicate that a hydrophobic pocket on HPV16 E2 plays a significant role in E1–E2 formation and inhibitor-E2 binding.
Collapse
Affiliation(s)
- Xin Tan
- Department of Obstetrics and Gynaecology, West China Second University Hospital, No. 20, the Third Part Renmin South Road, Chengdu 610041, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Woman and Children, Sichuan University, Ministry of Education, No. 20, the Third Part Renmin South Road, Chengdu 610041, P. R. China
| | - Na Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Min Yang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P. R. China
| | - Mojie Duan
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Jun Zeng
- School of Medical Sciences, Royal Melbourne Institute of Technology, Plenty Road, Bundoora, VIC 3083, Australia
- MedChemSoft Solutions, Level 3, 2 Brandon Park Drive, Wheelers Hill, VIC 3150, Australia
| |
Collapse
|
20
|
Sedan Y, Marcu O, Lyskov S, Schueler-Furman O. Peptiderive server: derive peptide inhibitors from protein-protein interactions. Nucleic Acids Res 2016; 44:W536-41. [PMID: 27141963 PMCID: PMC4987930 DOI: 10.1093/nar/gkw385] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 02/05/2023] Open
Abstract
The Rosetta Peptiderive protocol identifies, in a given structure of a protein-protein interaction, the linear polypeptide segment suggested to contribute most to binding energy. Interactions that feature a 'hot segment', a linear peptide with significant binding energy compared to that of the complex, may be amenable for inhibition and the peptide sequence and structure derived from the interaction provide a starting point for rational drug design. Here we present a web server for Peptiderive, which is incorporated within the ROSIE web interface for Rosetta protocols. A new feature of the protocol also evaluates whether derived peptides are good candidates for cyclization. Fast computation times and clear visualization allow users to quickly assess the interaction of interest. The Peptiderive server is available for free use at http://rosie.rosettacommons.org/peptiderive.
Collapse
Affiliation(s)
- Yuval Sedan
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel Department of Chemical and Biomolecular Engineering, John Hopkins University, Baltimore, MD 21218, USA
| | - Orly Marcu
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Sergey Lyskov
- Racah Institute of Physics, Hebrew University of Jerusalem, Israel
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
21
|
Kantang W, Chunsrivirot S, Muangsin N, Poovorawan Y, Krusong K. Design of peptides as inhibitors of human papillomavirus 16 transcriptional regulator E1-E2. Chem Biol Drug Des 2016; 88:475-84. [PMID: 27203784 DOI: 10.1111/cbdd.12790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/10/2016] [Accepted: 05/14/2016] [Indexed: 11/28/2022]
Abstract
Human papillomavirus 16 (HPV 16) is a DNA virus that is capable of infecting humans and causing cervical cancer. HPV16 E2 plays an important role in viral gene regulation. This work aims to predict the binding conformations and interactions between the dodecapeptides and HPV16 E2 as well as to design novel peptide inhibitors that are capable of binding to HPV16 E2 and disrupt the transcriptional regulator E1-E2 complex formation, using computational protein design techniques. Based on previously reported peptide4 (TWFWPYPYPHLP), novel peptide inhibitors were designed and five peptides that showed lower binding energy to HPV16 E2 than that of peptide4, were selected for in vitro experiments. Enzyme-linked immunosorbent (ELISA) assay showed that Y6R, W4H_Y6R, and W4H peptides bound to HPV16 E2 with higher affinity than peptide4 did. Moreover, Y6R, W4H_Y6R, and W4H peptides more effectively inhibited E1-E2 complex formation than peptide4. This work revealed important interactions between the peptides and E1-E2 complex, suggesting a strategy for development of more potent peptide inhibitors.
Collapse
Affiliation(s)
- Worrapon Kantang
- Structural and Computational Biology Research Group, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Surasak Chunsrivirot
- Structural and Computational Biology Research Group, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Nongnuj Muangsin
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kuakarun Krusong
- Structural and Computational Biology Research Group, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
22
|
Sheaffer AK, Lee MS, Qi H, Chaniewski S, Zheng X, Farr GA, Esposito K, Harden D, Lei M, Schweizer L, Friborg J, Agler M, McPhee F, Gentles R, Beno BR, Chupak L, Mason S. A Small Molecule Inhibitor Selectively Induces Apoptosis in Cells Transformed by High Risk Human Papilloma Viruses. PLoS One 2016; 11:e0155909. [PMID: 27280728 PMCID: PMC4900674 DOI: 10.1371/journal.pone.0155909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 05/08/2016] [Indexed: 12/16/2022] Open
Abstract
A phenotypic high-throughput cell culture screen was performed to identify compounds that prevented proliferation of the human Papilloma virus type 16 (HPV-16) transformed cell line Ca Ski. A series of quinoxaline compounds exemplified by Compound 1 was identified. Testing against a panel of cell lines demonstrated that Compound 1 selectively inhibited replication of all HPV-16, HPV-18, and HPV-31 transformed cell lines tested with 50% Inhibitory Concentration (IC50) values of 2 to 8 μM relative to IC50 values of 28 to 73 μM in HPV-negative cell lines. Treatment with Compound 1 resulted in a cascade of multiple apoptotic events, including selective activation of effector caspases 3 and 7, fragmentation of cellular DNA, and PARP (poly(ADP-ribose) polymerase) cleavage in HPV-positive cells relative to HPV-negative cells. Unregulated proliferation of HPV transformed cells is dependent on the viral oncogenes, E6 and E7. Treatment with Compound 1 resulted in a decrease in HPV E7 protein in Ca Ski cells. However, the timing of this reduction relative to other effects of compound treatment suggests that this was a consequence, rather than a cause, of the apoptotic cascade. Likewise, compound treatment resulted in no obvious effects on the E6- and E7- mediated down regulation of p53 and Rb, or their downstream effectors, p21 or PCNA. Further investigation of apoptotic signals induced by Compound 1 revealed cleavage of Caspase-8 in HPV-positive cells as early as 2 hours post-treatment, suggesting the compound initiates apoptosis through the extrinsic, death receptor-mediated, pathway of cell death. These studies provide proof of concept that cells transformed by oncogenic Papillomaviruses can be selectively induced to undergo apoptosis by compound treatment.
