1
|
Khakpour N, Zahmatkesh A, Hosseini SY, Ghamar H, Nezafat N. Identification of the Potential Role of the E4orf4 Protein in Adenovirus A, B, C, and D Groups in Cancer Therapy: Computational Approaches. Mol Biotechnol 2024:10.1007/s12033-024-01278-4. [PMID: 39269574 DOI: 10.1007/s12033-024-01278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
The human adenovirus (HADV) early region 4 open reading frame 4 (E4orf4) protein plays a regulatory role in promoting viral infection by interacting with various cellular proteins. E4orf4 can induce death in cancer cells. One of the death pathways that is induced by this protein is related to the formation of membrane blebbing following the phosphorylation of tyrosine amino acids. The activation of this pathway requires the interaction of E4orf4 with Src family kinases (SFKs). The modulation mechanism of Src-dependent signaling via E4orf4 is not yet fully understood. However, evidence suggests that a physical association between the Src kinase domain and the arginine-rich motif of E4orf4 is crucial. Physically connecting E4orf4 to Src kinase leads to the deregulation of the Src-related signaling pathway, thereby inducing cytoplasmic death. In this study, we mapped the E4orf4 interaction site in Src to investigate the interaction between E4orf4 and Src in detail. We also compared the binding strength of E4orf4 proteins from different HADV groups. To this end, we performed bioinformatics structural analysis of the Src kinase domain and E4orf4 to identify E4orf4 interaction sites. The group with the lowest binding energy was predicted to be the most likely candidate for the highest cytoplasmic death in tumor cells based on the energy of the E4orf4-Src complex in various HADV groups. These results show that HADV-A and HADV-C have minimal binding energies to the E4orf4-Src complex, while the dissociation constant (Kd) of HADV-A was less than that of HADV-C. According to the obtained results, E4orf4 of the HADV-A group is more effective at triggering cytoplasmic death based on its most robust interaction with the Src kinase domain.
Collapse
Affiliation(s)
- Niloofar Khakpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Zahmatkesh
- Shiraz Transplant Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Ghamar
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Computational Vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Luthold C, Lambert H, Guilbert SM, Rodrigue MA, Fuchs M, Varlet AA, Fradet-Turcotte A, Lavoie JN. CDK1-Mediated Phosphorylation of BAG3 Promotes Mitotic Cell Shape Remodeling and the Molecular Assembly of Mitotic p62 Bodies. Cells 2021; 10:cells10102638. [PMID: 34685619 PMCID: PMC8534064 DOI: 10.3390/cells10102638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 01/07/2023] Open
Abstract
The cochaperone BCL2-associated athanogene 3 (BAG3), in complex with the heat shock protein HSPB8, facilitates mitotic rounding, spindle orientation, and proper abscission of daughter cells. BAG3 and HSPB8 mitotic functions implicate the sequestosome p62/SQSTM1, suggesting a role for protein quality control. However, the interplay between this chaperone-assisted pathway and the mitotic machinery is not known. Here, we show that BAG3 phosphorylation at the conserved T285 is regulated by CDK1 and activates its function in mitotic cell shape remodeling. BAG3 phosphorylation exhibited a high dynamic at mitotic entry and both a non-phosphorylatable BAG3T285A and a phosphomimetic BAG3T285D protein were unable to correct the mitotic defects in BAG3-depleted HeLa cells. We also demonstrate that BAG3 phosphorylation, HSPB8, and CDK1 activity modulate the molecular assembly of p62/SQSTM1 into mitotic bodies containing K63 polyubiquitinated chains. These findings suggest the existence of a mitotically regulated spatial quality control mechanism for the fidelity of cell shape remodeling in highly dividing cells.
Collapse
Affiliation(s)
- Carole Luthold
- Centre de Recherche sur le Cancer, Université Laval, Quebec, QC G1R 3S3, Canada; (C.L.); (H.L.); (S.M.G.); (M.-A.R.); (M.F.); (A.-A.V.); (A.F.-T.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
| | - Herman Lambert
- Centre de Recherche sur le Cancer, Université Laval, Quebec, QC G1R 3S3, Canada; (C.L.); (H.L.); (S.M.G.); (M.-A.R.); (M.F.); (A.-A.V.); (A.F.-T.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
| | - Solenn M. Guilbert
- Centre de Recherche sur le Cancer, Université Laval, Quebec, QC G1R 3S3, Canada; (C.L.); (H.L.); (S.M.G.); (M.-A.R.); (M.F.); (A.-A.V.); (A.F.-T.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
| | - Marc-Antoine Rodrigue
- Centre de Recherche sur le Cancer, Université Laval, Quebec, QC G1R 3S3, Canada; (C.L.); (H.L.); (S.M.G.); (M.-A.R.); (M.F.); (A.-A.V.); (A.F.-T.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
| | - Margit Fuchs
- Centre de Recherche sur le Cancer, Université Laval, Quebec, QC G1R 3S3, Canada; (C.L.); (H.L.); (S.M.G.); (M.-A.R.); (M.F.); (A.-A.V.); (A.F.-T.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
| | - Alice-Anaïs Varlet
- Centre de Recherche sur le Cancer, Université Laval, Quebec, QC G1R 3S3, Canada; (C.L.); (H.L.); (S.M.G.); (M.-A.R.); (M.F.); (A.-A.V.); (A.F.-T.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
| | - Amélie Fradet-Turcotte
- Centre de Recherche sur le Cancer, Université Laval, Quebec, QC G1R 3S3, Canada; (C.L.); (H.L.); (S.M.G.); (M.-A.R.); (M.F.); (A.-A.V.); (A.F.-T.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Quebec, QC G1V0A6, Canada
| | - Josée N. Lavoie
- Centre de Recherche sur le Cancer, Université Laval, Quebec, QC G1R 3S3, Canada; (C.L.); (H.L.); (S.M.G.); (M.-A.R.); (M.F.); (A.-A.V.); (A.F.-T.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Quebec, QC G1V0A6, Canada
- Correspondence:
| |
Collapse
|
3
|
Dziengelewski C, Rodrigue MA, Caillier A, Jacquet K, Boulanger MC, Bergeman J, Fuchs M, Lambert H, Laprise P, Richard DE, Bordeleau F, Huot MÉ, Lavoie JN. Adenoviral protein E4orf4 interacts with the polarity protein Par3 to induce nuclear rupture and tumor cell death. J Cell Biol 2020; 219:151580. [PMID: 32328642 PMCID: PMC7147092 DOI: 10.1083/jcb.201805122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/12/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
The tumor cell–selective killing activity of the adenovirus type 2 early region 4 ORF4 (E4orf4) protein is poorly defined at the molecular level. Here, we show that the tumoricidal effect of E4orf4 is typified by changes in nuclear dynamics that depend on its interaction with the polarity protein Par3 and actomyosin contractility. Mechanistically, E4orf4 induced a high incidence of nuclear bleb formation and repetitive nuclear ruptures, which promoted nuclear efflux of E4orf4 and loss of nuclear integrity. This process was regulated by nucleocytoskeletal connections, Par3 clustering proximal to nuclear lamina folds, and retrograde movement of actin bundles that correlated with nuclear ruptures. Significantly, Par3 also regulated the incidence of spontaneous nuclear ruptures facilitated by the downmodulation of lamins. This work uncovered a novel role for Par3 in controlling the actin-dependent forces acting on the nuclear envelope to remodel nuclear shape, which might be a defining feature of tumor cells that is harnessed by E4orf4.
Collapse
Affiliation(s)
- Claire Dziengelewski
- Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada
| | - Marc-Antoine Rodrigue
- Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada
| | - Alexia Caillier
- Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada
| | - Kévin Jacquet
- Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada
| | - Marie-Chloé Boulanger
- Department of Surgery, Quebec Heart and Lung Institute/Research Center, Université Laval, Québec, Canada
| | - Jonathan Bergeman
- Institut de Recherches Clinique de Montréal, Montréal, Québec, Canada
| | - Margit Fuchs
- Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada.,Faculty of Management, Dalhousie University, Halifax, Canada
| | - Herman Lambert
- Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada
| | - Patrick Laprise
- Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Québec City, Québec, Canada
| | - Darren E Richard
- Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Québec City, Québec, Canada.,Endocrinology and Nephrology, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada
| | - François Bordeleau
- Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Québec City, Québec, Canada
| | - Marc-Étienne Huot
- Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Québec City, Québec, Canada
| | - Josée N Lavoie
- Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
4
|
Luthold C, Varlet AA, Lambert H, Bordeleau F, Lavoie JN. Chaperone-Assisted Mitotic Actin Remodeling by BAG3 and HSPB8 Involves the Deacetylase HDAC6 and Its Substrate Cortactin. Int J Mol Sci 2020; 22:ijms22010142. [PMID: 33375626 PMCID: PMC7795263 DOI: 10.3390/ijms22010142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
The fidelity of actin dynamics relies on protein quality control, but the underlying molecular mechanisms are poorly defined. During mitosis, the cochaperone BCL2-associated athanogene 3 (BAG3) modulates cell rounding, cortex stability, spindle orientation, and chromosome segregation. Mitotic BAG3 shows enhanced interactions with its preferred chaperone partner HSPB8, the autophagic adaptor p62/SQSTM1, and HDAC6, a deacetylase with cytoskeletal substrates. Here, we show that depletion of BAG3, HSPB8, or p62/SQSTM1 can recapitulate the same inhibition of mitotic cell rounding. Moreover, depletion of either of these proteins also interfered with the dynamic of the subcortical actin cloud that contributes to spindle positioning. These phenotypes were corrected by drugs that limit the Arp2/3 complex or HDAC6 activity, arguing for a role for BAG3 in tuning branched actin network assembly. Mechanistically, we found that cortactin acetylation/deacetylation is mitotically regulated and is correlated with a reduced association of cortactin with HDAC6 in situ. Remarkably, BAG3 depletion hindered the mitotic decrease in cortactin–HDAC6 association. Furthermore, expression of an acetyl-mimic cortactin mutant in BAG3-depleted cells normalized mitotic cell rounding and the subcortical actin cloud organization. Together, these results reinforce a BAG3′s function for accurate mitotic actin remodeling, via tuning cortactin and HDAC6 spatial dynamics.
