1
|
Pathophysiological Significance of Store-Operated Calcium Entry in Megakaryocyte Function: Opening New Paths for Understanding the Role of Calcium in Thrombopoiesis. Int J Mol Sci 2016; 17:ijms17122055. [PMID: 27941645 PMCID: PMC5187855 DOI: 10.3390/ijms17122055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022] Open
Abstract
Store-Operated Calcium Entry (SOCE) is a universal calcium (Ca2+) influx mechanism expressed by several different cell types. It is now known that Stromal Interaction Molecule (STIM), the Ca2+ sensor of the intracellular compartments, together with Orai and Transient Receptor Potential Canonical (TRPC), the subunits of Ca2+ permeable channels on the plasma membrane, cooperate in regulating multiple cellular functions as diverse as proliferation, differentiation, migration, gene expression, and many others, depending on the cell type. In particular, a growing body of evidences suggests that a tight control of SOCE expression and function is achieved by megakaryocytes along their route from hematopoietic stem cells to platelet production. This review attempts to provide an overview about the SOCE dynamics in megakaryocyte development, with a focus on most recent findings related to its involvement in physiological and pathological thrombopoiesis.
Collapse
|
2
|
Abstract
The TRPC1 ion channel was the first mammalian TRP channel to be cloned. In humans, it is encoded by the TRPC1 gene located in chromosome 3. The protein is predicted to consist of six transmembrane segments with the N- and C-termini located in the cytoplasm. The extracellular loop connecting transmembrane segments 5 and 6 participates in the formation of the ionic pore region. Inside the cell, TRPC1 is present in the endoplasmic reticulum, plasma membrane, intracellular vesicles, and primary cilium, an antenna-like sensory organelle functioning as a signaling platform. In human and rodent tissues, it shows an almost ubiquitous expression. TRPC1 interacts with a diverse group of proteins including ion channel subunits, receptors, and cytosolic proteins to mediate its effect on Ca(2+) signaling. It primarily functions as a cation nonselective channel within pathways controlling Ca(2+) entry in response to cell surface receptor activation. Through these pathways, it affects basic cell functions, such as proliferation and survival, differentiation, secretion, and cell migration, as well as cell type-specific functions such as chemotropic turning of neuronal growth cones and myoblast fusion. The biological role of TRPC1 has been studied in genetically engineered mice where the Trpc1 gene has been experimentally ablated. Although these mice live to adulthood, they show defects in several organs and tissues, such as the cardiovascular, central nervous, skeletal and muscular, and immune systems. Genetic and functional studies have implicated TRPC1 in diabetic nephropathy, Parkinson's disease, Huntington's disease, Duchenne muscular dystrophy, cancer, seizures, and Darier-White skin disease.
Collapse
Affiliation(s)
- Vasyl Nesin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | | |
Collapse
|
3
|
Shi J, Geshi N, Takahashi S, Kiyonaka S, Ichikawa J, Hu Y, Mori Y, Ito Y, Inoue R. Molecular determinants for cardiovascular TRPC6 channel regulation by Ca2+/calmodulin-dependent kinase II. J Physiol 2013; 591:2851-66. [PMID: 23529130 DOI: 10.1113/jphysiol.2013.251249] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The molecular mechanism underlying Ca(2+)/calmodulin (CaM)-dependent kinase II (CaMKII)-mediated regulation of the mouse transient receptor potential channel TRPC6 was explored by chimera, deletion and site-directed mutagenesis approaches. Induction of currents (ICCh) in TRPC6-expressing HEK293 cells by a muscarinic agonist carbachol (CCh; 100 μm) was strongly attenuated by a CaMKII-specific peptide, autocamtide-2-related inhibitory peptide (AIP; 10 μm). TRPC6/C7 chimera experiments showed that the TRPC6 C-terminal sequence is indispensable for ICCh to be sensitive to AIP-induced CaMKII inhibition. Further, deletion of a distal region (Gln(855)-Glu(877)) of the C-terminal CaM/inositol-1,4,5-trisphosphate receptor binding domain (CIRB) of TRPC6 was sufficient to abolish ICCh. Systematic alanine scanning for potential CaMKII phosphorylation sites revealed that Thr(487) was solely responsible for the activation of the TRPC6 channel by receptor stimulation. The abrogating effect of the alanine mutation of Thr(487) (T487A) was reproduced with other non-polar amino acids, namely glutamine or asparagine, while being partially rescued by phosphomimetic mutations with glutamate or aspartate. The cellular expression and distribution of TRPC6 channels did not significantly change with these mutations. Electrophysiological and immunocytochemical data with the Myc-tagged TRPC6 channel indicated that Thr(487) is most likely located at the intracellular side of the cell membrane. Overexpression of T487A caused significant reduction of endogenous TRPC6-like current induced by Arg(8)-vasopressin in A7r5 aortic myocytes. Based on these results, we propose that the optimal spatial arrangement of a C-terminal domain (presumably the distal CIRB region) around a single CaMKII phosphorylation site Thr(487) may be essential for CaMKII-mediated regulation of TRPC6 channels. This mechanism may be of physiological significance in a native environment such as in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Juan Shi