Collapse
Affiliation(s)
- Amy K. Sheaffer
- Bristol-Myers Squibb, Research and Development, Wallingford, CT, United States of America
- * E-mail:
| | - Min S. Lee
- Bristol-Myers Squibb, Research and Development, Wallingford, CT, United States of America
| | - Huilin Qi
- Bristol-Myers Squibb, Research and Development, Wallingford, CT, United States of America
| | - Susan Chaniewski
- Bristol-Myers Squibb, Research and Development, Wallingford, CT, United States of America
| | - Xiaofan Zheng
- Bristol-Myers Squibb, Research and Development, Wallingford, CT, United States of America
| | - Glen A. Farr
- Bristol-Myers Squibb, Research and Development, Wallingford, CT, United States of America
| | - Kim Esposito
- Bristol-Myers Squibb, Research and Development, Wallingford, CT, United States of America
| | - David Harden
- Bristol-Myers Squibb, Research and Development, Wallingford, CT, United States of America
| | - Ming Lei
- Bristol-Myers Squibb, Research and Development, Wallingford, CT, United States of America
| | - Liang Schweizer
- Bristol-Myers Squibb, Research and Development, Wallingford, CT, United States of America
| | - Jacques Friborg
- Bristol-Myers Squibb, Research and Development, Wallingford, CT, United States of America
| | - Michele Agler
- Bristol-Myers Squibb, Research and Development, Wallingford, CT, United States of America
| | - Fiona McPhee
- Bristol-Myers Squibb, Research and Development, Wallingford, CT, United States of America
| | - Robert Gentles
- Bristol-Myers Squibb, Research and Development, Wallingford, CT, United States of America
| | - Brett R. Beno
- Bristol-Myers Squibb, Research and Development, Wallingford, CT, United States of America
| | - Lou Chupak
- Bristol-Myers Squibb, Research and Development, Wallingford, CT, United States of America
| | - Stephen Mason
- Bristol-Myers Squibb, Research and Development, Wallingford, CT, United States of America
| |
Collapse
|
23
|
Petta I, Lievens S, Libert C, Tavernier J, De Bosscher K. Modulation of Protein-Protein Interactions for the Development of Novel Therapeutics. Mol Ther 2016; 24:707-18. [PMID: 26675501 PMCID: PMC4886928 DOI: 10.1038/mt.2015.214] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/12/2015] [Indexed: 01/10/2023] Open
Abstract
Protein-protein interactions (PPIs) underlie most biological processes. An increasing interest to investigate the unexplored potential of PPIs in drug discovery is driven by the need to find novel therapeutic targets for a whole range of diseases with a high unmet medical need. To date, PPI inhibition with small molecules is the mechanism that has most often been explored, resulting in significant progress towards drug development. However, also PPI stabilization is gradually gaining ground. In this review, we provide a focused overview of a number of PPIs that control critical regulatory pathways and constitute targets for the design of novel therapeutics. We discuss PPI-modulating small molecules that are already pursued in clinical trials. In addition, we review a number of PPIs that are still under preclinical investigation but for which preliminary data support their use as therapeutic targets.
Collapse
Affiliation(s)
- Ioanna Petta
- Receptor Research Laboratories, Cytokine Receptor Lab (CRL), VIB Department of Medical Protein Research, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sam Lievens
- Receptor Research Laboratories, Cytokine Receptor Lab (CRL), VIB Department of Medical Protein Research, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- Receptor Research Laboratories, Cytokine Receptor Lab (CRL), VIB Department of Medical Protein Research, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Cytokine Receptor Lab (CRL), VIB Department of Medical Protein Research, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL), VIB Department of Medical Protein Research, Ghent, Belgium
| |
Collapse
|
24
|
Johnson DK, Karanicolas J. Ultra-High-Throughput Structure-Based Virtual Screening for Small-Molecule Inhibitors of Protein-Protein Interactions. J Chem Inf Model 2016; 56:399-411. [PMID: 26726827 DOI: 10.1021/acs.jcim.5b00572] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein-protein interactions play important roles in virtually all cellular processes, making them enticing targets for modulation by small-molecule therapeutics: specific examples have been well validated in diseases ranging from cancer and autoimmune disorders, to bacterial and viral infections. Despite several notable successes, however, overall these remain a very challenging target class. Protein interaction sites are especially challenging for computational approaches, because the target protein surface often undergoes a conformational change to enable ligand binding: this confounds traditional approaches for virtual screening. Through previous studies, we demonstrated that biased "pocket optimization" simulations could be used to build collections of low-energy pocket-containing conformations, starting from an unbound protein structure. Here, we demonstrate that these pockets can further be used to identify ligands that complement the protein surface. To do so, we first build from a given pocket its "exemplar": a perfect, but nonphysical, pseudoligand that would optimally match the shape and chemical features of the pocket. In our previous studies, we used these exemplars to quantitatively compare protein surface pockets to one another. Here, we now introduce this exemplar as a template for pharmacophore-based screening of chemical libraries. Through a series of benchmark experiments, we demonstrate that this approach exhibits comparable performance as traditional docking methods for identifying known inhibitors acting at protein interaction sites. However, because this approach is predicated on ligand/exemplar overlays, and thus does not require explicit calculation of protein-ligand interactions, exemplar screening provides a tremendous speed advantage over docking: 6 million compounds can be screened in about 15 min on a single 16-core, dual-GPU computer. The extreme speed at which large compound libraries can be traversed easily enables screening against a "pocket-optimized" ensemble of protein conformations, which in turn facilitates identification of more diverse classes of active compounds for a given protein target.