Collapse
Affiliation(s)
- Carole Luthold
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada; (C.L.); (A.-A.V.); (H.L.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
| | - Alice-Anaïs Varlet
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada; (C.L.); (A.-A.V.); (H.L.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
| | - Herman Lambert
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada; (C.L.); (A.-A.V.); (H.L.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
| | - François Bordeleau
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada; (C.L.); (A.-A.V.); (H.L.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: (F.B.); (J.N.L.)
| | - Josée N. Lavoie
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada; (C.L.); (A.-A.V.); (H.L.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: (F.B.); (J.N.L.)
| |
Collapse
|
5
|
Jacquet K, Rodrigue MA, Richard DE, Lavoie JN. The adenoviral protein E4orf4: a probing tool to decipher mechanical stress-induced nuclear envelope remodeling in tumor cells. Cell Cycle 2020; 19:2963-2981. [PMID: 33103553 DOI: 10.1080/15384101.2020.1836441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The human adenovirus (Ad) type 2/5 early region 4 (E4) ORF4 protein (E4orf4) exerts a remarkable tumor cell-selective killing activity in mammalian cells. This indicates that E4orf4 can target tumor cell-defining features and is a unique tool to probe cancer cell vulnerabilities. Recently, we found that E4orf4, through an interaction with the polarity protein PAR3, subverts nuclear envelope (NE) remodeling processes in a tumor cell-selective manner. In this Perspective, we outline mechanical signals that modify nuclear dynamics and tumor cell behavior to highlight potential mechanisms for E4orf4's tumoricidal activity. Through an analysis of E4orf4's cellular targets, we define a protein subnetwork that comprises phosphatase systems interconnected to polarity protein hubs, which could contribute to enhanced NE plasticity. We infer that elucidating E4orf4's protein network at a functional level could uncover key mechanisms of NE remodeling that define the tumor cell phenotype.
Collapse
Affiliation(s)
- Kévin Jacquet
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada
| | - Marc-Antoine Rodrigue
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada
| | - Darren E Richard
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval , Québec, Canada.,Endocrinology and Nephrology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada
| | - Josée N Lavoie
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval , Québec, Canada
| |
Collapse
|
6
|
Ruparelia AA, McKaige EA, Williams C, Schulze KE, Fuchs M, Oorschot V, Lacene E, Meregalli M, Lee C, Serrano RJ, Baxter EC, Monro K, Torrente Y, Ramm G, Stojkovic T, Lavoie JN, Bryson-Richardson RJ. Metformin rescues muscle function in BAG3 myofibrillar myopathy models. Autophagy 2020; 17:2494-2510. [DOI: 10.1080/15548627.2020.1833500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Emily A. McKaige
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Caitlin Williams
- School of Biological Sciences, Monash University, Melbourne, Australia
| | | | - Margit Fuchs
- Centre de Recherche Sur le Cancer de l’Université Laval, Ville de Québec, Canada
- Oncologie, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Ville de Québec, Canada
| | - Viola Oorschot
- Monash Ramaciotti Centre for Structural Cryo-Electron Microscopy, Monash University, Melbourne, Australia
| | - Emmanuelle Lacene
- Institut de Myologie, Laboratoire de Pathologie Risler, APHP, Centre de Référence de Pathologie Neuromusculaire Nord/Est/Ile-de-France, Paris, France
| | - Mirella Meregalli
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Centro Dino Ferrari, Milan, Italy
| | - Clara Lee
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Rita J. Serrano
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Emily C. Baxter
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Keyne Monro
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Yvan Torrente
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Centro Dino Ferrari, Milan, Italy
| | - Georg Ramm
- Monash Ramaciotti Centre for Structural Cryo-Electron Microscopy, Monash University, Melbourne, Australia
- Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Tanya Stojkovic
- Institut de Myologie, Centre de Référence des Maladies Neuromusculaires, Hôpital Pitié-Salpétrière, Assistance-Publique Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Josée N. Lavoie
- Centre de Recherche Sur le Cancer de l’Université Laval, Ville de Québec, Canada
- Oncologie, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Ville de Québec, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Ville de Québec, Canada
| | | |
Collapse
|
7
|
Kleinberger T. Biology of the adenovirus E4orf4 protein: from virus infection to cancer cell death. FEBS Lett 2019; 594:1891-1917. [DOI: 10.1002/1873-3468.13704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Tamar Kleinberger
- Department of Molecular Microbiology the Rappaport Faculty of Medicine Technion –Israel Institute of Technology Haifa Israel
| |
Collapse
|
8
|
Colle JH, Périchon B, Garcia A. Antitumor and antibacterial properties of virally encoded cationic sequences. Biologics 2019; 13:117-126. [PMID: 31417238 PMCID: PMC6599856 DOI: 10.2147/btt.s201287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/22/2019] [Indexed: 11/30/2022]
Abstract
Objective: The objective of this study was to test our Viral Quinta Columna Strategy (VQCS), a new biological hypothesis predicting that specific multifunctional virally encoded cationic domains may have the capacity to penetrate human cells and interact with PP2A proteins to deregulate important human intracellular pathways, and may display LL37 cathelicidin-like antagonistic effects against multiple pathogens such as bacteria or viruses. Methods: We comparatively analyzed the host defense properties of adenodiaphorins and of some specific cationic sequences encoded by different viruses using two distinct biological models: U87G, a well-characterized cell tumor model; and a group B Streptococcus agalactiae NEM316 ΔdltA, highly sensitive to LL37 cathelicidin. Results: We found that the adenovirus type 2 E4orf4 is a cell-permeable protein containing a new E4orf464–95 protein transduction domain, named large adenodiaphorin or LadD64–95. Interestingly, the host defense LL37 peptide is the unique cathelicidin in humans. In this context, we also demonstrated that similarly to LL37 LadD64–95, several virally encoded cationic sequences including the C-terminus HIV-1 89.6 Vpr77–92, shorter adenodiaphorins AdD67–84/AdD/69–84/AdD69–83, as well as HIV-2 Tat67–90 and JC polyomavirus small t115–134, displayed similar toxicity against Gram-positive S. agalactiae NEM316 ΔdltA strain. Finally, LadD64–95, adenodiaphorin AdD67–84, AdD69–84, and LL37 and LL17–32 cathelicidin peptides also inhibited the survival of human U87G glioblastoma cells. Conclusion: In this study, we demonstrated that specific cationic sequences encoded by four different viruses displayed antibacterial activities against S. agalactiae NEM316 ΔdltA strain. In addition, HIV-1 Vpr71–92 and adenovirus 2 E4orf464–95, two cationic penetrating sequences that bind PP2A, inhibited the survival of U87G glioblastoma cells. These results illustrate the host defense properties of virally encoded sequences and could represent an initial step for future complete validation of the VQCS hypothesis.
Collapse
Affiliation(s)
- Jean-Hervé Colle
- Laboratoire E3 des Phosphatases-Unité RMN, Institut Pasteur, Paris, France
| | - Bruno Périchon
- Unité de Biologie des Bactéries pathogènes à Gram-positif, Institut Pasteur, Paris, France
| | - Alphonse Garcia
- Laboratoire E3 des Phosphatases-Unité RMN, Institut Pasteur, Paris, France.,Département de Biologie Structurale et Chimie et pôle Dde-Design de la Biologie, Institut Pasteur, Paris, France
| |
Collapse
|
9
|
Rosen H, Sharf R, Pechkovsky A, Salzberg A, Kleinberger T. Selective elimination of cancer cells by the adenovirus E4orf4 protein in a Drosophila cancer model: a new paradigm for cancer therapy. Cell Death Dis 2019; 10:455. [PMID: 31186403 PMCID: PMC6560070 DOI: 10.1038/s41419-019-1680-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/08/2019] [Accepted: 05/16/2019] [Indexed: 01/16/2023]
Abstract
The adenovirus (Ad) E4orf4 protein contributes to efficient progression of virus infection. When expressed alone E4orf4 induces p53- and caspase-independent cell-death, which is more effective in cancer cells than in normal cells in tissue culture. Cancer selectivity of E4orf4-induced cell-death may result from interference with various regulatory pathways that cancer cells are more dependent on, including DNA damage signaling and proliferation control. E4orf4 signaling is conserved in several organisms, including yeast, Drosophila, and mammalian cells, indicating that E4orf4-induced cell-death can be investigated in these model organisms. The Drosophila genetic model system has contributed significantly to the study of cancer and to identification of novel cancer therapeutics. Here, we used the fly model to investigate the ability of E4orf4 to eliminate cancer tissues in a whole organism with minimal damage to normal tissues. We show that E4orf4 dramatically inhibited tumorigenesis and rescued survival of flies carrying a variety of tumors, including highly aggressive and metastatic tumors in the fly brain and eye discs. Moreover, E4orf4 rescued the morphology of adult eyes containing scrib- cancer clones even when expressed at a much later stage than scrib elimination. The E4orf4 partner protein phosphatase 2A (PP2A) was required for inhibition of tumorigenesis by E4orf4 in the system described here, whereas another E4orf4 partner, Src kinase, provided only minimal contribution to this process. Our results suggest that E4orf4 is an effective anticancer agent and reveal a promising potential for E4orf4-based cancer treatments.
