1
|
Badens C, Guizouarn H. Advances in understanding the pathogenesis of the red cell volume disorders. Br J Haematol 2016; 174:674-85. [PMID: 27353637 DOI: 10.1111/bjh.14197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Genetic defects of erythrocyte transport proteins cause disorders of red blood cell volume that are characterized by abnormal permeability to the cations Na(+) and K(+) and, consequently, by changes in red cell hydration. Clinically, these disorders are associated with chronic haemolytic anaemia of variable severity and significant co-morbidities, such as iron overload. This review provides an overview of recent insights into the molecular basis of this group of rare anaemias involving cation channels and transporters dysfunction. To date, a total of 5 different membrane proteins have been reported to be responsible for volume homeostasis alteration when mutated, 3 of them leading to overhydrated cells (AE1 [also termed SLC4A1], RHAG and GLUT1 [also termed SCL2A1) and 2 others to dehydrated cells (PIEZO1 and the Gardos Channel). These findings are not only of basic scientific interest, but also of direct clinical significance for improving diagnostic procedures and identify potential approaches for novel therapeutic strategies.
Collapse
Affiliation(s)
- Catherine Badens
- APHM Department of Medical Genetics, Hôpital de la Timone, Aix Marseille Univ, INSERM, GMGF, Marseille, France
| | - Hélène Guizouarn
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100 Nice, France
| |
Collapse
|
2
|
Genetet S, Ripoche P, Picot J, Bigot S, Delaunay J, Armari-Alla C, Colin Y, Mouro-Chanteloup I. Human RhAG ammonia channel is impaired by the Phe65Ser mutation in overhydrated stomatocytic red cells. Am J Physiol Cell Physiol 2011; 302:C419-28. [PMID: 22012326 DOI: 10.1152/ajpcell.00092.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In red cells, Rh-associated glycoprotein (RhAG) acts as an ammonia channel, as demonstrated by stopped-flow analysis of ghost intracellular pH (pH(i)) changes. Recently, overhydrated hereditary stomatocytosis (OHSt), a rare dominantly inherited hemolytic anemia, was found to be associated with a mutation (Phe65Ser or Ile61Arg) in RHAG. Ghosts from the erythrocytes of four of the OHSt patients with a Phe65Ser mutation were resealed with a pH-sensitive probe and submitted to ammonium gradients. Alkalinization rate constants, reflecting NH(3) transport through the channel and NH(3) diffusion unmediated by RhAG, were deduced from time courses of fluorescence changes. After subtraction of the constant value found for Rh(null) lacking RhAG, we observed that alkalinization rate constant values decreased ∼50% in OHSt compared with those of controls. Similar RhAG expression levels were found in control and OHSt. Since half of the expressed RhAG in OHSt most probably corresponds to the mutated form of RhAG, as expected from the OHSt heterozygous status, this dramatic decrease can be therefore related to the loss of function of the Phe65Ser-mutated RhAG monomer.
Collapse
|
3
|
Band 3 missense mutations and stomatocytosis: insight into the molecular mechanism responsible for monovalent cation leak. Int J Cell Biol 2011; 2011:136802. [PMID: 21876696 PMCID: PMC3163022 DOI: 10.1155/2011/136802] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/27/2011] [Accepted: 05/29/2011] [Indexed: 02/03/2023] Open
Abstract
Missense mutations in the erythroid band 3 protein (Anion Exchanger 1) have been associated with hereditary stomatocytosis. Features of cation leaky red cells combined with functional expression of the mutated protein led to the conclusion that the AE1 point mutations were responsible for Na(+) and K(+) leak through a conductive mechanism. A molecular mechanism explaining mutated AE1-linked stomatocytosis involves changes in AE1 transport properties that become leaky to Na(+) and K(+). However, another explanation suggests that point-mutated AE1 could regulate a cation leak through other transporters. This short paper intends to discuss these two alternatives.