Collapse
Affiliation(s)
- David K Johnson
- Center for Computational Biology, and ‡Department of Molecular Biosciences, University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - John Karanicolas
- Center for Computational Biology, and ‡Department of Molecular Biosciences, University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| |
Collapse
|
25
|
Singh N, Kanthaje S, Bose K. Equilibrium dissociation and unfolding of human papillomavirus E2 transactivation domain. Biochem Biophys Res Commun 2015; 463:496-503. [PMID: 26091566 DOI: 10.1016/j.bbrc.2015.05.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/14/2015] [Indexed: 12/11/2022]
Abstract
Papillomavirus E2 protein that performs essential functions such as viral oncogene expression and replication represents specific target for therapeutic intervention. DNA-binding activity is associated with its C-terminal DNA-binding domain (DBD), while the N-terminal transactivation domain (TAD) is responsible for replication and transactivation functions. Although both demonstrate large dependence on dimerization for mediating their functions, KD for N-terminal dimerization is significantly high suggesting more dynamic role of this domain. However, unlike DBD, very little information is available on TAD dimerization, its folding and stability. Therefore, with an aim at delineating the regulatory switch of its dimerization, we have characterized high-risk HPV18 E2 TAD. Our studies demonstrate that E2 TAD is a weak but thermodynamically stable dimer (KD ∼ 1.8 μM, [Formula: see text] = 18.8 kcal mol(-1)) with α2-α3 helices forming the interface. It follows a three-state folding pathway, in which unfolding involves dissociation of a dimeric intermediate. Interestingly, 90% of the conformational free energy is associated with dimer dissociation (16.9 of 18.8 kcal mol(-1)) suggesting dimerization significantly contributes to its overall thermodynamic stability. These revelations might be important toward designing inhibitors for targeting dimerization or folding intermediates and hence multiple functions that E2 performs.
Collapse
Affiliation(s)
- Nitu Singh
- Integrated Biophysics and Structural Biology Lab, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India
| | - Shruthi Kanthaje
- Integrated Biophysics and Structural Biology Lab, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India
| | - Kakoli Bose
- Integrated Biophysics and Structural Biology Lab, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India.
| |
Collapse
|
26
|
Sheng C, Dong G, Miao Z, Zhang W, Wang W. State-of-the-art strategies for targeting protein-protein interactions by small-molecule inhibitors. Chem Soc Rev 2015; 44:8238-59. [PMID: 26248294 DOI: 10.1039/c5cs00252d] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Targeting protein-protein interactions (PPIs) has emerged as a viable approach in modern drug discovery. However, the identification of small molecules enabling us to effectively interrupt their interactions presents significant challenges. In the recent past, significant advances have been made in the development of new biological and chemical strategies to facilitate the discovery process of small-molecule PPI inhibitors. This review aims to highlight the state-of-the-art technologies and the achievements made recently in this field. The "hot spots" of PPIs have been proved to be critical for small molecules to bind. Three strategies including screening, designing, and synthetic approaches have been explored for discovering PPI inhibitors by targeting the "hot spots". Although the classic high throughput screening approach can be used, fragment screening, fragment-based drug design and newly improved virtual screening are demonstrated to be more effective in the discovery of PPI inhibitors. In addition to screening approaches, design strategies including anchor-based and small molecule mimetics of secondary structures involved in PPIs have become powerful tools as well. Finally, constructing new chemically spaced libraries with high diversity and complexity is becoming an important area of interest for PPI inhibitors. The successful cases from the recent five year studies are used to illustrate how these approaches are implemented to uncover and optimize small molecule PPI inhibitors and notably some of them have become promising therapeutics.
Collapse
Affiliation(s)
- Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, P. R. China.
| | | | | | | | | |
Collapse
|
27
|
Oliva R, Chermak E, Cavallo L. Analysis and Ranking of Protein-Protein Docking Models Using Inter-Residue Contacts and Inter-Molecular Contact Maps. Molecules 2015; 20:12045-60. [PMID: 26140438 PMCID: PMC6332208 DOI: 10.3390/molecules200712045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/08/2015] [Accepted: 06/17/2015] [Indexed: 12/24/2022] Open
Abstract
In view of the increasing interest both in inhibitors of protein-protein interactions and in protein drugs themselves, analysis of the three-dimensional structure of protein-protein complexes is assuming greater relevance in drug design. In the many cases where an experimental structure is not available, protein-protein docking becomes the method of choice for predicting the arrangement of the complex. However, reliably scoring protein-protein docking poses is still an unsolved problem. As a consequence, the screening of many docking models is usually required in the analysis step, to possibly single out the correct ones. Here, making use of exemplary cases, we review our recently introduced methods for the analysis of protein complex structures and for the scoring of protein docking poses, based on the use of inter-residue contacts and their visualization in inter-molecular contact maps. We also show that the ensemble of tools we developed can be used in the context of rational drug design targeting protein-protein interactions.