Collapse
Affiliation(s)
- Helit Rosen
- Department of Molecular Microbiology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, 3109601, Haifa, Israel
| | - Rakefet Sharf
- Department of Molecular Microbiology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, 3109601, Haifa, Israel
| | - Antonina Pechkovsky
- Department of Molecular Microbiology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, 3109601, Haifa, Israel.,Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, 3109601, Haifa, Israel
| | - Adi Salzberg
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, 3109601, Haifa, Israel
| | - Tamar Kleinberger
- Department of Molecular Microbiology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, 3109601, Haifa, Israel.
| |
Collapse
|
10
|
Characterization of a replicating expanded tropism oncolytic reovirus carrying the adenovirus E4orf4 gene. Gene Ther 2018; 25:331-344. [DOI: 10.1038/s41434-018-0032-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023]
|
11
|
Varlet AA, Fuchs M, Luthold C, Lambert H, Landry J, Lavoie JN. Fine-tuning of actin dynamics by the HSPB8-BAG3 chaperone complex facilitates cytokinesis and contributes to its impact on cell division. Cell Stress Chaperones 2017; 22:553-567. [PMID: 28275944 PMCID: PMC5465032 DOI: 10.1007/s12192-017-0780-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 11/28/2022] Open
Abstract
The small heat shock protein HSPB8 and its co-chaperone BAG3 are proposed to regulate cytoskeletal proteostasis in response to mechanical signaling in muscle cells. Here, we show that in dividing cells, the HSPB8-BAG3 complex is instrumental to the accurate disassembly of the actin-based contractile ring during cytokinesis, a process required to allow abscission of daughter cells. Silencing of HSPB8 markedly decreased the mitotic levels of BAG3 in HeLa cells, supporting its crucial role in BAG3 mitotic functions. Cells depleted of HSPB8 were delayed in cytokinesis, remained connected via a disorganized intercellular bridge, and exhibited increased incidence of nuclear abnormalities that result from failed cytokinesis (i.e., bi- and multi-nucleation). Such phenotypes were associated with abnormal accumulation of F-actin at the intercellular bridge of daughter cells at telophase. Remarkably, the actin sequestering drug latrunculin A, like the inhibitor of branched actin polymerization CK666, normalized F-actin during cytokinesis and restored proper cell division in HSPB8-depleted cells, implicating deregulated actin dynamics as a cause of abscission failure. Moreover, this HSPB8-dependent phenotype could be corrected by rapamycin, an autophagy-promoting drug, whereas it was mimicked by drugs impairing lysosomal function. Together, the results further support a role for the HSPB8-BAG3 chaperone complex in quality control of actin-based structure dynamics that are put under high tension, notably during cell cytokinesis. They expand a so-far under-appreciated connection between selective autophagy and cellular morphodynamics that guide cell division.
Collapse
Affiliation(s)
- Alice Anaïs Varlet
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Margit Fuchs
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Carole Luthold
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Herman Lambert
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Jacques Landry
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie Université Laval, Québec, G1V OA6, Canada
| | - Josée N Lavoie
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada.
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada.
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie Université Laval, Québec, G1V OA6, Canada.
| |
Collapse
|
12
|
Fuchs M, Boulanger MC, Lambert H, Landry J, Lavoie JN. Adenofection: A Method for Studying the Role of Molecular Chaperones in Cellular Morphodynamics by Depletion-Rescue Experiments. J Vis Exp 2016. [PMID: 27685647 DOI: 10.3791/54557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Cellular processes such as mitosis and cell differentiation are governed by changes in cell shape that largely rely on proper remodeling of the cell cytoskeletal structures. This involves the assembly-disassembly of higher-order macromolecular structures at a given time and location, a process that is particularly sensitive to perturbations caused by overexpression of proteins. Methods that can preserve protein homeostasis and maintain near-to-normal cellular morphology are highly desirable to determine the functional contribution of a protein of interest in a wide range of cellular processes. Transient depletion-rescue experiments based on RNA interference are powerful approaches to analyze protein functions and structural requirements. However, reintroduction of the target protein with minimum deviation from its physiological level is a real challenge. Here we describe a method termed adenofection that was developed to study the role of molecular chaperones and partners in the normal operation of dividing cells and the relationship with actin remodeling. HeLa cells were depleted of BAG3 with siRNA duplexes targeting the 3'UTR region. GFP-tagged BAG3 proteins were reintroduced simultaneously into >75% of the cells using recombinant adenoviruses coupled to transfection reagents. Adenofection enabled to express BAG3-GFP proteins at near physiological levels in HeLa cells depleted of BAG3, in the absence of a stress response. No effect was observed on the levels of endogenous Heat Shock Protein chaperones, the main stress-inducible regulators of protein homeostasis. Furthermore, by adding baculoviruses driving the expression of fluorescent markers at the time of cell transduction-transfection, we could dissect mitotic cell dynamics by time-lapse microscopic analyses with minimum perturbation of normal mitotic progression. Adenofection is applicable also to hard-to-infect mouse cells, and suitable for functional analyses of myoblast differentiation into myotubes. Thus adenofection provides a versatile method to perform structure-function analyses of proteins involved in sensitive biological processes that rely on higher-order cytoskeletal dynamics.
Collapse
Affiliation(s)
- Margit Fuchs
- Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de médecine, Centre de recherche sur le cancer de l'Université Laval; Oncology, Centre de recherche du CHU de Québec, Université Laval
| | - Marie-Chloé Boulanger
- Laboratoire d'études moléculaires des valvulopathies (LEMV), Groupe de recherche en valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center; Department of Surgery, Université Laval
| | - Herman Lambert
- Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de médecine, Centre de recherche sur le cancer de l'Université Laval; Oncology, Centre de recherche du CHU de Québec, Université Laval
| | - Jacques Landry
- Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de médecine, Centre de recherche sur le cancer de l'Université Laval; Oncology, Centre de recherche du CHU de Québec, Université Laval
| | - Josée N Lavoie
- Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de médecine, Centre de recherche sur le cancer de l'Université Laval; Oncology, Centre de recherche du CHU de Québec, Université Laval;
| |
Collapse
|
13
|
Fuchs M, Luthold C, Guilbert SM, Varlet AA, Lambert H, Jetté A, Elowe S, Landry J, Lavoie JN. A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis. PLoS Genet 2015; 11:e1005582. [PMID: 26496431 PMCID: PMC4619738 DOI: 10.1371/journal.pgen.1005582] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/16/2015] [Indexed: 02/07/2023] Open
Abstract
The co-chaperone BAG3, in complex with the heat shock protein HSPB8, plays a role in protein quality control during mechanical strain. It is part of a multichaperone complex that senses damaged cytoskeletal proteins and orchestrates their seclusion and/or degradation by selective autophagy. Here we describe a novel role for the BAG3-HSPB8 complex in mitosis, a process involving profound changes in cell tension homeostasis. BAG3 is hyperphosphorylated at mitotic entry and localizes to centrosomal regions. BAG3 regulates, in an HSPB8-dependent manner, the timely congression of chromosomes to the metaphase plate by influencing the three-dimensional positioning of the mitotic spindle. Depletion of BAG3 caused defects in cell rounding at metaphase and dramatic blebbing of the cortex associated with abnormal spindle rotations. Similar defects were observed upon silencing of the autophagic receptor p62/SQSTM1 that contributes to BAG3-mediated selective autophagy pathway. Mitotic cells depleted of BAG3, HSPB8 or p62/SQSTM1 exhibited disorganized actin-rich retraction fibres, which are proposed to guide spindle orientation. Proper spindle positioning was rescued in BAG3-depleted cells upon addition of the lectin concanavalin A, which restores cortex rigidity. Together, our findings suggest the existence of a so-far unrecognized quality control mechanism involving BAG3, HSPB8 and p62/SQSTM1 for accurate remodelling of actin-based mitotic structures that guide spindle orientation. Small heat shock proteins (sHSP/HSPB) form a diverse family of ATP-independent chaperones. Some of them protect the proteome against aggregation during stress and others regulate normal biological processes through ill-defined mechanisms. Interactions between HSPB proteins and elements of the cytoskeleton are increasingly linked to their implication in human degenerative diseases and cancer. For instance, a multichaperone complex containing HSPB8 and its co-chaperone BAG3 would maintain muscle cell integrity by promoting the autophagic clearance of damaged components within F-actin structures. Selective autophagy is a targeted protein degradation mechanism for elimination of damaged organelles and proteins. It may also regulate removal of signaling proteins from their functionally relevant sites during intense remodeling of the cytoskeleton, as it occurs during mitosis. Here, we report a novel role for HSPB8 and BAG3 during mitosis in mammalian cells that involves the autophagic receptor p62/SQSTM1. We show that a reduction of any protein within the HSPB8-BAG3-p62/SQSTM signaling axis similarly impairs mitotic progression and chromosome segregation by affecting orientation of the mitotic spindle and assembly of mitotic-specific actin structures. Our findings establish a unique role for HSPB8 in a novel function of BAG3 in mitotic cell division and genome stability, through effect on remodeling of the actin cytoskeleton.