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Nanakuma 7-45-1, Johnan-ku, Fukuoka 814-0180, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Garrison SR, Dietrich A, Stucky CL. TRPC1 contributes to light-touch sensation and mechanical responses in low-threshold cutaneous sensory neurons. J Neurophysiol 2011; 107:913-22. [PMID: 22072513 DOI: 10.1152/jn.00658.2011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cellular proteins that underlie mechanosensation remain largely enigmatic in mammalian systems. Mechanically sensitive ion channels are thought to distinguish pressure, stretch, and other types of tactile signals in skin. Transient receptor potential canonical 1 (TRPC1) is a candidate mechanically sensitive channel that is expressed in primary afferent sensory neurons. However, its role in the mechanical sensitivity of these neurons is unclear. Here, we investigated TRPC1-dependent responses to both innocuous and noxious mechanical force. Mechanically evoked action potentials in cutaneous myelinated A-fiber and unmyelinated C-fiber neurons were quantified using the ex vivo skin-nerve preparation to record from the saphenous nerve, which terminates in the dorsal hairy skin of the hindpaw. Our data reveal that in TRPC1-deficient mice, mechanically evoked action potentials were decreased by nearly 50% in slowly adapting Aβ-fibers, which largely innervate Merkel cells, and in rapidly adapting Aδ-Down-hair afferent fibers compared with wild-type controls. In contrast, differences were not found in slowly adapting Aδ-mechanoreceptors or unmyelinated C-fibers, which primarily respond to nociceptive stimuli. These results suggest that TRPC1 may be important in the detection of innocuous mechanical force. We concurrently investigated the role of TRPC1 in behavioral responses to mechanical force to the plantar hindpaw skin. For innocuous stimuli, we developed a novel light stroke assay using a "puffed out" cotton swab. Additionally, we used repeated light, presumably innocuous punctate stimuli with a low threshold von Frey filament (0.68 mN). In agreement with our electrophysiological data in light-touch afferents, TRPC1-deficient mice exhibited nearly a 50% decrease in behavioral responses to both the light-stroke and light punctate mechanical assays when compared with wild-type controls. In contrast, TRPC1-deficient mice exhibited normal paw withdrawal response to more intense mechanical stimuli that are typically considered measures of nociceptive behavior.
Collapse
Affiliation(s)
- Sheldon R Garrison
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
5
|
Labay V, Weichert RM, Makishima T, Griffith AJ. Topology of transmembrane channel-like gene 1 protein. Biochemistry 2010; 49:8592-8. [PMID: 20672865 DOI: 10.1021/bi1004377] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mutations of transmembrane channel-like gene 1 (TMC1) cause hearing loss in humans and mice. TMC1 is the founding member of a family of genes encoding proteins of unknown function that are predicted to contain multiple transmembrane domains. The goal of our study was to define the topology of mouse TMC1 expressed heterologously in tissue culture cells. TMC1 was retained in the endoplasmic reticulum (ER) membrane of five tissue culture cell lines that we tested. We used anti-TMC1 and anti-HA antibodies to probe the topologic orientation of three native epitopes and seven HA epitope tags along full-length TMC1 after selective or complete permeabilization of transfected cells with digitonin or Triton X-100, respectively. TMC1 was present within the ER as an integral membrane protein containing six transmembrane domains and cytosolic N- and C-termini. There is a large cytoplasmic loop, between the fourth and fifth transmembrane domains, with two highly conserved hydrophobic regions that might associate with or penetrate, but do not span, the plasma membrane. Our study is the first to demonstrate that TMC1 is a transmembrane protein. The topologic organization revealed by this study shares some features with that of the shaker-TRP superfamily of ion channels.