Collapse
Affiliation(s)
- Romina Oliva
- Department of Sciences and Technologies, University "Parthenope" of Naples, Centro Direzionale Isola C4, 80143 Naples, Italy.
| | - Edrisse Chermak
- Kaust Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Saudi Arabia.
| | - Luigi Cavallo
- Kaust Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Saudi Arabia.
| |
Collapse
|
28
|
Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. ACTA ACUST UNITED AC 2015; 21:1102-14. [PMID: 25237857 DOI: 10.1016/j.chembiol.2014.09.001] [Citation(s) in RCA: 758] [Impact Index Per Article: 84.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 12/14/2022]
Abstract
The past 20 years have seen many advances in our understanding of protein-protein interactions (PPIs) and how to target them with small-molecule therapeutics. In 2004, we reviewed some early successes; since then, potent inhibitors have been developed for diverse protein complexes, and compounds are now in clinical trials for six targets. Surprisingly, many of these PPI clinical candidates have efficiency metrics typical of "lead-like" or "drug-like" molecules and are orally available. Successful discovery efforts have integrated multiple disciplines and make use of all the modern tools of target-based discovery-structure, computation, screening, and biomarkers. PPIs become progressively more challenging as the interfaces become more complex, i.e., as binding epitopes are displayed on primary, secondary, or tertiary structures. Here, we review the last 10 years of progress, focusing on the properties of PPI inhibitors that have advanced to clinical trials and prospects for the future of PPI drug discovery.
Collapse
|
29
|
Synthesis and antiviral activity of anthracene derivatives of isoxazolino-carbocyclic nucleoside analogues. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.02.114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Human Papillomavirus Vaccine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 101:231-322. [DOI: 10.1016/bs.apcsb.2015.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Abstract
"Protein-protein interactions (PPIs) are one of the most promising new targets in drug discovery. With estimates between 300,000 and 650,000 in human physiology, targeted modulation of PPIs would tremendously extend the "druggable" genome. In fact, in every disease a wealth of potentially addressable PPIs can be found making pharmacological intervention based on PPI modulators in principle a generally applicable technology. An impressing number of success stories in small-molecule PPI inhibition and natural-product PPI stabilization increasingly encourage academia and industry to invest in PPI modulation. In this chapter examples of both inhibition as well as stabilization of PPIs are reviewed including some of the technologies which has been used for their identification."
Collapse
|
32
|
Bohnuud T, Kozakov D, Vajda S. Evidence of conformational selection driving the formation of ligand binding sites in protein-protein interfaces. PLoS Comput Biol 2014; 10:e1003872. [PMID: 25275445 PMCID: PMC4183424 DOI: 10.1371/journal.pcbi.1003872] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/21/2014] [Indexed: 12/14/2022] Open
Abstract
Many protein-protein interactions (PPIs) are compelling targets for drug discovery, and in a number of cases can be disrupted by small molecules. The main goal of this study is to examine the mechanism of binding site formation in the interface region of proteins that are PPI targets by comparing ligand-free and ligand-bound structures. To avoid any potential bias, we focus on ensembles of ligand-free protein conformations obtained by nuclear magnetic resonance (NMR) techniques and deposited in the Protein Data Bank, rather than on ensembles specifically generated for this study. The measures used for structure comparison are based on detecting binding hot spots, i.e., protein regions that are major contributors to the binding free energy. The main tool of the analysis is computational solvent mapping, which explores the surface of proteins by docking a large number of small “probe” molecules. Although we consider conformational ensembles obtained by NMR techniques, the analysis is independent of the method used for generating the structures. Finding the energetically most important regions, mapping can identify binding site residues using ligand-free models based on NMR data. In addition, the method selects conformations that are similar to some peptide-bound or ligand-bound structure in terms of the properties of the binding site. This agrees with the conformational selection model of molecular recognition, which assumes such pre-existing conformations. The analysis also shows the maximum level of similarity between unbound and bound states that is achieved without any influence from a ligand. Further shift toward the bound structure assumes protein-peptide or protein-ligand interactions, either selecting higher energy conformations that are not part of the NMR ensemble, or leading to induced fit. Thus, forming the sites in protein-protein interfaces that bind peptides and can be targeted by small ligands always includes conformational selection, although other recognition mechanisms may also be involved. Many protein-protein interfaces (PPIs) are biologically compelling drug targets. Disrupting the interaction between two large proteins by a small inhibitor requires forming a high affinity binding site in the interface that generally can bind both peptides and drug-like compounds. Here we investigate whether such sites are induced by peptide or ligand binding, or already exist in the unbound state. The analysis requires comparing ligand-free and ligand-bound structures. To avoid any potential bias, we study ensembles of ligand-free protein conformations obtained by nuclear magnetic resonance (NMR) rather than generated by simulations. The analysis is based on computational solvent mapping, which explores the surface of the target protein by docking a large number of small “probe” molecules. Results show that ensembles of ligand-free models always include conformations that are fairly similar to some peptide-bound or ligand-bound structure in terms of the properties of the binding site. The analysis also identifies the models that are the most similar to a bound state, and shows the maximum level of similarity that is achieved without any influence from a ligand. While forming the binding site may require a combination of recognition mechanisms, there is preference for the spontaneous formation of bound-like structures.
Collapse
Affiliation(s)
- Tanggis Bohnuud
- Program in Bioinformatics, Boston University, Boston, Massachusetts, United States of America
| | - Dima Kozakov
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America; Department of Chemistry, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
33
|
Muller M, Demeret C. CCHCR1 interacts specifically with the E2 protein of human papillomavirus type 16 on a surface overlapping BRD4 binding. PLoS One 2014; 9:e92581. [PMID: 24664238 PMCID: PMC3963918 DOI: 10.1371/journal.pone.0092581] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/24/2014] [Indexed: 01/22/2023] Open
Abstract
The Human Papillomavirus E2 proteins are key regulators of the viral life cycle, whose functions are commonly mediated through protein-protein interactions with the host cell proteome. We identified an interaction between E2 and a cellular protein called CCHCR1, which proved highly specific for the HPV16 genotype, the most prevalent in HPV-associated cancers. Further characterization of the interaction revealed that CCHCR1 binds the N-terminal alpha helices of HPV16 E2 N-terminal domain. On this domain, the CCHCR1 binding interface overlaps that of BRD4, a key mediator of E2 transcriptional activity. Consequently a physical competition occurs between the two proteins for the binding to HPV16 E2, and CCHCR1 interferes with BRD4-mediated enhancement of E2-dependent transcription. In addition, we showed that the interaction with CCHCR1 induced a massive redistribution of HPV16 E2, from a predominantly nuclear to a cytoplasmic localization in dot-like structures, where E2 perfectly co-localizes with CCHCR1. Such a cytoplasmic docking likely interferes with the nuclear functions of HPV16 E2. Upon co-expression of BRD4 and CCHCR1, E2 accumulates both in the nucleus and in the cytoplasm, indicating that for HPV16, both sub-cellular localization and transcriptional functions of E2 may depend on the proportion of both factors within the cell. We provided evidence of a strong induction of the keratinocyte differentiation marker K10 by HPV16 E2, and showed that this activation is compromised by the interaction with CCHCR1. The specific interaction described here could thus impact on the pathogenesis of HPV16. We propose that it could underlie some specific traits of HPV16 infection, such as an enhanced propensity to give rise to lesions evolving toward cancer.