Collapse
Affiliation(s)
- Margit Fuchs
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Carole Luthold
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Solenn M. Guilbert
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Alice Anaïs Varlet
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Herman Lambert
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Alexandra Jetté
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Sabine Elowe
- Reproduction, Perinatal Health and Child Health, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Pédiatrie, Université Laval, Quebec, Canada
| | - Jacques Landry
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Josée N. Lavoie
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
- * E-mail:
| |
Collapse
|
14
|
The Human Adenovirus Type 5 E4orf4 Protein Targets Two Phosphatase Regulators of the Hippo Signaling Pathway. J Virol 2015; 89:8855-70. [PMID: 26085163 DOI: 10.1128/jvi.03710-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 06/05/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED When expressed alone at high levels, the human adenovirus E4orf4 protein exhibits tumor cell-specific p53-independent toxicity. A major E4orf4 target is the B55 class of PP2A regulatory subunits, and we have shown recently that binding of E4orf4 inhibits PP2A(B55) phosphatase activity in a dose-dependent fashion by preventing access of substrates (M. Z. Mui et al., PLoS Pathog 9:e1003742, 2013, http://dx.doi.org/10.1371/journal.ppat.1003742). While interaction with B55 subunits is essential for toxicity, E4orf4 mutants exist that, despite binding B55 at high levels, are defective in cell killing, suggesting that other essential targets exist. In an attempt to identify additional targets, we undertook a proteomics approach to characterize E4orf4-interacting proteins. Our findings indicated that, in addition to PP2A(B55) subunits, ASPP-PP1 complex subunits were found among the major E4orf4-binding species. Both the PP2A and ASPP-PP1 phosphatases are known to positively regulate effectors of the Hippo signaling pathway, which controls the expression of cell growth/survival genes by dephosphorylating the YAP transcriptional coactivator. We find here that expression of E4orf4 results in hyperphosphorylation of YAP, suggesting that Hippo signaling is affected by E4orf4 interactions with PP2A(B55) and/or ASPP-PP1 phosphatases. Furthermore, knockdown of YAP1 expression was seen to enhance E4orf4 killing, again consistent with a link between E4orf4 toxicity and inhibition of the Hippo pathway. This effect may in fact contribute to the cancer cell specificity of E4orf4 toxicity, as many human cancer cells rely heavily on the Hippo pathway for their enhanced proliferation. IMPORTANCE The human adenovirus E4orf4 protein has been known for some time to induce tumor cell-specific death when expressed at high levels; thus, knowledge of its mode of action could be of importance for development of new cancer therapies. Although the B55 form of the phosphatase PP2A has long been known as an essential E4orf4 target, genetic analyses indicated that others must exist. To identify additional E4orf4 targets, we performed, for the first time, a large-scale affinity purification/mass spectrometry analysis of E4orf4 binding partners. Several additional candidates were detected, including key regulators of the Hippo signaling pathway, which enhances cell viability in many cancers, and results of preliminary studies suggested a link between inhibition of Hippo signaling and E4orf4 toxicity.
Collapse
|
15
|
Kleinberger T. Mechanisms of cancer cell killing by the adenovirus E4orf4 protein. Viruses 2015; 7:2334-57. [PMID: 25961489 PMCID: PMC4452909 DOI: 10.3390/v7052334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 04/23/2015] [Accepted: 04/30/2015] [Indexed: 12/24/2022] Open
Abstract
During adenovirus (Ad) replication the Ad E4orf4 protein regulates progression from the early to the late phase of infection. However, when E4orf4 is expressed alone outside the context of the virus it induces a non-canonical mode of programmed cell death, which feeds into known cell death pathways such as apoptosis or necrosis, depending on the cell line tested. E4orf4-induced cell death has many interesting and unique features including a higher susceptibility of cancer cells to E4orf4-induced cell killing compared with normal cells, caspase-independence, a high degree of evolutionary conservation of the signaling pathways, a link to perturbations of the cell cycle, and involvement of two distinct cell death programs, in the nucleus and in the cytoplasm. Several E4orf4-interacting proteins including its major partners, protein phosphatase 2A (PP2A) and Src family kinases, contribute to induction of cell death. The various features of E4orf4-induced cell killing as well as studies to decipher the underlying mechanisms are described here. Many explanations for the cancer specificity of E4orf4-induced cell death have been proposed, but a full understanding of the reasons for the different susceptibility of cancer and normal cells to killing by E4orf4 will require a more detailed analysis of the complex E4orf4 signaling network. An improved understanding of the mechanisms involved in this unique mode of programmed cell death may aid in design of novel E4orf4-based cancer therapeutics.
Collapse
Affiliation(s)
- Tamar Kleinberger
- Department of Microbiology, Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron St., Bat Galim, Haifa 31096, Israel.
| |
Collapse
|
16
|
Lezhnin YN, Kravchenko YE, Frolova EI, Chumakov PM, Chumakov SP. Oncotoxic proteins in cancer therapy: Mechanisms of action. Mol Biol 2015. [DOI: 10.1134/s0026893315020077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Gupta SK, Gandham RK, Sahoo AP, Tiwari AK. Viral genes as oncolytic agents for cancer therapy. Cell Mol Life Sci 2015; 72:1073-94. [PMID: 25408521 PMCID: PMC11113997 DOI: 10.1007/s00018-014-1782-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 10/29/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022]
Abstract
Many viruses have the ability to modulate the apoptosis, and to accomplish it; viruses encode proteins which specifically interact with the cellular signaling pathways. While some viruses encode proteins, which inhibit the apoptosis or death of the infected cells, there are viruses whose encoded proteins can kill the infected cells by multiple mechanisms, including apoptosis. A particular class of these viruses has specific gene(s) in their genomes which, upon ectopic expression, can kill the tumor cells selectively without affecting the normal cells. These genes and their encoded products have demonstrated great potential to be developed as novel anticancer therapeutic agents which can specifically target and kill the cancer cells leaving the normal cells unharmed. In this review, we will discuss about the viral genes having specific cancer cell killing properties, what is known about their functioning, signaling pathways and their therapeutic applications as anticancer agents.
Collapse
Affiliation(s)
- Shishir Kumar Gupta
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - Ravi Kumar Gandham
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - A. P. Sahoo
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - A. K. Tiwari
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| |
Collapse
|
18
|
NTPDASE4 gene products cooperate with the adenovirus E4orf4 protein through PP2A-dependent and -independent mechanisms and contribute to induction of cell death. J Virol 2014; 88:6318-28. [PMID: 24672025 DOI: 10.1128/jvi.00381-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED The adenovirus E4orf4 protein induces nonclassical apoptosis in mammalian cells through at least two complementing pathways regulated by the interactions of E4orf4 with protein phosphatase 2A (PP2A) and Src kinases. In Saccharomyces cerevisiae cells, which do not express Src, E4orf4 induces PP2A-dependent toxicity. The yeast Golgi apyrase Ynd1 was found to contribute to E4orf4-mediated toxicity and to interact with the PP2A-B55α regulatory subunit. In addition, a mammalian Ynd1 orthologue, the NTPDASE4 gene product Golgi UDPase, was shown to physically interact with E4orf4. Here we report that knockdown of NTPDASE4 suppressed E4orf4-induced cell death. Conversely, overexpression of the NTPDASE4 gene products Golgi UDPase and LALP70 enhanced E4orf4-induced cell killing. We found that similarly to results obtained in yeast, the apyrase activity of mammalian UDPase was not required for its contribution to E4orf4-induced toxicity. The interaction between E4orf4 and UDPase had two consequences: a PP2A-dependent one, resulting in increased UDPase levels, and a PP2A-independent outcome that led to dissociation of large UDPase-containing protein complexes. The present report extends our findings in yeast to E4orf4-mediated death of mammalian cells, and combined with previous results, it suggests that the E4orf4-NTPDase4 pathway, partly in association with PP2A, may provide an alternative mechanism for the E4orf4-Src pathway to contribute to the cytoplasmic death function of E4orf4. IMPORTANCE The adenovirus E4orf4 protein contributes to regulation of the progression of virus infection from the early to the late phase, and when expressed alone, it induces a unique caspase-independent programmed cell death which is more efficient in cancer cells than in normal cells. The interactions of E4orf4 with cellular proteins that mediate its functions, such as PP2A and Src kinases, are highly conserved in evolution. The results presented here reveal that the NTPDASE4 gene product Golgi UDPase, first discovered to contribute to E4orf4 toxicity in Saccharomyces cerevisiae, associates with E4orf4 and plays a role in induction of cell death in mammalian cells. Details of the functional interaction between E4orf4, PP2A, and the UDPase are described. Identification of the evolutionarily conserved mechanisms underlying E4orf4 activity will increase our understanding of the interactions between the virus and the host cell and will contribute to our grasp of the unique mode of E4orf4-induced cell death.
Collapse
|
19
|
Kleinberger T. Induction of cancer-specific cell death by the adenovirus E4orf4 protein. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 818:61-97. [PMID: 25001532 DOI: 10.1007/978-1-4471-6458-6_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The adenovirus E4orf4 protein is a multifunctional viral regulator that contributes to temporal regulation of the progression of viral infection. When expressed alone, outside the context of the virus, E4orf4 induces p53-independent cell-death in transformed cells. Oncogenic transformation of primary cells in tissue culture sensitizes them to cell killing by E4orf4, indicating that E4orf4 research may have implications for cancer therapy. It has also been reported that E4orf4 induces a caspase-independent, non-classical apoptotic pathway, which maintains crosstalk with classical caspase-dependent pathways. Furthermore, several E4orf4 activities in the nucleus and in the cytoplasm and various protein partners contribute to cell killing by this viral protein. In the following chapter I summarize the current knowledge of the unique mode of E4orf4-induced cell death and its underlying mechanisms. Although several explanations for the cancer-specificity of E4orf4-induced toxicity have been proposed, a better grasp of the mechanisms responsible for E4orf4-induced cell death is required to elucidate the differential sensitivity of normal and cancer cells to E4orf4.