Collapse
Affiliation(s)
- Valentina Labay
- Molecular Biology and Genetics Section, Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland 20850, USA
| | | | | | | |
Collapse
|
6
|
Thacker JD, Brown MA, Rest RF, Purohit M, Sassi-Gaha S, Artlett CM. 1-Peptidyl-2-arachidonoyl-3-stearoyl-sn-glyceride: an immunologically active lipopeptide from goat serum (Capra hircus) is an endogenous damage-associated molecular pattern. JOURNAL OF NATURAL PRODUCTS 2009; 72:1993-1999. [PMID: 19835390 DOI: 10.1021/np900360m] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Experiments were undertaken to isolate a component of the serum of goat (Capra hircus) that is effective at mediating an innate immune response. This report describes the isolation and structure elucidation of 1-(N-acetyl-ALYDKGYTSKEQKDCVGI)-2-arachidonoyl-3-stearoyl glyceride (1) and its immunomodulatory activity. A dose-response relationship for inflammatory cytokine and chemokine production and release from human fibroblasts incubated with nanomolar concentrations of 1 was shown. Moreover, the membrane transport role of the diacylglycerol moiety in 1 is demonstrated with nanomolar quantities of the transfected N-acetyl peptide moiety of 1 also inducing inflammatory cytokine and chemokine production and release. The apparent EC99 for 1 was 3 ng/mL (1 nM). The likely biological role for naturally occurring 1 as a damage-associated molecular pattern is postulated.
Collapse
Affiliation(s)
- James D Thacker
- TherimuneX Pharmaceuticals, Inc., Doylestown, Pennsylvania 18902, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Mechanotransduction by TRP Channels: General Concepts and Specific Role in the Vasculature. Cell Biochem Biophys 2009; 56:1-18. [DOI: 10.1007/s12013-009-9067-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
The characteristics of action potential and nonselective cation current of cardiomyocytes in rabbit superior vena cava. ACTA ACUST UNITED AC 2008; 51:326-35. [PMID: 18368310 DOI: 10.1007/s11427-008-0043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
Abstract
As a special focus in initiating and maintaining atrial fibrillation (AF), cardiomyocytes in superior vena cava (SVC) have distinctive electrophysiological characters. In this study, we found that comparing with the right atrial (RA) cardiomyocytes, the SVC cardiomyocytes had longer APD90 at the different basic cycle lengths; the conduction block could be observed on both RA and SVC cardiomyocytes. A few of SVC cardiomyocytes showed slow response action potentials with automatic activity and some others showed early after depolarization (EAD) spontaneously. Further more, we found that there are nonselective cation current (INs) in both SVC and RA cardiomyocytes. The peak density of I Ns in SVC cardiomyocytes was smaller than that in RA cardiomyocytes. Removal of extracellular divalent cation and glucose could increase INs in SVC cardiomyocytes. The agonist or the antagonist of INs may increase or decrease APD. To sum up, some SVC cardiomyocytes possess the ability of spontaneous activity; the difference of transmembrane action potentials between SVC and RA cardiomyocytes is partly because of the different density of INs between them; the agonist or the antagonist of INs can increase or decrease APD leading to the enhancement or reduction of EAD genesis in SVC cardiomyocytes. INs in rabbit myocytes is fairly similar to TRPC3 current in electrophysiological property, which might play an important role in the mechanisms of AF.
Collapse
|
9
|
Ambudkar IS, Ong HL, Liu X, Bandyopadhyay BC, Bandyopadhyay B, Cheng KT. TRPC1: The link between functionally distinct store-operated calcium channels. Cell Calcium 2007; 42:213-23. [PMID: 17350680 DOI: 10.1016/j.ceca.2007.01.013] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 10/23/2022]
Abstract
Although store-operated calcium entry (SOCE) was identified more that two decades ago, understanding the molecular mechanisms that regulate and mediate this process continue to pose a major challenge to investigators in this field. Thus, there has been major focus on determining which of the models proposed for this mechanism is valid and conclusively establishing the components of the store-operated calcium (SOC) channel(s). The transient receptor potential canonical (TRPC) proteins have been suggested as candidate components of the elusive store-operated Ca(2+) entry channel. While all TRPCs are activated in response to agonist-stimulated phosphatidylinositol 4,5, bisphosphate (PIP(2)) hydrolysis, only some display store-dependent regulation. TRPC1 is currently the strongest candidate component of SOC and is shown to contribute to SOCE in many cell types. Heteromeric interactions of TRPC1 with other TRPCs generate diverse SOC channels. Recent studies have revealed novel components of SOCE, namely the stromal interacting molecule (STIM) and Orai proteins. While STIM1 has been suggested to be the ER-Ca(2+) sensor protein relaying the signal to the plasma membrane for activation of SOCE, Orai1 is reported to be the pore-forming component of CRAC channel that mediates SOCE in T-lymphocytes and other hematopoetic cells. Several studies now demonstrate that TRPC1 also associates with STIM1 suggesting that SOC and CRAC channels are regulated by similar molecular components. Interestingly, TRPC1 is also associated with Orai1 and a TRPC1-Orai1-STIM1 ternary complex contributes to SOC channel function. This review will focus on the diverse SOC channels formed by TRPC1 and the suggestion that TRPC1 might serve as a molecular link that determines their regulation by store-depletion.