Collapse
Affiliation(s)
- Mandy Muller
- Unité Génétique Papillomavirus et Cancer Humain, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Caroline Demeret
- Unité Génétique Papillomavirus et Cancer Humain, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
34
|
Abstract
The papillomavirus E2 proteins are pivotal to the viral life cycle and have well characterized functions in transcriptional regulation, initiation of DNA replication and partitioning the viral genome. The E2 proteins also function in vegetative DNA replication, post-transcriptional processes and possibly packaging. This review describes structural and functional aspects of the E2 proteins and their binding sites on the viral genome. It is intended to be a reference guide to this viral protein.
Collapse
Affiliation(s)
- Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
35
|
Archambault J, Melendy T. Targeting human papillomavirus genome replication for antiviral drug discovery. Antivir Ther 2013; 18:271-83. [PMID: 23615820 DOI: 10.3851/imp2612] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2012] [Indexed: 12/24/2022]
Abstract
Human papillomavirus (HPV) infections are a major human health problem; they are the cause of recurrent benign warts and of several cancers of the anogenital tract and head and neck region. Although there are two prophylactic HPV vaccines that could, if used universally, prevent as many as two-thirds of HPV-induced cancers, as well as several cytotoxic and immunomodulatory agents for localized treatment of infections, there are currently no HPV antiviral drugs in our arsenal of therapeutic agents. This review examines the status of past and ongoing research into the development of HPV antivirals, focused primarily upon approaches targeting the replication of the viral genome. The only HPV enzyme, E1, is a DNA helicase that interfaces with the cellular DNA replication machinery to replicate the HPV genome. To date, searches for small molecule inhibitors of E1 for use as antivirals have met with limited success. The lack of other viral enzymes has meant that the search for antivirals has shifted to a large degree to the modulation of protein-protein interactions. There has been some success in identifying small molecule inhibitors targeting interactions between HPV proteins but with activity against a small subset of viral types only. As noted in this review, it is thought that targeting E1 interactions with cellular replication proteins may provide inhibitors with broader activity against multiple HPV types. Herein, we outline the steps in HPV DNA replication and discuss those that appear to provide the most advantageous targets for the development of anti-HPV therapeutics.
Collapse
|
36
|
Shadrick WR, Ndjomou J, Kolli R, Mukherjee S, Hanson AM, Frick DN. Discovering new medicines targeting helicases: challenges and recent progress. ACTA ACUST UNITED AC 2013; 18:761-81. [PMID: 23536547 PMCID: PMC4427233 DOI: 10.1177/1087057113482586] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Helicases are ubiquitous motor proteins that separate and/or rearrange nucleic acid duplexes in reactions fueled by adenosine triphosphate (ATP) hydrolysis. Helicases encoded by bacteria, viruses, and human cells are widely studied targets for new antiviral, antibiotic, and anticancer drugs. This review summarizes the biochemistry of frequently targeted helicases. These proteins include viral enzymes from herpes simplex virus, papillomaviruses, polyomaviruses, coronaviruses, the hepatitis C virus, and various flaviviruses. Bacterial targets examined include DnaB-like and RecBCD-like helicases. The human DEAD-box protein DDX3 is the cellular antiviral target discussed, and cellular anticancer drug targets discussed are the human RecQ-like helicases and eIF4A. We also review assays used for helicase inhibitor discovery and the most promising and common helicase inhibitor chemotypes, such as nucleotide analogues, polyphenyls, metal ion chelators, flavones, polycyclic aromatic polymers, coumarins, and various DNA binding pharmacophores. Also discussed are common complications encountered while searching for potent helicase inhibitors and possible solutions for these problems.
Collapse
Affiliation(s)
- William R Shadrick
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | | | | | | | | | |
Collapse
|
37
|
Gagnon D, Sénéchal H, D'Abramo CM, Alvarez J, McBride AA, Archambault J. Genetic analysis of the E2 transactivation domain dimerization interface from bovine papillomavirus type 1. Virology 2013; 439:132-9. [PMID: 23490049 DOI: 10.1016/j.virol.2013.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 02/11/2013] [Accepted: 02/13/2013] [Indexed: 11/29/2022]
Abstract
The bovine papillomavirus type 1 (BPV1) E2 protein binds as a dimer to the viral genome to promote its transcription, replication and maintenance in keratinocytes. Although BPV1 E2 dimerizes primarily through its DNA-binding domain, it was shown previously that its transactivation domain (TAD) can also dimerize in vitro through formation of a disulfide bond between cysteine 57 (C57) of adjacent monomers and of an ion pair between arginine 172 (R172) and aspartic acid 175 (D175). The function of this TAD dimerization interface in vivo remains unknown. Here, we report the effects of substituting C57, R172 and D175 by alanine on the transactivation activity of BPV E2 as well as on its ability to support viral DNA replication using a novel luciferase-based assay. Results for this mutational analysis suggest that the TAD dimerization interface is not essential for either process but may contribute to the DNA replication activity of BPV1 E2.