Collapse
Affiliation(s)
- Tamar Kleinberger
- Department of Molecular Microbiology, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, 31096, Israel,
| |
Collapse
|
20
|
Landry MC, Champagne C, Boulanger MC, Jetté A, Fuchs M, Dziengelewski C, Lavoie JN. A functional interplay between the small GTPase Rab11a and mitochondria-shaping proteins regulates mitochondrial positioning and polarization of the actin cytoskeleton downstream of Src family kinases. J Biol Chem 2013; 289:2230-49. [PMID: 24302731 DOI: 10.1074/jbc.m113.516351] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It is believed that mitochondrial dynamics is coordinated with endosomal traffic rates during cytoskeletal remodeling, but the mechanisms involved are largely unknown. The adenovirus early region 4 ORF4 protein (E4orf4) subverts signaling by Src family kinases (SFK) to perturb cellular morphology, membrane traffic, and organellar dynamics and to trigger cell death. Using E4orf4 as a model, we uncovered a functional connection between mitochondria-shaping proteins and the small GTPase Rab11a, a key regulator of polarized transport via recycling endosomes. We found that E4orf4 induced dramatic changes in the morphology of mitochondria along with their mobilization at the vicinity of a polarized actin network typifying E4orf4 action, in a manner controlled by SFK and Rab11a. Mitochondrial remodeling was associated with increased proximity between Rab11a and mitochondrial membranes, changes in fusion-fission dynamics, and mitochondrial relocalization of the fission factor dynamin-related protein 1 (Drp1), which was regulated by the Rab11a effector protein FIP1/RCP. Knockdown of FIP1/RCP or inhibition of Drp1 markedly impaired mitochondrial remodeling and actin assembly, involving Rab11a-mediated mitochondrial dynamics in E4orf4-induced signaling. A similar mobilization of mitochondria near actin-rich structures was mediated by Rab11 and Drp1 in viral Src-transformed cells and contributed to the biogenesis of podosome rosettes. These findings suggest a role for Rab11a in the trafficking of Drp1 to mitochondria upon SFK activation and unravel a novel functional interplay between Rab11a and mitochondria during reshaping of the cell cytoskeleton, which would facilitate mitochondria redistribution near energy-requiring actin-rich structures.
Collapse
Affiliation(s)
- Marie-Claude Landry
- From the Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Axe Oncologie, Québec G1R 3S3 and
| | | | | | | | | | | | | |
Collapse
|
21
|
Adenovirus E4orf4 protein-induced death of p53-/- H1299 human cancer cells follows a G1 arrest of both tetraploid and diploid cells due to a failure to initiate DNA synthesis. J Virol 2013; 87:13168-78. [PMID: 24067978 DOI: 10.1128/jvi.01242-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The adenovirus E4orf4 protein selectively kills human cancer cells independently of p53 and thus represents a potentially promising tool for the development of novel antitumor therapies. Previous studies suggested that E4orf4 induces an arrest or a delay in mitosis and that both this effect and subsequent cell death rely largely on an interaction with the B55 regulatory subunit of protein phosphatase 2A. In the present report, we show that the death of human H1299 lung carcinoma cells induced by expression of E4orf4 is typified not by an accumulation of cells arrested in mitosis but rather by the presence of both tetraploid and diploid cells that are arrested in G1 because they are unable to initiate DNA synthesis. We believe that these E4orf4-expressing cells eventually die by various processes, including those resulting from mitotic catastrophe.
Collapse
|
22
|
E4orf4 induces PP2A- and Src-dependent cell death in Drosophila melanogaster and at the same time inhibits classic apoptosis pathways. Proc Natl Acad Sci U S A 2013; 110:E1724-33. [PMID: 23613593 DOI: 10.1073/pnas.1220282110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The adenovirus E4orf4 protein regulates the progression of viral infection, and when expressed alone in mammalian tissue culture cells it induces protein phosphatase 2A (PP2A)-B55- and Src-dependent cell death, which is more efficient in oncogene-transformed cells than in normal cells. This form of cell death is caspase-independent, although it interacts with classic caspase-dependent apoptosis. PP2A-B55-dependent E4orf4-induced toxicity is highly conserved in evolution from yeast to mammalian cells. In this work we investigated E4orf4-induced cell death in a whole multicellular organism, Drosophila melanogaster. We show that E4orf4 induced low levels of cell killing, caused by both caspase-dependent and -independent mechanisms. Drosophila PP2A-B55 (twins/abnormal anaphase resolution) and Src64B contributed additively to this form of cell death. Our results provide insight into E4orf4-induced cell death, demonstrating that in parallel to activating caspase-dependent apoptosis, E4orf4 also inhibited this form of cell death induced by the proapoptotic genes reaper, head involution defective, and grim. The combination of both induction and inhibition of caspase-dependent cell death resulted in low levels of tissue damage that may explain the inefficient cell killing induced by E4orf4 in normal cells in tissue culture. Furthermore, E4orf4 inhibited JNK-dependent cell killing as well. However, JNK inhibition did not impede E4orf4-induced toxicity and even enhanced it, indicating that E4orf4-induced cell killing is a distinctive form of cell death that differs from both JNK- and Rpr/Hid/Grim-induced forms of cell death.
Collapse
|
23
|
Horowitz B, Sharf R, Avital-Shacham M, Pechkovsky A, Kleinberger T. Structure- and modeling-based identification of the adenovirus E4orf4 binding site in the protein phosphatase 2A B55α subunit. J Biol Chem 2013; 288:13718-27. [PMID: 23530045 DOI: 10.1074/jbc.m112.343756] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The adenovirus E4orf4 protein must bind protein phosphatase 2A (PP2A) for its functions. RESULTS The E4orf4 binding site in PP2A was mapped to the α1,α2 helices of the B55α subunit. CONCLUSION The E4orf4 binding site in PP2A-B55α lies above the substrate binding site and does not overlap it. SIGNIFICANCE A novel functional significance was assigned to the α1,α2 helices of the PP2A-B55α subunit. The adenovirus E4orf4 protein regulates the progression of viral infection and when expressed outside the context of the virus it induces nonclassical, cancer cell-specific apoptosis. All E4orf4 functions known to date require an interaction between E4orf4 and protein phosphatase 2A (PP2A), which is mediated through PP2A regulatory B subunits. Specifically, an interaction with the B55α subunit is required for induction of cell death by E4orf4. To gain a better insight into the E4orf4-PP2A interaction, mapping of the E4orf4 interaction site in PP2A-B55α has been undertaken. To this end we used a combination of bioinformatics analyses of PP2A-B55α and of E4orf4, which led to the prediction of E4orf4 binding sites on the surface of PP2A-B55α. Mutation analysis, immunoprecipitation, and GST pulldown assays based on the theoretical predictions revealed that the E4orf4 binding site included the α1 and α2 helices described in the B55α structure and involved at least three residues located in these helices facing each other. Loss of E4orf4 binding was accompanied by reduced contribution of the B55α mutants to E4orf4-induced cell death. The identified E4orf4 binding domain lies above the previously described substrate binding site and does not overlap it, although its location could be consistent with direct or indirect effects on substrate binding. This work assigns for the first time a functional significance to the α1,α2 helices of B55α, and we suggest that the binding site defined by these helices could also contribute to interactions between PP2A and some of its cellular regulators.
Collapse
Affiliation(s)
- Ben Horowitz
- Department of Molecular Microbiology, Faculty of Medicine, Technion-Israel Institute of Technology, Bat Galim, Haifa 31096, Israel
| | | | | | | | | |
Collapse
|
24
|
Brestovitsky A, Sharf R, Mittelman K, Kleinberger T. The adenovirus E4orf4 protein targets PP2A to the ACF chromatin-remodeling factor and induces cell death through regulation of SNF2h-containing complexes. Nucleic Acids Res 2011; 39:6414-27. [PMID: 21546548 PMCID: PMC3159439 DOI: 10.1093/nar/gkr231] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The adenovirus E4 open-reading-frame 4 (E4orf4) protein regulates the progression of viral infection and when expressed individually it induces non-classical apoptosis in transformed cells. Here we show that E4orf4 associates with the ATP-dependent chromatin-remodeling factor ACF that consists of a sucrose non fermenting-2h (SNF2h) ATPase and an Acf1 regulatory subunit. Furthermore, E4orf4 targets protein phosphatase 2A (PP2A) to this complex and to chromatin. Obstruction of SNF2h activity inhibits E4orf4-induced cell death, whereas knockdown of Acf1 results in enhanced E4orf4-induced toxicity in both mammalian and yeast cells, and Acf1 overexpression inhibits E4orf4′s ability to downregulate early adenovirus gene expression in the context of viral infection. Knockdown of the Acf1 homolog, WSTF, inhibits E4orf4-induced cell death. Based on these results we suggest that the E4orf4–PP2A complex inhibits ACF and facilitates enhanced chromatin-remodeling activities of other SNF2h-containing complexes, such as WSTF–SNF2h. The resulting switch in chromatin remodeling determines life versus death decisions and contributes to E4orf4 functions during adenovirus infection.