Collapse
Affiliation(s)
- Indu S Ambudkar
- Secretory Physiology Section, GTTB, NIDCR, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Nagy A, Turner RJ. The membrane integration of a naturally occurring alpha-helical hairpin. Biochem Biophys Res Commun 2007; 356:392-7. [PMID: 17367760 DOI: 10.1016/j.bbrc.2007.02.149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 02/24/2007] [Indexed: 11/24/2022]
Abstract
Helical hairpins, two closely spaced helical membrane spanning segments separated by a short surface turn, are thought to be common in integral membrane proteins. Here, we study the membrane integration of a naturally occurring helical hairpin from the secretory Na(+)-K(+)-2Cl(-) cotransporter NKCC1. This sequence is only slightly longer and significantly less hydrophobic than a previously identified minimal poly-leucine model hairpin structure. Using site directed mutagenesis we document the importance of the turn propensity of the amino acids in the intervening surface turn but, somewhat surprisingly, our results indicate that the formation of this natural hairpin apparently does not depend on specific helix-helix interactions. Our results suggest that helical hairpins may be formed quite readily from even minimally hydrophobic sequences separated by a short, sufficiently strong, turn signal, and that current methods for predicting integral membrane protein topology may miss many similar short helical hairpin sequences. Thus the occurrence of these structures may be much more common than presently thought.
Collapse
Affiliation(s)
- Akos Nagy
- Membrane Biology Section, Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | | |
Collapse
|
11
|
Abstract
The full-length transient receptor (TRPC)1 polypeptide is composed of about 790 amino acids, and several splice variants are known. The predicted structure and topology is of an integral membrane protein composed of six transmembrane domains, and a cytoplasmic C- and N-terminal domain. The N-terminal domain includes three ankyrin repeat motifs. Antibodies which recognise TRPC1 have been developed, but it has been difficult to obtain antibodies which have high affinity and specificity for TRPC1. This has made studies of the cellular functions of TRPC1 somewhat difficult. The TRPC1 protein is widely expressed in different types of animal cells, and within a given cell is found at the plasma membrane and at intracellular sites. TRPC1 interacts with calmodulin, caveolin-1, the InsP3 receptor, Homer, phospholipase C and several other proteins. Investigations of the biological roles and mechanisms of action of TRPC1 have employed ectopic (over-expression or heterologous expression) of the polypeptide in addition to studies of endogenous TRPC1. Both approaches have encountered difficulties. TRPC1 forms heterotetramers with other TRPC polypeptides resulting in cation channels which are non-selective. TRPC1 may be: a component of the pore of store-operated Ca2+ channels (SOCs); a subsidiary protein in the pathway of activation of SOCs; activated by interaction with InsP3R; and/or activated by stretch. Further experiments are required to resolve the exact roles and mechanisms of activation of TRPC1. Cation entry through the TRPC1 channel is feed-back inhibited by Ca2+ through interaction with calmodulin, and is inhibited by Gd3+, La3+, SKF96365 and 2-APB, and by antibodies targeted to the external mouth of the TRPC1 pore. Activation of TRPC1 leads to the entry to the cytoplasmic space of substantial amounts of Na+ as well as Ca2+. A requirement for TRPC1 is implicated in numerous downstream cellular pathways. The most clearly described roles are in the regulation of growth cone turning in neurons. It is concluded that TRPC1 is a most interesting protein because of the apparent wide variety of its roles and functions and the challenges posed to those attempting to elucidate its primary intracellular functions and mechanisms of action.
Collapse
Affiliation(s)
- G Rychkov
- School of Molecular and Biomedical Science, University of Adelaide, 5005 Adelaide, South Australia, Australia
| | | |
Collapse
|
12
|
Woodard GE, Sage SO, Rosado JA. Transient Receptor Potential Channels and Intracellular Signaling. ACTA ACUST UNITED AC 2007; 256:35-67. [PMID: 17241904 DOI: 10.1016/s0074-7696(07)56002-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The transient receptor potential (TRP) family of ion channels is composed of more than 50 functionally versatile cation-permeant ion channels expressed in most mammalian cell types. Considerable research has been brought to bear on the members of this family, especially with regard to their possible role as store-operated calcium channels, although studies have provided evidence that TRP channels exhibit a number of regulatory and functional aspects. Endogenous and transiently expressed TRP channels can be activated by different mechanisms grouped into four main categories: receptor-operated activation, store depletion-mediated activation, ligand-induced activation, and direct activation. This article reviews the biochemical characteristics of the different members of the TRP family and summarizes their involvement in a number of physiological events ranging from sensory transduction to development, which might help in understanding the relationship between TRP channel dysfunction and the development of several diseases.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
13
|
Trebak M, Lemonnier L, Smyth JT, Vazquez G, Putney JW. Phospholipase C-coupled receptors and activation of TRPC channels. Handb Exp Pharmacol 2007:593-614. [PMID: 17217081 DOI: 10.1007/978-3-540-34891-7_35] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The canonical transient receptor potential (TRPC) cation channels are mammalian homologs of the photoreceptor channel TRP in Drosophila melanogaster. All seven TRPCs (TRPC1 through TRPC7) can be activated through Gq/11 receptors or receptor tyrosine kinase (RTK) by mechanisms downstream of phospholipase C. The last decade saw a rapidly growing interest in understanding the role of TRPC channels in calcium entry pathways as well as in understanding the signal(s) responsible for TRPC activation. TRPC channels have been proposed to be activated by a variety of signals including store depletion, membrane lipids, and vesicular insertion into the plasma membrane. Here we discuss recent developments in the mode of activation as well as the pharmacological and electrophysiological properties of this important and ubiquitous family of cation channels.