Collapse
Affiliation(s)
- David Gagnon
- Molecular Virology Laboratory, Institut de Recherches Cliniques de Montréal (IRCM) and Department of Biochemistry, Université de Montréal, Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Druggable protein interaction sites are more predisposed to surface pocket formation than the rest of the protein surface. PLoS Comput Biol 2013; 9:e1002951. [PMID: 23505360 PMCID: PMC3591273 DOI: 10.1371/journal.pcbi.1002951] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/11/2013] [Indexed: 01/22/2023] Open
Abstract
Despite intense interest and considerable effort via high-throughput screening, there are few examples of small molecules that directly inhibit protein-protein interactions. This suggests that many protein interaction surfaces may not be intrinsically “druggable” by small molecules, and elevates in importance the few successful examples as model systems for improving our fundamental understanding of druggability. Here we describe an approach for exploring protein fluctuations enriched in conformations containing surface pockets suitable for small molecule binding. Starting from a set of seven unbound protein structures, we find that the presence of low-energy pocket-containing conformations is indeed a signature of druggable protein interaction sites and that analogous surface pockets are not formed elsewhere on the protein. We further find that ensembles of conformations generated with this biased approach structurally resemble known inhibitor-bound structures more closely than equivalent ensembles of unbiased conformations. Collectively these results suggest that “druggability” is a property encoded on a protein surface through its propensity to form pockets, and inspire a model in which the crude features of the predisposed pocket(s) restrict the range of complementary ligands; additional smaller conformational changes then respond to details of a particular ligand. We anticipate that the insights described here will prove useful in selecting protein targets for therapeutic intervention. Identifying small-molecule inhibitors of protein interactions has traditionally presented a challenge for modern screening methods, despite interest stemming from the fact that such interactions comprise the underlying mechanisms for cell proliferation, differentiation, and survival. This suggests that many protein interaction surfaces may not be intrinsically “druggable” by small molecules, and elevates in importance the few successful examples as model systems for improving our understanding of factors contributing to druggability. Here we describe a new approach for exploring protein fluctuations leading to surface pockets suitable for small molecule binding. We find that the presence of such pockets is indeed a signature of druggable protein interaction sites, suggesting that “druggability” is a property encoded on a protein surface through its propensity to form pockets. We anticipate that the insights described here will prove useful in selecting protein targets for therapeutic intervention.
Collapse
|
39
|
Shen M, Ding X, Li T, Chen G, Zhou X. Sequence variation analysis of HPV-18 isolates in southwest China. PLoS One 2013; 8:e56614. [PMID: 23451059 PMCID: PMC3581518 DOI: 10.1371/journal.pone.0056614] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 01/15/2013] [Indexed: 11/29/2022] Open
Abstract
Intratypic variations of HPV-18 are known to differ in the persistence of the infection, frequency of carcinogenesis and the progression of precursor lesions to advanced cervical cancer. This study was designed to analyze sequence variations of HPV-18 isolates in order to discover novel HPV-18 variants and to evaluate the variations among infected women in southwest China. Cervical biopsies from 56 HPV-18-positive women with cervical neoplasia were assayed by PCR amplification and sequencing of all eight genes (E1, E2, E4, E5, E6, E7, L1, L2) of the HPV-18 genome. The most frequently observed variation was a C to G transversion at nucleotide 287 of E6, which was found in 48.2% of samples. Analysis of E7 revealed only one specimen as having sequence variations. In addition, we have identified several novel variations: A551C in E6, G6906A in L1, and C4915T and C5147A in L2. The mutations in E6 and L2 are silent, while the E7 mutation results in a single amino acid change. This study complements and expands on previous descriptions of HPV-18 variants. The sequence variation data presented here provides a foundation for future research on HPV-induced oncogenesis and may prove valuable for developing diagnostic probes and in the design of HPV vaccines for targeted populations.
Collapse
Affiliation(s)
- Mengjie Shen
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Institute of Medical Genetics, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
- Institute of Medical Genetics, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
| | - Xianping Ding
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Institute of Medical Genetics, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
- Institute of Medical Genetics, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
| | - Tianjun Li
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Institute of Medical Genetics, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
- Institute of Medical Genetics, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
| | - Gangyi Chen
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Institute of Medical Genetics, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
- Institute of Medical Genetics, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
| | - Xiao Zhou
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Institute of Medical Genetics, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
40
|
Halavaty AS, Kim Y, Minasov G, Shuvalova L, Dubrovska I, Winsor J, Zhou M, Onopriyenko O, Skarina T, Papazisi L, Kwon K, Peterson SN, Joachimiak A, Savchenko A, Anderson WF. Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1359-70. [PMID: 22993090 PMCID: PMC3447402 DOI: 10.1107/s0907444912029101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/26/2012] [Indexed: 05/13/2024]
Abstract
Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS(SA)), Vibrio cholerae (AcpS(VC)) and Bacillus anthracis (AcpS(BA)) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS(BA) is emphasized because of the two 3',5'-adenosine diphosphate (3',5'-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3',5'-ADP is bound as the 3',5'-ADP part of CoA in the known structures of the CoA-AcpS and 3',5'-ADP-AcpS binary complexes. The position of the second 3',5'-ADP has never been described before. It is in close proximity to the first 3',5'-ADP and the ACP-binding site. The coordination of two ADPs in AcpS(BA) may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP.