Collapse
Affiliation(s)
- Anna Brestovitsky
- Department of Molecular Microbiology, Faculty of Medicine, Technion - Israel Institute of Technology, Bat Galim, Haifa 31096, Israel
| | | | | | | |
Collapse
|
25
|
Abstract
Viral infection converts the normal functions of a cell to optimize viral replication and virion production. One striking observation of this conversion is the reconfiguration and reorganization of cellular actin, affecting every stage of the viral life cycle, from entry through assembly to egress. The extent and degree of cytoskeletal reorganization varies among different viral infections, suggesting the evolution of myriad viral strategies. In this Review, we describe how the interaction of viral proteins with the cell modulates the structure and function of the actin cytoskeleton to initiate, sustain and spread infections. The molecular biology of such interactions continues to engage virologists in their quest to understand viral replication and informs cell biologists about the role of the cytoskeleton in the uninfected cell.
Collapse
|
26
|
Ou HD, May AP, O'Shea CC. The critical protein interactions and structures that elicit growth deregulation in cancer and viral replication. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:48-73. [PMID: 21061422 DOI: 10.1002/wsbm.88] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the greatest challenges in biomedicine is to define the critical targets and network interactions that are subverted to elicit growth deregulation in human cells. Understanding and developing rational treatments for cancer requires a definition of the key molecular targets and how they interact to elicit the complex growth deregulation phenotype. Viral proteins provide discerning and powerful probes to understand both how cells work and how they can be manipulated using a minimal number of components. The small DNA viruses have evolved to target inherent weaknesses in cellular protein interaction networks to hijack the cellular DNA and protein replication machinery. In the battle to escape the inevitability of senescence and programmed cell death, cancers have converged on similar mechanisms, through the acquisition and selection of somatic mutations that drive unchecked cellular replication in tumors. Understanding the dynamic mechanisms through which a minimal number of viral proteins promote host cells to undergo unscheduled and pathological replication is a powerful strategy to identify critical targets that are also disrupted in cancer. Viruses can therefore be used as tools to probe the system-wide protein-protein interactions and structures that drive growth deregulation in human cells. Ultimately this can provide a path for developing system context-dependent therapeutics. This review will describe ongoing experimental approaches using viruses to study pathways deregulated in cancer, with a particular focus on viral cellular protein-protein interactions and structures.
Collapse
Affiliation(s)
- Horng D Ou
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | |
Collapse
|
27
|
Mittelman K, Ziv K, Maoz T, Kleinberger T. The cytosolic tail of the Golgi apyrase Ynd1 mediates E4orf4-induced toxicity in Saccharomyces cerevisiae. PLoS One 2010; 5:e15539. [PMID: 21124936 PMCID: PMC2989921 DOI: 10.1371/journal.pone.0015539] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 10/13/2010] [Indexed: 11/18/2022] Open
Abstract
The adenovirus E4 open reading frame 4 (E4orf4) protein contributes to regulation of the progression of virus infection. When expressed individually, E4orf4 was shown to induce non-classical transformed cell-specific apoptosis in mammalian cells. At least some of the mechanisms underlying E4orf4-induced toxicity are conserved from yeast to mammals, including the requirement for an interaction of E4orf4 with protein phosphatase 2A (PP2A). A genetic screen in yeast revealed that the Golgi apyrase Ynd1 associates with E4orf4 and contributes to E4orf4-induced toxicity, independently of Ynd1 apyrase activity. Ynd1 and PP2A were shown to contribute additively to E4orf4-induced toxicity in yeast, and to interact genetically and physically. A mammalian orthologue of Ynd1 was shown to bind E4orf4 in mammalian cells, confirming the evolutionary conservation of this interaction. Here, we use mutation analysis to identify the cytosolic tail of Ynd1 as the protein domain required for mediation of the E4orf4 toxic signal and for the interaction with E4orf4. We also show that E4orf4 associates with cellular membranes in yeast and is localized at their cytoplasmic face. However, E4orf4 is membrane-associated even in the absence of Ynd1, suggesting that additional membrane proteins may mediate E4orf4 localization. Based on our results and on a previous report describing a collection of Ynd1 protein partners, we propose that the Ynd1 cytoplasmic tail acts as a scaffold, interacting with a multi-protein complex, whose targeting by E4orf4 leads to cell death.
Collapse
Affiliation(s)
- Karin Mittelman
- Department of Molecular Microbiology, Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Keren Ziv
- Department of Molecular Microbiology, Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Tsofnat Maoz
- Department of Molecular Microbiology, Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Tamar Kleinberger
- Department of Molecular Microbiology, Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
28
|
Bilodeau N, Fiset A, Boulanger MC, Bhardwaj S, Winstall E, Lavoie JN, Faure RL. Proteomic analysis of Src family kinases signaling complexes in Golgi/endosomal fractions using a site-selective anti-phosphotyrosine antibody: identification of LRP1-insulin receptor complexes. J Proteome Res 2010; 9:708-17. [PMID: 19947650 DOI: 10.1021/pr900481b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A role for Src Family Kinases (SFKs) in the dynamics of endocytic and secretory pathways has previously been reported. Identification of low-abundance compartmentalized complexes still remains challenging, highlighting the need for novel tools. Here we describe analysis of SFK-signaling complexes of hepatic Golgi/endosomes (G/E) fractions by sequential affinity enrichment of proteins. Mouse G/E permeabilized membranes were first validated in terms of electron microscopy, 1-D electrophoresis (1-DE), insulin-mediated endocytosis and protein content. With the use of quantitative N-terminal labeling of tryptic peptides (iTRAQ), 1-DE and IEF tryptic peptides separation methods, a total of 666 proteins were identified, including the SFK Lyn. Following insulin injection, a series of proteins were recognized by an anti-phosphotyrosine antibody (alpha P42-2) raised against the residue most frequently phosphorylated by SFK on the adenoviral protein E4orf4 and that cross-reacts with endosomal SFK targets. By using affinity chromatography coupled with mass spectrometry, we identified 16 proteins classified as (1) recycling receptors, (2) vesicular trafficking proteins, (3) actin network proteins, (4) metabolism proteins, or (5) signaling proteins. One of these proteins, low density lipoprotein-related protein 1 (LRP1), which is a known SFK substrate, was found to associate with the internalized insulin receptor (IR), suggesting the presence of a co-internalization process. The identification of these proteomes should, thus, contribute to a better understanding of the molecular mechanisms that regulate trafficking events and insulin clearance.
Collapse
|
29
|
Lavoie JN, Landry MC, Faure RL, Champagne C. Src-family kinase signaling, actin-mediated membrane trafficking and organellar dynamics in the control of cell fate: lessons to be learned from the adenovirus E4orf4 death factor. Cell Signal 2010; 22:1604-14. [PMID: 20417707 DOI: 10.1016/j.cellsig.2010.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 04/15/2010] [Indexed: 12/15/2022]
Abstract
Evidence has accumulated that there are different modes of regulated cell death, which share overlapping signaling pathways. Cytoskeletal-dependent inter-organellar communication as a result of protein and lipid trafficking in and out of organelles has emerged as a common, key issue in the regulation of cell death modalities. The movement of proteins and lipids between cell compartments is believed to relay death signals in part through modifications of organelles dynamics. Little is known, however, regarding how trafficking is integrated within stress signaling pathways directing organelle-specific remodeling events. In this review, we discuss emerging evidence supporting a role for regulated changes in actin dynamics and intracellular membrane flow. Based on recent findings using the adenovirus E4orf4 death factor as a probing tool to tackle the mechanistic underpinnings that control alternative modes of cell death, we propose the existence of multifunctional platforms at the endosome-Golgi interface regulated by SFK-signaling. These endosomal platforms could be mobilized during cell activation processes to reorganize cellular membranes and promote inter-organelle signaling.
Collapse
Affiliation(s)
- Josée N Lavoie
- Centre de Recherche en Cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, CRCHUQ, Québec, Canada.
| | | | | | | |
Collapse
|
30
|
Landry MC, Sicotte A, Champagne C, Lavoie JN. Regulation of cell death by recycling endosomes and golgi membrane dynamics via a pathway involving Src-family kinases, Cdc42 and Rab11a. Mol Biol Cell 2009; 20:4091-106. [PMID: 19641023 DOI: 10.1091/mbc.e09-01-0057] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Actin dynamics and membrane trafficking influence cell commitment to programmed cell death through largely undefined mechanisms. To investigate how actin and recycling endosome (RE) trafficking can engage death signaling, we studied the death program induced by the adenovirus early region 4 open reading frame 4 (E4orf4) protein as a model. We found that in the early stages of E4orf4 expression, Src-family kinases (SFKs), Cdc42, and actin perturbed the organization of the endocytic recycling compartment and promoted the transport of REs to the Golgi apparatus, while inhibiting recycling of protein cargos to the plasma membrane. The resulting changes in Golgi membrane dynamics that relied on actin-regulated Rab11a membrane trafficking triggered scattering of Golgi membranes and contributed to the progression of cell death. A similar mobilization of RE traffic mediated by SFKs, Cdc42 and Rab11a also contributed to Golgi fragmentation and to cell death progression in response to staurosporine, in a caspase-independent manner. Collectively, these novel findings suggest that diversion of RE trafficking to the Golgi complex through a pathway involving SFKs, Cdc42, and Rab11a plays a general role in death signaling by mediating regulated changes in Golgi dynamics.