Collapse
Affiliation(s)
- M Trebak
- Laboratory of Signal Transduction, Department of Health and Human Services, National Institute of Environmental Health Sciences-NIH, Research Triangle Park, PO Box 12233, NC 27709, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
A subset of TRP channel proteins undergoes regulatory N-linked glycosylation. A glycosylation site in the first extracellular loop of TRPV5 is enzymatically cleaved by a secreted glucuronidase, indirectly regulating channel function. Members of the TRPC family share a similar site, although details about a regulatory role are lacking. A second conserved TRP channel glycosylation site is found immediately adjacent to the channel pore-forming loop; both TRPV1 and TRPV4--and perhaps other TRPV family members--are influenced by glycosylation at this site. N-linked glycosylation, and the dynamic regulation of this process, substantially impacts function and targeting of TRP channels.
Collapse
Affiliation(s)
- David M Cohen
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland Veterans Affairs Medical Center, Portland, OR 97239, USA.
| |
Collapse
|
15
|
Gerelsaikhan T, Parvin MN, Turner RJ. Biogenesis and Topology of the Secretory Na+−K+−2Cl-Cotransporter (NKCC1) Studied in Intact Mammalian Cells†. Biochemistry 2006; 45:12060-7. [PMID: 17002305 DOI: 10.1021/bi061126x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The "secretory" Na+-K+-2Cl- cotransporter (NKCC1) is a member of a small gene family with nine homologues in vertebrates. Of these, seven are known to be electroneutral chloride transporters. These transporters play a number of important physiological roles related to salt and water homeostasis and the control of intracellular chloride levels. Hydropathy analyses suggest that all of these transporters have a similar transmembrane topology consisting of relatively large intracellular N and C termini and a central hydrophobic domain containing 12 membrane-spanning segments (MSSs). In recent experiments from our laboratory [Gerelsaikhan, T., and Turner, R. J. (2000) J. Biol. Chem. 275, 40471-40477], we employed an in vitro translation system to confirm that each of the putative MSSs of NKCC1 was capable of membrane integration in a manner consistent with a 12 MSS model. Here, we extend that work to the study of the biogenesis of NKCC1 in intact cells. We employ a truncation mutant approach that allows us to monitor this process quantitatively as successive MSSs are synthesized. While the results presented here confirm the 12 MSS model, they also indicate that the integration of NKCC1 into the membrane does not occur via a simple cotranslational process. In particular, we demonstrate that two MSSs, the second and sixth, require the presence of downstream sequence to efficiently integrate into the membrane.
Collapse
Affiliation(s)
- Tudevdagva Gerelsaikhan
- Membrane Biology Section, Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, DHHS, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
16
|
Oh YS, Turner RJ. Protease digestion indicates that endogenous presenilin 1 is present in at least two physical forms. Biochem Biophys Res Commun 2006; 346:330-4. [PMID: 16756946 DOI: 10.1016/j.bbrc.2006.05.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 05/22/2006] [Indexed: 12/22/2022]
Abstract
The membrane-bound protein complex gamma-secretase is an intramembranous protease whose substrates are a number of type I transmembrane proteins including the beta-amyloid precursor protein (APP). A presenilin molecule is thought to be the catalytic unit of gamma-secretase and either of two presenilin homologues, PS1 or PS2, can play this role. Mutations in the presenilins, apparently leading to aberrant processing of APP, have been genetically linked to early-onset familial Alzheimer's disease. To look for possible molecular heterogeneity in presenilin/gamma-secretase we examined the ability of proteinase K (PK) to digest endogenously expressed presenilins in intact endoplasmic reticulum vesicles. We demonstrate the existence of two physically different forms of gamma-secretase-associated PS1, one that is relatively PK-sensitive and one that is significantly more PK-resistant. A similarly PK-resistant form of PS2 was not observed. We speculate that the structural heterogeneity we observe may underlie, at least in part, previous observations indicating the physical and functional heterogeneity of gamma-secretase. In particular, our results suggest that there are significant differences between gamma-secretase complexes incorporating PS1 and PS2. This difference may underlie the more dominant role of PS1 in the generation of beta-amyloid peptides and in familial Alzheimer's disease.