Collapse
Affiliation(s)
- Andrei S. Halavaty
- Center for Structural Genomics of Infectious Diseases, USA
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Youngchang Kim
- Center for Structural Genomics of Infectious Diseases, USA
- Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
- Computational Institute, University of Chicago, Chicago, IL 60637, USA
| | - George Minasov
- Center for Structural Genomics of Infectious Diseases, USA
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ludmilla Shuvalova
- Center for Structural Genomics of Infectious Diseases, USA
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ievgeniia Dubrovska
- Center for Structural Genomics of Infectious Diseases, USA
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - James Winsor
- Center for Structural Genomics of Infectious Diseases, USA
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Min Zhou
- Center for Structural Genomics of Infectious Diseases, USA
- Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
- Computational Institute, University of Chicago, Chicago, IL 60637, USA
| | - Olena Onopriyenko
- Center for Structural Genomics of Infectious Diseases, USA
- University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Tatiana Skarina
- Center for Structural Genomics of Infectious Diseases, USA
- University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Leka Papazisi
- Center for Structural Genomics of Infectious Diseases, USA
- J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Keehwan Kwon
- Center for Structural Genomics of Infectious Diseases, USA
- J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Scott N. Peterson
- Center for Structural Genomics of Infectious Diseases, USA
- J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, USA
- Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
- Computational Institute, University of Chicago, Chicago, IL 60637, USA
| | - Alexei Savchenko
- Center for Structural Genomics of Infectious Diseases, USA
- University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases, USA
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
41
|
Features of protein-protein interactions that translate into potent inhibitors: topology, surface area and affinity. Expert Rev Mol Med 2012; 14:e16. [PMID: 22831787 DOI: 10.1017/erm.2012.10] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein-protein interactions (PPIs) control the assembly of multi-protein complexes and, thus, these contacts have enormous potential as drug targets. However, the field has produced a mix of both exciting success stories and frustrating challenges. Here, we review known examples and explore how the physical features of a PPI, such as its affinity, hotspots, off-rates, buried surface area and topology, might influence the chances of success in finding inhibitors. This analysis suggests that concise, tight binding PPIs are most amenable to inhibition. However, it is also clear that emerging technical methods are expanding the repertoire of 'druggable' protein contacts and increasing the odds against difficult targets. In particular, natural product-like compound libraries, high throughput screens specifically designed for PPIs and approaches that favour discovery of allosteric inhibitors appear to be attractive routes. The first group of PPI inhibitors has entered clinical trials, further motivating the need to understand the challenges and opportunities in pursuing these types of targets.
Collapse
|
42
|
Fera D, Schultz DC, Hodawadekar S, Reichman M, Donover PS, Melvin J, Troutman S, Kissil J, Huryn DM, Marmorstein R. Identification and characterization of small molecule antagonists of pRb inactivation by viral oncoproteins. CHEMISTRY & BIOLOGY 2012; 19:518-28. [PMID: 22520758 PMCID: PMC3334872 DOI: 10.1016/j.chembiol.2012.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/21/2012] [Accepted: 03/01/2012] [Indexed: 11/23/2022]
Abstract
The retinoblastoma protein pRb is essential for regulating many cellular activities through its binding and inhibition of E2F transcription activators, and pRb inactivation leads to many cancers. pRb activity can be perturbed by viral oncoproteins including human papillomavirus (HPV) that share an LxCxE motif. Because there are no treatments for existing HPV infection leading to nearly all cervical cancers and other cancers to a lesser extent, we screened for compounds that inhibit the ability of HPV-E7 to disrupt pRb/E2F complexes. This lead to the identification of thiadiazolidinedione compounds that bind to pRb with mid-high nanomolar dissociation constants, are competitive with the binding of viral oncoproteins containing an LxCxE motif, and are selectively cytotoxic in HPV-positive cells alone and in mice. These inhibitors provide a promising scaffold for the development of therapies to treat HPV-mediated pathologies.
Collapse
Affiliation(s)
- Daniela Fera
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA 19104, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David C. Schultz
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA 19104, USA
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Santosh Hodawadekar
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA 19104, USA
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Melvin Reichman
- The Lankenau Institute for Medical Research, Chemical Genomics Center, Wynnewood, PA 19096, USA
| | - Preston Scott Donover
- The Lankenau Institute for Medical Research, Chemical Genomics Center, Wynnewood, PA 19096, USA
| | - Jason Melvin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott Troutman
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Joseph Kissil
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Donna M. Huryn
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ronen Marmorstein
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA 19104, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
43
|
Mahon AB, Miller SE, Joy ST, Arora PS. Rational Design Strategies for Developing Synthetic Inhibitors of Helical Protein Interfaces. TOPICS IN MEDICINAL CHEMISTRY 2012. [DOI: 10.1007/978-3-642-28965-1_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
44
|
|
45
|
Modulating protein-protein interactions with small molecules: the importance of binding hotspots. J Mol Biol 2011; 415:443-53. [PMID: 22198293 DOI: 10.1016/j.jmb.2011.12.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 11/23/2011] [Accepted: 12/12/2011] [Indexed: 12/30/2022]
Abstract
The modulation of protein-protein interactions (PPIs) by small drug-like molecules is a relatively new area of research and has opened up new opportunities in drug discovery. However, the progress made in this area is limited to a handful of known cases of small molecules that target specific diseases. With the increasing availability of protein structure complexes, it is highly important to devise strategies exploiting homologous structure space on a large scale for discovering putative PPIs that could be attractive drug targets. Here, we propose a scheme that allows performing large-scale screening of all protein complexes and finding putative small-molecule and/or peptide binding sites overlapping with protein-protein binding sites (so-called "multibinding sites"). We find more than 600 nonredundant proteins from 60 protein families with multibinding sites. Moreover, we show that the multibinding sites are mostly observed in transient complexes, largely overlap with the binding hotspots and are more evolutionarily conserved than other interface sites. We investigate possible mechanisms of how small molecules may modulate protein-protein binding and discuss examples of new candidates for drug design.