Collapse
Affiliation(s)
- Marie-Claude Landry
- Centre de Recherche en Cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, Centre de Recherche du Centre Hospitalier Universitaire de Quebec, Québec G1R 2J6, Canada
| | | | | | | |
Collapse
|
31
|
The adenovirus E4orf4 protein induces G2/M arrest and cell death by blocking protein phosphatase 2A activity regulated by the B55 subunit. J Virol 2009; 83:8340-52. [PMID: 19535438 DOI: 10.1128/jvi.00711-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human adenovirus E4orf4 protein is toxic in human tumor cells. Its interaction with the B alpha subunit of protein phosphatase 2A (PP2A) is critical for cell killing; however, the effect of E4orf4 binding is not known. B alpha is one of several mammalian B-type regulatory subunits that form PP2A holoenzymes with A and C subunits. Here we show that E4orf4 protein interacts uniquely with B55 family subunits and that cell killing increases with the level of E4orf4 expression. Evidence suggesting that B alpha-specific PP2A activity, measured in vitro against phosphoprotein substrates, is reduced by E4orf4 binding was obtained, and two potential B55-specific PP2A substrates, 4E-BP1 and p70(S6K), were seen to be hypophosphorylated in vivo following expression of E4orf4. Furthermore, treatment of cells with low levels of the phosphatase inhibitor okadaic acid or coexpression of the PP2A inhibitor I(1)(PP2A) enhanced E4orf4-induced cell killing and G(2)/M arrest significantly. These results suggested that E4orf4 toxicity results from the inhibition of B55-specific PP2A holoenzymes, an idea that was strengthened by an observed growth arrest resulting from treatment of H1299 cells with B alpha-specific RNA interference. We believe that E4orf4 induces growth arrest resulting in cell death by reducing the global level of B55-specific PP2A activity, thus preventing the dephosphorylation of B55-specific PP2A substrates, including those involved in cell cycle progression.
Collapse
|
32
|
Apoptin, a tumor-selective killer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1335-42. [PMID: 19374922 DOI: 10.1016/j.bbamcr.2009.04.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 04/05/2009] [Accepted: 04/07/2009] [Indexed: 01/21/2023]
Abstract
Apoptin, a small protein from chicken anemia virus, has attracted great attention, because it specifically kills tumor cells while leaving normal cells unharmed. The subcellular localization of apoptin appears to be crucial for this tumor-selective activity. In normal cells, apoptin resides in the cytoplasm, whereas in cancerous cells it translocates into the nucleus. The nuclear translocation of apoptin is largely controlled by its phosphorylation. In tumor cells, apoptin causes the nuclear accumulation of survival kinases including Akt and is phosphorylated by CDK2. Thereby, apoptin redirects survival signals into cell death responses. Apoptin also binds as a multimeric complex to DNA and interacts with several nuclear targets, such as the anaphase-promoting complex, resulting in a G2/M phase arrest. The proapoptotic signal of apoptin is then transduced from the nucleus to cytoplasm by Nur77, which triggers a p53-independent mitochondrial death pathway. In this review, we summarize recent discoveries of apoptin's mechanism of action that might provide intriguing insights for the development of novel tumor-selective anticancer drugs.
Collapse
|
33
|
Localization and importance of the adenovirus E4orf4 protein during lytic infection. J Virol 2008; 83:1689-99. [PMID: 19073741 DOI: 10.1128/jvi.01703-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The human adenovirus type 5 (Ad5) E4orf4 product has been studied extensively although in most cases as expressed from vectors in the absence of other viral products. Thus, relatively little is known about its role in the context of an adenovirus infection. Although considerable earlier work had indicated that the E4orf4 protein is not essential for replication, a recent study using dl359, an Ad5 mutant believed to produce a nonfunctional E4orf4 protein, suggested that E4orf4 is essential for virus growth in primary small-airway epithelial cells (C. O'Shea, et al., EMBO J. 24:1211-1221, 2005). Hence, to examine further the role of E4orf4 during virus infection, we generated for the first time a set of E4orf4 virus mutants in a common Ad5 genetic background. Such mutant viruses included those that express E4orf4 proteins containing various individual point mutations, those defective entirely in E4orf4 expression, and a mutant expressing wild-type E4orf4 fused to the green fluorescent protein. E4orf4 protein was found to localize primarily in nuclear structures shown to be viral replication centers, in nucleoli, and in perinuclear bodies. Importantly, E4orf4 was shown not to be essential for virus growth in either human tumor or primary cells, at least in tissue culture. Unlike E4orf4-null virus, mutant dl359 appeared to exhibit a gain-of-function phenotype that impairs virus growth. The dl359 E4orf4 protein, which contains a large in-frame internal deletion, clustered in aggregates enriched in Hsp70 and proteasome components. In addition, the late viral mRNAs produced by dl359 accumulated abnormally in a nuclear punctate pattern. Altogether, our results indicate that E4orf4 protein is not essential for virus growth in culture and that expression of the dl359 E4orf4 product interferes with viral replication, presumably through interactions with structures in the nucleus.
Collapse
|
34
|
Smadja-Lamère N, Boulanger MC, Champagne C, Branton PE, Lavoie JN. JNK-mediated phosphorylation of paxillin in adhesion assembly and tension-induced cell death by the adenovirus death factor E4orf4. J Biol Chem 2008; 283:34352-64. [PMID: 18818208 PMCID: PMC2662241 DOI: 10.1074/jbc.m803364200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 09/24/2008] [Indexed: 12/15/2022] Open
Abstract
The adenovirus type 2 Early Region 4 ORF4 (E4orf4) protein induces a caspase-independent death program in tumor cells involving changes in actin dynamics that are functionally linked to cell killing. Because an increase in myosin II-based contractility is needed for the death of E4orf4-expressing cells, we have proposed that alteration of cytoskeletal tension is part of the signals engaging the death pathway. Yet the mechanisms involved are poorly defined. Herein, we show that the Jun N-terminal kinase JNK is activated in part through a pathway involving Src, Rho, and ROCK (Rho kinase) and contributes to dysregulate adhesion dynamics and to kill cells in response to E4orf4. JNK supports the formation of atypically robust focal adhesions, which are bound to the assembly of the peculiar actomyosin network typifying E4orf4-induced cell death and which are required for driving nuclear condensation. Remarkably, the dramatic enlargement of focal adhesions, actin remodeling, and cell death all rely on paxillin phosphorylation at Ser-178, which is induced by E4orf4 in a JNK-dependent way. Furthermore, we found that Ser-178-paxillin phosphorylation is necessary to decrease adhesion turnover and to enhance the time residency of paxillin at focal adhesions, promoting its recruitment from an internal pool. Our results indicate that perturbation of tensional homeostasis by E4orf4 involves JNK-regulated changes in paxillin adhesion dynamics that are required to engage the death pathway. Moreover, our findings support a role for JNK-mediated paxillin phosphorylation in adhesion growth and stabilization during tension signaling.
Collapse
Affiliation(s)
- Nicolas Smadja-Lamère
- Centre de Recherche en Cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, CRCHUQ, Québec, G1R 2J6, Canada
| | | | | | | | | |
Collapse
|
35
|
Adenovirus E4orf4 protein downregulates MYC expression through interaction with the PP2A-B55 subunit. J Virol 2008; 82:9381-8. [PMID: 18653458 DOI: 10.1128/jvi.00791-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The adenovirus E4 open reading frame 4 (E4orf4) protein is a multifunctional viral regulator that is involved in the temporal regulation of viral gene expression by modulating cellular and viral genes at the transcription and translation levels and by controlling alternative splicing of adenoviral late mRNAs. When expressed individually, E4orf4 induces apoptosis in transformed cells. Using oligonucleotide microarray analysis, validated by quantitative real time PCR, we found that MYC (also known as c-Myc) is downregulated early after the induction of E4orf4 expression. As a result, Myc protein levels are reduced in E4orf4-expressing cells. MYC downregulation is observed both when E4orf4 is expressed individually and within the context of viral infection. E4orf4 reduces MYC transcription but does not affect transcriptional elongation or RNA stability. An interaction with the PP2A-B55 subunit is required for the downregulation of MYC by E4orf4. Since Myc overexpression was previously shown to inhibit adenovirus replication, the downregulation of Myc by E4orf4 would contribute to efficient virus infection.
Collapse
|
36
|
Eichhorn PJA, Creyghton MP, Bernards R. Protein phosphatase 2A regulatory subunits and cancer. Biochim Biophys Acta Rev Cancer 2008; 1795:1-15. [PMID: 18588945 DOI: 10.1016/j.bbcan.2008.05.005] [Citation(s) in RCA: 273] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/20/2008] [Accepted: 05/21/2008] [Indexed: 01/06/2023]
Abstract
The serine/threonine protein phosphatase (PP2A) is a trimeric holoenzyme that plays an integral role in the regulation of a number of major signaling pathways whose deregulation can contribute to cancer. The specificity and activity of PP2A are highly regulated through the interaction of a family of regulatory B subunits with the substrates. Accumulating evidence indicates that PP2A acts as a tumor suppressor. In this review we summarize the known effects of specific PP2A holoenzymes and their roles in cancer relevant pathways. In particular we highlight PP2A function in the regulation of MAPK and Wnt signaling.