Collapse
Affiliation(s)
- Young S Oh
- Membrane Biology Section, Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | | |
Collapse
|
17
|
Abstract
Ion channels are pore-forming transmembrane proteins that allow ions to permeate biological membranes. Pore structure plays a crucial role in determining the ion permeation and selectivity properties of particular channels. In the past few decades, efforts have been undertaken to identify key elements of the pore regions of different classes of ion channels. In this review, we summarize current knowledge about permeation and selectivity of channel proteins from the transient receptor potential (TRP) superfamily. Whereas all TRP channels are permeable for cations, only two TRP channels are impermeable for Ca2+ (TRPM4, TRPM5), and two others are highly Ca2+ permeable (TRPV5, TRPV6). Despite the great advances in the TRP channel field during the past decade, only a limited number of reports have dealt with functional characterization of pore properties, biophysical aspects of cation permeation, or description of pore structures of TRP channels. This review gives an overview of available experimental and theoretical data and discusses the functional impact of pore-structure modifications on TRP channel properties.
Collapse
Affiliation(s)
- Grzegorz Owsianik
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
18
|
Owsianik G, D'hoedt D, Voets T, Nilius B. Structure–function relationship of the TRP channel superfamily. Rev Physiol Biochem Pharmacol 2006. [DOI: 10.1007/s10254-005-0006-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Abstract
Mutations of human presenilin 1 (PS1) have been genetically linked to early-onset familial Alzheimer's disease. PS1 contains 10 hydrophobic regions (HRs) sufficiently long to be alpha-helical membrane spanning segments. Most previous topology studies agree that the N-terminus of PS1 is cytosolic and HRs 1-6 span the membrane but HR 7 does not. However, whether HRs 8 and 9 are membrane spanning segments remains controversial. Here we study the topology and biogenesis of this region of PS1 using a reporter gene fusion approach, where portions of the PS1 sequence containing possible membrane spanning segments were fused up- or downstream of a reporter sequence whose translocation into the endoplasmic reticulum could be monitored via its glycosylation. We provide strong evidence, supported by cysteine accessibility studies in full-length PS1, that HRs 8 and 9 are indeed membrane spanning and that the integration of HR 8 into the membrane is dependent on the presence of HR 9. We also explain how our results reconcile previous apparently divergent conclusions regarding the topology of HRs 8 and 9.
Collapse
Affiliation(s)
- Young S Oh
- Membrane Biology Section, Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, DHHS, Bethesda, Maryland 20892-1190, USA.
| | | |
Collapse
|
20
|
Mio K, Ogura T, Hara Y, Mori Y, Sato C. The non-selective cation-permeable channel TRPC3 is a tetrahedron with a cap on the large cytoplasmic end. Biochem Biophys Res Commun 2005; 333:768-77. [PMID: 15964551 DOI: 10.1016/j.bbrc.2005.05.181] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 05/31/2005] [Indexed: 10/25/2022]
Abstract
TRPC3 plays important roles in neuronal differentiation and immune cell maturation by mediating the cationic current in response to phospholipase C activation, Ca2+ depletion, and diacylglycerol stimulation. Here, we purified the TRPC3 channel using a glycosylated tetramer and observed the structure using electron microscopy. Negatively stained specimens demonstrate homogeneous protein particles containing an internal cavity-like structure. These particle images were picked up by automated pick-up programs, aligned, and classified by the growing neural gas network method. Similarly oriented projections were averaged to decrease the signal-to-noise ratio. The averaged images progress from the top view to the side views, which are representative of their raw images. The top view confirmed the hypothesis of a four-domain structure, and the side view demonstrates a large cytoplasmic domain with a capped structure at the bottom, which is near a predicted locus of ion release. The total image of the protein is a blunt-edged trapezoid of 200 x 200 x 235 A. This large dimension of TRPC3 is also supported by the Stokes radius (92 A) obtained from gel filtration chromatography.