Collapse
|
46
|
Structural conservation of druggable hot spots in protein-protein interfaces. Proc Natl Acad Sci U S A 2011; 108:13528-33. [PMID: 21808046 DOI: 10.1073/pnas.1101835108] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Despite the growing number of examples of small-molecule inhibitors that disrupt protein-protein interactions (PPIs), the origin of druggability of such targets is poorly understood. To identify druggable sites in protein-protein interfaces we combine computational solvent mapping, which explores the protein surface using a variety of small "probe" molecules, with a conformer generator to account for side-chain flexibility. Applications to unliganded structures of 15 PPI target proteins show that the druggable sites comprise a cluster of binding hot spots, distinguishable from other regions of the protein due to their concave topology combined with a pattern of hydrophobic and polar functionality. This combination of properties confers on the hot spots a tendency to bind organic species possessing some polar groups decorating largely hydrophobic scaffolds. Thus, druggable sites at PPI are not simply sites that are complementary to particular organic functionality, but rather possess a general tendency to bind organic compounds with a variety of structures, including key side chains of the partner protein. Results also highlight the importance of conformational adaptivity at the binding site to allow the hot spots to expand to accommodate a ligand of drug-like dimensions. The critical components of this adaptivity are largely local, involving primarily low energy side-chain motions within 6 Å of a hot spot. The structural and physicochemical signature of druggable sites at PPI interfaces is sufficiently robust to be detectable from the structure of the unliganded protein, even when substantial conformational adaptation is required for optimal ligand binding.
Collapse
|
47
|
D'Abramo CM, Archambault J. Small molecule inhibitors of human papillomavirus protein - protein interactions. Open Virol J 2011; 5:80-95. [PMID: 21769307 PMCID: PMC3137155 DOI: 10.2174/1874357901105010080] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/23/2011] [Accepted: 06/13/2011] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPV) have now been identified as a necessary cause of benign and malignant lesions of the differentiating epithelium, particularly cervical cancer, the second most prevalent cancer in women worldwide. While two prophylactic HPV vaccines and screening programs are available, there is currently no antiviral drug for the treatment of HPV infections and associated diseases. The recent progress toward the identification and characterization of specific molecular targets for small molecule-based approaches provides prospect for the development of effective HPV antiviral compounds. Traditionally, antiviral therapies target viral enzymes. HPV encode for few proteins, however, and rely extensively on the infected cell for completion of their life cycle. This article will review the functions of the viral E1 helicase, which encodes the only enzymatic function of the virus, of the E2 regulatory protein, and of the viral E6 and E7 oncogenes in viral replication and pathogenesis. Particular emphasis will be placed on the recent progress made towards the development of novel small molecule inhibitors that specifically target and inhibit the functions of these viral proteins, as well as their interactions with other viral and/or cellular proteins.
Collapse
Affiliation(s)
- C M D'Abramo
- Laboratory of Molecular Virology, Institut de Recherches Cliniques de Montréal and Department of Biochemistry, Université de Montréal, Montreal, Quebec, Canada
| | | |
Collapse
|
48
|
Park SY, Kim SJ. TBC1D1 and TBC1D4 (AS160) RabGAP Domains are Characterized as Monomers in Solution by Analytical Ultracentrifugation. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.6.2125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Small molecule inhibitors of the human papillomavirus E1-E2 interaction. Curr Top Microbiol Immunol 2011; 348:61-88. [PMID: 20676971 DOI: 10.1007/82_2010_92] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Human papillomaviruses are responsible for multiple human diseases, including cervical cancer caused by multiple high-risk types and genital warts caused by the low-risk types 6 and 11. Based on the research indicating that low-risk HPV could be successfully targeted by inhibitors of viral DNA replication, we carried out several high-throughput screens for inhibitors of DNA replication activities. Two series were identified in screens for inhibitors of the interaction between the viral proteins E1 and E2. The two series were demonstrated to bind to overlapping sites on the transactivation domain of E2, at the E1-binding interface, by a series of biochemical and biophysical experiments. A member of the first series was also cocrystallized with the E2 transactivation domain. For both series, structure-activity investigations are described, which resulted in several hundred fold improvements in activity. The best compounds in each series had low nanomolar activity against the HPV11 E1-E2 interaction, and EC(50) values in cellular DNA replication assays of approximately 1 μM. Binding modes for the two series are compared, and some general conclusions about the discovery of protein-protein interaction inhibitors are drawn from the work described.
Collapse
|
50
|
Higueruelo AP, Schreyer A, Bickerton GRJ, Pitt WR, Groom CR, Blundell TL. Atomic interactions and profile of small molecules disrupting protein-protein interfaces: the TIMBAL database. Chem Biol Drug Des 2009; 74:457-67. [PMID: 19811506 DOI: 10.1111/j.1747-0285.2009.00889.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Growing evidence of the possibility of modulating protein-protein interactions with small molecules is opening the door to new approaches and concepts in drug discovery. In this paper, we describe the creation of TIMBAL, a hand-curated database holding an up to date collection of small molecules inhibiting multi-protein complexes. This database has been analysed and profiled in terms of molecular properties. Protein-protein modulators tend to be large lipophilic molecules with few hydrogen bond features. An analysis of TIMBAL's intersection with other structural databases, including CREDO (protein-small molecule from the PDB) and PICCOLO (protein-protein from the PDB) reveals that TIMBAL molecules tend to form mainly hydrophobic interactions with only a few hydrogen bonding contacts. With respect to potency, TIMBAL molecules are slightly less efficient than an average medicinal chemistry hit or lead. The database provides a resource that will allow further insights into the types of molecules favoured by protein interfaces and provide a background to continuing work in this area. Access at http://www-cryst.bioc.cam.ac.uk/timbal.
Collapse
|