Collapse
|
4
|
Berger J, Hardt M, Clauss WG, Fronius M. Basolateral Cl- uptake mechanisms in Xenopus laevis lung epithelium. Am J Physiol Regul Integr Comp Physiol 2010; 299:R92-100. [PMID: 20410470 DOI: 10.1152/ajpregu.00749.2009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A thin liquid layer covers the lungs of air-breathing vertebrates. Active ion transport processes via the pulmonary epithelial cells regulate the maintenance of this layer. This study focuses on basolateral Cl(-) uptake mechanisms in native lungs of Xenopus laevis and the involvement of the Na(+)/K(+)/2 Cl(-) cotransporter (NKCC) and HCO(3)(-)/Cl(-) anion exchanger (AE), in particular. Western blot analysis and immunofluorescence staining revealed the expression of the NKCC protein in the Xenopus lung. Ussing chamber experiments demonstrated that the NKCC inhibitors (bumetanide and furosemide) were ineffective at blocking the cotransporter under basal conditions, as well as under pharmacologically stimulated Cl(-)-secreting conditions (forskolin and chlorzoxazone application). However, functional evidence for the NKCC was detected by generating a transepithelial Cl(-) gradient. Further, we were interested in the involvement of the HCO(3)(-)/Cl(-) anion exchanger to transepithelial ion transport processes. Basolateral application of DIDS, an inhibitor of the AE, resulted in a significantly decreased the short-circuit current (I(SC)). The effect of DIDS was diminished by acetazolamide and reduced by increased external HCO(3)(-) concentrations. Cl(-) secretion induced by forskolin was decreased by DIDS, but this effect was abolished in the presence of HCO(3)(-). These experiments indicate that the AE at least partially contributes to Cl(-) secretion. Taken together, our data show that in Xenopus lung epithelia, the AE, rather than the NKCC, is involved in basolateral Cl(-) uptake, which contrasts with the common model for Cl(-) secretion in pulmonary epithelia.
Collapse
Affiliation(s)
- Jens Berger
- Institute of Animal Physiology, University of Giessen Lung Center, Germany
| | | | | | | |
Collapse
|
5
|
Bogdanova A, Goede JS, Weiss E, Bogdanov N, Bennekou P, Bernhardt I, Lutz HU. Cryohydrocytosis: increased activity of cation carriers in red cells from a patient with a band 3 mutation. Haematologica 2009; 95:189-98. [PMID: 20015879 DOI: 10.3324/haematol.2009.010215] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Cryohydrocytosis is an inherited dominant hemolytic anemia characterized by mutations in a transmembrane segment of the anion exchanger (band 3 protein). Transfection experiments performed in Xenopus oocytes suggested that these mutations may convert the anion exchanger into a non-selective cation channel. The present study was performed to characterize so far unexplored ion transport pathways that may render erythrocytes of a single cryohydrocytosis patient cation-leaky. DESIGN AND METHODS Cold-induced changes in cell volume were monitored using ektacytometry and density gradient centrifugation. Kinetics, temperature and inhibitor-dependence of the cation and water movements in the cryohydrocytosis patient's erythrocytes were studied using radioactive tracers and flame photometry. Response of the membrane potential of the patient's erythrocyte membrane to the presence of ionophores and blockers of anion and cation channels was assessed. RESULTS In the cold, the cryohydrocytosis patient's erythrocytes swelled in KCl-containing, but not in NaCl-containing or KNO(3)-containing media indicating that volume changes were mediated by an anion-coupled cation transporter. In NaCl-containing medium the net HOE-642-sensitive Na(+)/K(+) exchange prevailed, whereas in KCl-containing medium swelling was mediated by a chloride-dependent K(+) uptake. Unidirectional K(+) influx measurements showed that the patient's cells have abnormally high activities of the cation-proton exchanger and the K(+),Cl(-) co-transporter, which can account for the observed net movements of cations. Finally, neither chloride nor cation conductance in the patient's erythrocytes differed from that of healthy donors. Conclusions These results suggest that cross-talk between the mutated band 3 and other transporters might increase the cation permeability in cryohydrocytosis.