Collapse
Affiliation(s)
- Kazuhiro Mio
- Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1-1-4, Tsukuba, Ibaraki 305-8568, Japan
| | | | | | | | | |
Collapse
|
21
|
Obukhov AG, Nowycky MC. A cytosolic residue mediates Mg2+ block and regulates inward current amplitude of a transient receptor potential channel. J Neurosci 2005; 25:1234-9. [PMID: 15689561 PMCID: PMC6725964 DOI: 10.1523/jneurosci.4451-04.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Members of the transient receptor potential (TRP) cation channel family control a wide variety of cellular functions by regulating calcium influx. In neurons, TRP channels may also modulate cell excitability. TRPC5 is a neuronal TRP channel that plays a role in controlling neurite extension in the hippocampus. Transiently expressed TRPC5 exhibits a doubly rectifying current-voltage relationship characterized by relatively large inward currents and a unique outwardly rectifying current with a "flat" segment between +10 and +40 mV that may be attributable to Mg2+ block. We find that intracellular Mg2+ blocks the outward current through TRPC5 with an IC50 of 457 microM. The block is mediated by a cytosolic aspartate residue, D633, situated between the termination of the sixth transmembrane domain and the "TRP box." The substitution of noncharged or positively charged residues for the negatively charged D633 resulted in a channel with markedly reduced inward currents, in addition to decreased Mg2+ block. This suggests that electrostatic attraction of cations by D633 may contribute to inward current amplitude in TRPC5. We propose that cytosolic negatively charged residues can modulate the conductivity of TRP cation channels.
Collapse
Affiliation(s)
- Alexander G Obukhov
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA.
| | | |
Collapse
|
22
|
Abstract
Transient receptor potential canonical 1 (TRPC1) is a transmembrane protein expressed in a range of vertebrate cells including smooth muscle, endothelium, neurones and salivary gland cells. It functions as an element of a mixed cationic Ca(2+)-permeable channel, probably commonly as part of a heterotetrameric assembly involving other related proteins such as TRPC5. Wide-ranging biological roles of TRPC1 are suggested, including regulation of smooth muscle and stem cell proliferation, endothelin-evoked arterial contraction, salivary gland secretion, endothelial permeability, glutamatergic neurotransmission, growth cone turning, neuroprotection, neuronal differentiation, lipid raft integrity and the nuclear factor of activated T-cell transcription factor. The mechanisms by which TRPC1 serves these functions are starting to emerge. At one level, it is apparent that TRPC1 is subcellularly compartmentalised, at least in part in cholesterol-rich caveolae closely associated with sub-plasmalemmal endoplasmic reticulum. At another level, TRPC1 is embedded in a protein complex that can include inositol trisphosphate receptor, homer, calmodulin, caveolin-1, FKBP25, I-mfa, MxA, GluR1alpha, bFGFR-1, G(q/11) protein, phospholipase C-beta/gamma, protein kinase C-alpha and RhoA. It is also apparent that TRPC1 responds to general stimuli-not only depletion of intracellular Ca(2+) stores, but also receptor activation, and membrane stretch. We are at the early stages of understanding of how these various signals and components integrate to form a functional channel, and this article provides a brief overview of current progress.
Collapse
Affiliation(s)
- David J Beech
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
23
|
Oh YS, Turner RJ. Evidence that the COOH terminus of human presenilin 1 is located in extracytoplasmic space. Am J Physiol Cell Physiol 2005; 289:C576-81. [PMID: 15843437 PMCID: PMC1361293 DOI: 10.1152/ajpcell.00636.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The polytopic membrane protein presenilin 1 (PS1) is a component of the gamma-secretase complex that is responsible for the intramembranous cleavage of several type I transmembrane proteins, including the beta-amyloid precursor protein (APP). Mutations of PS1, apparently leading to aberrant processing of APP, have been genetically linked to early-onset familial Alzheimer's disease. PS1 contains 10 hydrophobic regions (HRs) sufficiently long to be alpha-helical membrane spanning segments. Most topology models for PS1 place its COOH terminal approximately 40 amino acids, which include HR 10, in the cytosolic space. However, several recent observations suggest that HR 10 may be integrated into the membrane and involved in the interaction between PS1 and APP. We have applied three independent methodologies to investigate the location of HR 10 and the extreme COOH terminus of PS1. The results from these methods indicate that HR 10 spans the membrane and that the COOH terminal amino acids of PS1 lie in the extracytoplasmic space.
Collapse
Affiliation(s)
- Young S Oh
- Membrane Biology Section, Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-1190, USA.
| | | |
Collapse
|
24
|
Vazquez G, Wedel BJ, Aziz O, Trebak M, Putney JW. The mammalian TRPC cation channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1742:21-36. [PMID: 15590053 DOI: 10.1016/j.bbamcr.2004.08.015] [Citation(s) in RCA: 248] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 08/27/2004] [Accepted: 08/28/2004] [Indexed: 01/27/2023]
Abstract
Transient Receptor Potential-Canonical (TRPC) channels are mammalian homologs of Transient Receptor Potential (TRP), a Ca(2+)-permeable channel involved in the phospholipase C-regulated photoreceptor activation mechanism in Drosophila. The seven mammalian TRPCs constitute a family of channels which have been proposed to function as store-operated as well as second messenger-operated channels in a variety of cell types. TRPC channels, together with other more distantly related channel families, make up the larger TRP channel superfamily. This review summarizes recent findings on the structure, regulation and function of the apparently ubiquitous TRPC cation channels.