Collapse
Affiliation(s)
- Anna Bogdanova
- Zurich Center for Integrative, Human Physiology, University of Zurich, Winterthurerstr 260, CH 8057 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
6
|
Stewart AK, Vandorpe DH, Heneghan JF, Chebib F, Stolpe K, Akhavein A, Edelman EJ, Maksimova Y, Gallagher PG, Alper SL. The GPA-dependent, spherostomatocytosis mutant AE1 E758K induces GPA-independent, endogenous cation transport in amphibian oocytes. Am J Physiol Cell Physiol 2009; 298:C283-97. [PMID: 19907019 DOI: 10.1152/ajpcell.00444.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The previously undescribed heterozygous missense mutation E758K was discovered in the human AE1/SLC4A1/band 3 gene in two unrelated patients with well-compensated hereditary spherostomatocytic anemia (HSt). Oocyte surface expression of AE1 E758K, in contrast to that of wild-type AE1, required coexpressed glycophorin A (GPA). The mutant polypeptide exhibited, in parallel, strong GPA dependence of DIDS-sensitive (36)Cl(-) influx, trans-anion-dependent (36)Cl(-) efflux, and Cl(-)/HCO(3)(-) exchange activities at near wild-type levels. AE1 E758K expression was also associated with GPA-dependent increases of DIDS-sensitive pH-independent SO(4)(2-) uptake and oxalate uptake with altered pH dependence. In marked contrast, the bumetanide- and ouabain-insensitive (86)Rb(+) influx associated with AE1 E758K expression was largely GPA-independent in Xenopus oocytes and completely GPA-independent in Ambystoma oocytes. AE1 E758K-associated currents in Xenopus oocytes also exhibited little or no GPA dependence. (86)Rb(+) influx was higher but inward cation current was lower in oocytes expressing AE1 E758K than previously reported in oocytes expressing the AE1 HSt mutants S731P and H734R. The pharmacological inhibition profile of AE1 E758K-associated (36)Cl(-) influx differed from that of AE1 E758K-associated (86)Rb(+) influx, as well as from that of wild-type AE1-mediated Cl(-) transport. Thus AE1 E758K-expressing oocytes displayed GPA-dependent surface polypeptide expression and anion transport, accompanied by substantially GPA-independent, pharmacologically distinct Rb(+) flux and by small, GPA-independent currents. The data strongly suggest that most of the increased cation transport associated with the novel HSt mutant AE1 E758K reflects activation of endogenous oocyte cation permeability pathways, rather than cation translocation through the mutant polypeptide.
Collapse
Affiliation(s)
- Andrew K Stewart
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The present contribution reviews current knowledge of apparently oxygen-dependent ion transport in erythrocytes and presents modern hypotheses on their regulatory mechanisms and physiological roles. In addition to molecular oxygen as such, reactive oxygen species, nitric oxide, carbon monoxide, regional variations of cellular ATP and hydrogen sulphide may play a role in the regulation of transport, provided that they are affected by oxygen tension. It appears that the transporter molecules themselves do not have direct oxygen sensors. Thus, the oxygen level must be sensed elsewhere, and the effect transduced to the transporter. The possible pathways involved in the regulation of transport, including haemoglobin as a sensor, and phosphorylation/dephosphorylation reactions both in the transporter and its upstream effectors, are discussed.
Collapse
Affiliation(s)
- A Bogdanova
- Institute of Veterinary Physiology and the Zurich Center for Integrative Human Physiology, University of Zurich, Wintherturerstrasse 260, Zurich, Switzerland.
| | | | | |
Collapse
|
8
|
Guizouarn H, Martial S, Gabillat N, Borgese F. Point mutations involved in red cell stomatocytosis convert the electroneutral anion exchanger 1 to a nonselective cation conductance. Blood 2007; 110:2158-65. [PMID: 17554061 DOI: 10.1182/blood-2006-12-063420] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anion exchanger 1 (AE1) is encoded by the SLC4A1 gene and catalyzes the electroneutral anion exchange across cell plasma membrane. It is the most abundant transmembrane protein expressed in red cell where it is involved in CO(2) transport. Recently, 4 new point mutations of SLC4A1 gene have been described leading to missense mutations in the protein sequence (L687P, D705Y, S731P, or H734R). These point mutations were associated with hemolytic anemia, and it was shown that they confer a cation transport feature to the human AE1. Facing this unexpected property for an electroneutral anion exchanger, we have studied the transport features of mutated hAE1 by expression in xenopus oocytes. Our results show that the point mutations of hAE1 convert the electroneutral anion exchanger to a cation conductance: the exchangers are no longer able to exchange Cl(-) and HCO(3)(-), whereas they transport Na(+) and K(+) through a conductive mechanism. These data shed new light on transport mechanisms showing the tiny difference, in terms of primary sequence, between an electroneutral exchange and a conductive pathway.