Collapse
Affiliation(s)
- Guillermo Vazquez
- The Calcium Regulation Section, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Dr., Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
25
|
Buck TM, Skach WR. Differential Stability of Biogenesis Intermediates Reveals a Common Pathway for Aquaporin-1 Topological Maturation. J Biol Chem 2005; 280:261-9. [PMID: 15516332 DOI: 10.1074/jbc.m409920200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Topological studies of multi-spanning membrane proteins commonly use sequentially truncated proteins fused to a C-terminal translocation reporter to deduce transmembrane (TM) segment orientation and key biogenesis events. Because these truncated proteins represent an incomplete stage of synthesis, they transiently populate intermediate folding states that may or may not reflect topology of the mature protein. For example, in Xenopus oocytes, the aquaporin-1 (AQP1) water channel is cotranslationally directed into a four membrane-spanning intermediate, which matures into the six membrane-spanning topology at a late stage of synthesis (Skach, W. R., Shi, L. B., Calayag, M. C., Frigeri, A., Lingappa, V. R., and Verkman, A. S. (1994) J. Cell Biol. 125, 803-815 and Lu, Y., Turnbull, I. R., Bragin, A., Carveth, K., Verkman, A. S., and Skach, W. R. (2000) Mol. Biol. Cell 11, 2973-2985). The hallmark of this process is that TM3 initially acquires an Nexo/Ccyto (Type I) topology and must rotate 180 degrees to acquire its mature orientation. In contrast, recent studies in HEK-293 cells have suggested that TM3 acquires its mature topology cotranslationally without the need for reorientation (Dohke, Y., and Turner, R. J. (2002) J. Biol. Chem. 277, 15215-15219). Here we re-examine AQP1 biogenesis and show that irrespective of the reporter or fusion site used, oocytes and mammalian cells yielded similar topologic results. AQP1 intermediates containing the first three TM segments generated two distinct cohorts of polypeptides in which TM3 spanned the ER membrane in either an Ncyto/Cexo (mature) or Nexo/Ccyto (immature) topology. Pulse-chase analyses revealed that the immature form was predominant immediately after synthesis but that it was rapidly degraded via the proteasome-mediated endoplasmic reticulum associated degradation (ERAD) pathway with a half-life of less than 25 min in HEK cells. As a result, the mature topology predominated at later time points. We conclude that (i) differential stability of biogenesis intermediates is an important factor for in vivo topological analysis of truncated chimeric proteins and (ii) cotranslational events of AQP1 biogenesis reflect a common AQP1 folding pathway in diverse expression systems.
Collapse
Affiliation(s)
- Teresa M Buck
- Molecular Medicine Division, Department of Medicine, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | |
Collapse
|
26
|
Beech DJ, Muraki K, Flemming R. Non-selective cationic channels of smooth muscle and the mammalian homologues of Drosophila TRP. J Physiol 2004; 559:685-706. [PMID: 15272031 PMCID: PMC1665181 DOI: 10.1113/jphysiol.2004.068734] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 07/20/2004] [Indexed: 12/25/2022] Open
Abstract
Throughout the body there are smooth muscle cells controlling a myriad of tubes and reservoirs. The cells show enormous diversity and complexity compounded by a plasticity that is critical in physiology and disease. Over the past quarter of a century we have seen that smooth muscle cells contain--as part of a gamut of ion-handling mechanisms--a family of cationic channels with significant permeability to calcium, potassium and sodium. Several of these channels are sensors of calcium store depletion, G-protein-coupled receptor activation, membrane stretch, intracellular Ca2+, pH, phospholipid signals and other factors. Progress in understanding the channels has, however, been hampered by a paucity of specific pharmacological agents and difficulty in identifying the underlying genes. In this review we summarize current knowledge of these smooth muscle cationic channels and evaluate the hypothesis that the underlying genes are homologues of Drosophila TRP (transient receptor potential). Direct evidence exists for roles of TRPC1, TRPC4/5, TRPC6, TRPV2, TRPP1 and TRPP2, and more are likely to be added soon. Some of these TRP proteins respond to a multiplicity of activation signals--promiscuity of gating that could enable a variety of context-dependent functions. We would seem to be witnessing the first phase of the molecular delineation of these cationic channels, something that should prove a leap forward for strategies aimed at developing new selective pharmacological agents and understanding the activation mechanisms and functions of these channels in physiological systems.
Collapse
Affiliation(s)
- D J Beech
- School of Biomedical Sciences, University of Leeds, LS2 9JT, UK.
| | | | | |
Collapse
|