Collapse
Affiliation(s)
- Hélène Guizouarn
- Laboratoire de Physiologie Cellulaire et Moléculaire, Unité Mixte de Recherche 6548, Centre National de la Recherche Scientifique, Université de Nice, Bâtiment de Sciences Naturelles, Nice, France.
| | | | | | | |
Collapse
|
9
|
Matskevich I, Hegney KL, Flatman PW. Regulation of erythrocyte Na–K–2Cl cotransport by threonine phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1714:25-34. [PMID: 15996636 DOI: 10.1016/j.bbamem.2005.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 05/12/2005] [Accepted: 06/06/2005] [Indexed: 10/25/2022]
Abstract
A method is described to measure threonine phosphorylation of the Na-K-2Cl cotransporter in ferret erythrocytes using readily available antibodies. We show that most, if not all, cotransporter in these cells is NKCC1, and this was immunoprecipitated with T4. Cotransport rate, measured as 86Rb influx, correlates well with threonine phosphorylation of T4-immunoprecipitated protein. The cotransporter effects large fluxes and is significantly phosphorylated in cells under control conditions. Transport and phosphorylation increase 2.5- to 3-fold when cells are treated with calyculin A or Na+ arsenite. Both fall to 60% control when cell [Mg2+] is reduced below micromolar or when cells are treated with the kinase inhibitors, 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine or staurosporine. Importantly, these latter interventions do not abolish either phosphorylation or transport suggesting that a phosphorylated form of the cotransporter is responsible for residual fluxes. Our experiments suggest protein phosphatase 1 (PrP-1) is extremely active in these cells and dephosphorylates key regulatory threonine residues on the cotransporter. Examination of the effects of kinase inhibition after cells have been treated with high concentrations of calyculin indicates that residual PrP-1 activity is capable of rapidly dephosphorylating the cotransporter. Experiments on cotransporter precipitation with microcystin sepharose suggest that PrP-1 binds to a phosphorylated form of the cotransporter.
Collapse
Affiliation(s)
- Ioulia Matskevich
- Membrane Biology Group, College of Medicine and Veterinary Medicine, School of Biomedical and Clinical Laboratory Sciences, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, UK
| | | | | |
Collapse
|
10
|
Abstract
Deoxygenation of ferret erythrocytes stimulates Na+-K+-2Cl- cotransport by 111% (s.d., 46) compared to controls in air. Half-maximal activation occurs at a PO2 of 24 mmHg (s.d., 2) indicating that physiological changes in oxygen tension can influence cotransport function. Approximately 25-35% of this stimulation can be attributed to the rise of intracellular free magnesium concentration that occurs on deoxygenation (from 0.82 (S.D., 0.07) to 1.40 mm (S.D., 0.17)). Most of the stimulation is probably caused by activation of a kinase which can be prevented or reversed by treating cells with the kinase inhibitors PP1 or staurosporine, or by reducing cell magnesium content to submicromolar levels. Stimulation by deoxygenation is comparable with that caused by calyculin A or sodium arsenite, compounds that cause a 2- to 3-fold increase in threonine phosphorylation of the cotransporter which can be detected with phospho-specific antibodies. However, the same approach failed to detect significant changes in threonine phosphorylation following deoxygenation. The results suggest that deoxygenation causes activation of a kinase that either phosphorylates the transporter, but probably not on threonine, or phosphorylates another protein that in turn influences cotransporter behaviour. They also indicate that more than one kinase and phosphatase are involved in cotransporter phosphorylation.
Collapse
Affiliation(s)
- Peter W Flatman
- Membrane Biology Group, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, Scotland, UK.
| |
Collapse
|
11
|
Nessler S, Friedrich O, Bakouh N, Fink RHA, Sanchez CP, Planelles G, Lanzer M. Evidence for Activation of Endogenous Transporters in Xenopus laevis Oocytes Expressing the Plasmodium falciparum Chloroquine Resistance Transporter, PfCRT. J Biol Chem 2004; 279:39438-46. [PMID: 15258157 DOI: 10.1074/jbc.m404671200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A large body of genetic, reverse genetic, and epidemiological data has linked chloroquine-resistant malaria to polymorphisms within a gene termed pfcrt in the human malarial parasite Plasmodium falciparum. To investigate the biological function of the chloroquine resistance transporter, PfCRT, as well as its role in chloroquine resistance, we functionally expressed this protein in Xenopus laevis oocytes. Our data show that PfCRT-expressing oocytes exhibit a depolarized resting membrane potential and a higher intracellular pH compared with control oocytes. Pharmacological and electrophysiological studies link the higher intracellular pH to an enhanced amiloride-sensitive H(+) extrusion and the low membrane potential to an activated nonselective cation conductance. The finding that both properties are independent of each other, together with the fact that they are endogenously present in X. laevis oocytes, supports a model in which PfCRT activates transport systems. Our data suggest that PfCRT plays a role as a direct or indirect activator or modulator of other transporters.
Collapse
Affiliation(s)
- Susanne Nessler
- Hygiene Institut, Abteilung Parasitologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|