Collapse
Affiliation(s)
- Pieter J A Eichhorn
- Division of Molecular Carcinogenesis, Center for Cancer Genomics and Center for Biomedical Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | |
Collapse
|
37
|
Eichhorn PJA, Creyghton MP, Wilhelmsen K, van Dam H, Bernards R. A RNA interference screen identifies the protein phosphatase 2A subunit PR55gamma as a stress-sensitive inhibitor of c-SRC. PLoS Genet 2008; 3:e218. [PMID: 18069897 PMCID: PMC2134945 DOI: 10.1371/journal.pgen.0030218] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 10/15/2007] [Indexed: 11/18/2022] Open
Abstract
Protein Phosphatase type 2A (PP2A) represents a family of holoenzyme complexes with diverse biological activities. Specific holoenzyme complexes are thought to be deregulated during oncogenic transformation and oncogene-induced signaling. Since most studies on the role of this phosphatase family have relied on the use of generic PP2A inhibitors, the contribution of individual PP2A holoenzyme complexes in PP2A-controlled signaling pathways is largely unclear. To gain insight into this, we have constructed a set of shRNA vectors targeting the individual PP2A regulatory subunits for suppression by RNA interference. Here, we identify PR55γ and PR55δ as inhibitors of c-Jun NH2-terminal kinase (JNK) activation by UV irradiation. We show that PR55γ binds c-SRC and modulates the phosphorylation of serine 12 of c-SRC, a residue we demonstrate to be required for JNK activation by c-SRC. We also find that the physical interaction between PR55γ and c-SRC is sensitive to UV irradiation. Our data reveal a novel mechanism of c-SRC regulation whereby in response to stress c-SRC activity is regulated, at least in part, through loss of the interaction with its inhibitor, PR55γ. Protein Phosphatase type 2A (PP2A) represent a family of holoenzyme complexes involved in wide range of activities such as growth, differentiation, and cell death. The PP2A holoenzyme complex is made up of a catalytic, a structural, and one of various “B” subunits. These “B” subunits are thought to provide the substrate specificity required for PP2A activity. Previous work on PP2A has mostly been derived by inhibiting the catalytic subunit through chemical inhibition, as such inhibiting all of the pathways associated with PP2A. To identify individual “B” subunits involved in specific cellular processes we have generated a “B” subunit gene knockdown library, which allows us to inhibit each of the known “B” subunits individually. One of the many pathways regulated by PP2A is the c-Jun NH2-terminal kinase (JNK) kinase pathway, which, depending on stimulus, can affect either cell survival or cell proliferation. Here we report that the “B” subunit PR55γ acts as a negative regulator of JNK activity and cell death. We show that PR55γ influences JNK activity by inhibiting one of its upstream regulators, the proto-oncogene c-SRC, through dephosphorylation at one of the key residues on c-SRC, a site we show to be critical for c-SRC activation following cell stress. Overall our work describes the novel function of a specific PP2A subunit involved in cell survival and identifies a novel mechanism of c-SRC regulation.
Collapse
Affiliation(s)
- Pieter J. A Eichhorn
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Menno P Creyghton
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kevin Wilhelmsen
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Center for Biomedical Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hans van Dam
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - René Bernards
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
Backendorf C, Visser AE, de Boer AG, Zimmerman R, Visser M, Voskamp P, Zhang YH, Noteborn M. Apoptin: therapeutic potential of an early sensor of carcinogenic transformation. Annu Rev Pharmacol Toxicol 2008; 48:143-69. [PMID: 17848136 DOI: 10.1146/annurev.pharmtox.48.121806.154910] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The avian virus-derived protein apoptin induces p53-independent apoptosis in a tumor-specific way. Apoptin acts as a multimeric complex and forms superstructures upon binding to DNA. In tumor cells, apoptin is phosphorylated and mainly nuclear, whereas in normal cells it is unphosphorylated, cytoplasmic, and becomes readily neutralized. Interestingly, apoptin phosphorylation, nuclear translocation, and apoptosis can transiently be induced in normal cells by cotransfecting SV40 large T oncogene, indicating that apoptin recognizes early stages of oncogenic transformation. In cancer cells, apoptin appears to recognize survival signals, which it is able to redirect into cell death impulses. Apoptin targets include DEDAF, Nur77, Nmi, Hippi, and the potential drug target APC1. Apoptin-transgenic mice and animal tumor models have revealed apoptin as a safe and efficient antitumor agent, resulting in significant tumor regression. Future antitumor therapies could use apoptin either as a therapeutic bullet or as an early sensor of druggable tumor-specific processes.
Collapse
Affiliation(s)
- Claude Backendorf
- Molecular Genetics, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang DM, Zhou Y, Xie HJ, Ma XL, Wang X, Chen H, Huang BR. Cytotoxicity of a recombinant fusion protein of adenovirus early region 4 open reading frame 4 (E4orf4) and human epidermal growth factor on p53-deficient tumor cells. Anticancer Drugs 2007; 17:527-37. [PMID: 16702809 DOI: 10.1097/00001813-200606000-00006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adenovirus early region 4 open reading frame 4 (E4orf4) protein is a novel cell death factor that selectively induces p53-independent apoptosis in cancer cells, but not in normal human cells. This study presents an approach for inhibiting p53-deficient tumor cell growth by using protein-based E4orf4 that had been genetically fused to epidermal growth factor (EGF) to ensure selective targeting of EGF receptor-overexpressing tumor cells. EGF-E4orf4 enables binding onto the cell surface and is then internalized into Saos-2 cells. The success of the process had been demonstrated by immunofluorescence assay and confocal laser microscopy. After prolonged exposure, E4orf4 remained mostly in the nuclei. EGF-E4orf4 treatment of Saos-2 cells showed dose-dependent cytotoxicity. Nearly 50% of the Saos-2 cells were killed at a concentration of 250 nmol/l. In contrast, EGF-E4orf4 showed no significant inhibitory effect iresn primary cells of human umbilical vein endothelial cells. To confirm the ability of EGF-E4orf4 to induce apoptosis, DNA fragmentation was detected using BrdUTP end-labeling. Flow cytometric analysis revealed a significant increase of apoptotic cells in Saos-2 cells treated with EGF-E4orf4, but not in the case of cells cultured in plain medium (t=0.028, P<0.05). In conclusion, these preliminary results indicate that EGF-E4orf4 could show promise as a new reagent that is more efficient and less toxic in anti-cancer therapy.
Collapse
Affiliation(s)
- Dong-Mei Wang
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Robert A, Smadja-Lamère N, Landry MC, Champagne C, Petrie R, Lamarche-Vane N, Hosoya H, Lavoie JN. Adenovirus E4orf4 hijacks rho GTPase-dependent actin dynamics to kill cells: a role for endosome-associated actin assembly. Mol Biol Cell 2006; 17:3329-44. [PMID: 16687574 PMCID: PMC1483059 DOI: 10.1091/mbc.e05-12-1146] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 04/12/2006] [Accepted: 04/27/2006] [Indexed: 11/11/2022] Open
Abstract
The adenovirus early region 4 ORF4 protein (E4orf4) triggers a novel death program that bypasses classical apoptotic pathways in human cancer cells. Deregulation of the cell cytoskeleton is a hallmark of E4orf4 killing that relies on Src family kinases and E4orf4 phosphorylation. However, the cytoskeletal targets of E4orf4 and their role in the death process are unknown. Here, we show that E4orf4 translocates to cytoplasmic sites and triggers the assembly of a peculiar juxtanuclear actin-myosin network that drives polarized blebbing and nuclear shrinkage. We found that E4orf4 activates the myosin II motor and triggers de novo actin polymerization in the perinuclear region, promoting endosomes recruitment to the sites of actin assembly. E4orf4-induced actin dynamics requires interaction with Src family kinases and involves a spatial regulation of the Rho GTPases pathways Cdc42/N-Wasp, RhoA/Rho kinase, and Rac1, which make distinct contributions. Remarkably, activation of the Rho GTPases is required for induction of apoptotic-like cell death. Furthermore, inhibition of actin dynamics per se dramatically impairs E4orf4 killing. This work provides strong support for a causal role for endosome-associated actin dynamics in E4orf4 killing and in the regulation of cancer cell fate.
Collapse
Affiliation(s)
- Amélie Robert
- *Centre de Recherche en Cancérologie de l’Université Laval, L’Hôtel-Dieu de Québec, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Québec G1R 2J6, Canada
| | - Nicolas Smadja-Lamère
- *Centre de Recherche en Cancérologie de l’Université Laval, L’Hôtel-Dieu de Québec, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Québec G1R 2J6, Canada
| | - Marie-Claude Landry
- *Centre de Recherche en Cancérologie de l’Université Laval, L’Hôtel-Dieu de Québec, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Québec G1R 2J6, Canada
| | - Claudia Champagne
- *Centre de Recherche en Cancérologie de l’Université Laval, L’Hôtel-Dieu de Québec, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Québec G1R 2J6, Canada
| | - Ryan Petrie
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec H3A 2B2, Canada; and
| | - Nathalie Lamarche-Vane
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec H3A 2B2, Canada; and
| | - Hiroshi Hosoya
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Josée N. Lavoie
- *Centre de Recherche en Cancérologie de l’Université Laval, L’Hôtel-Dieu de Québec, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Québec G1R 2J6, Canada
| |
Collapse
|
41
|
Bilodeau N, Fiset A, Poirier GG, Fortier S, Gingras MC, Lavoie JN, Faure RL. Insulin-dependent phosphorylation of DPP IV in liver. Evidence for a role of compartmentalized c-Src. FEBS J 2006; 273:992-1003. [PMID: 16478473 DOI: 10.1111/j.1742-4658.2006.05125.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dipeptidyl peptidase IV (DPP IV, CD26, EC 3.4.14.5) serves as a model aimed at elucidating protein sorting signals. We identify here, by MS, several tyrosine-phosphorylated proteins in a rat liver Golgi/endosome (G/E) fraction including DPP IV. We show that a pool of DPP IV is tyrosine-phosphorylated. Maximal phosphorylation was observed after 2 min following intravenous insulin injection. DPP IV coimmunoprecipitated with the cellular tyrosine kinase Src (c-Src) with maximal association also observed after 2 min following insulin injection. DPP IV was found phosphorylated after incubation of nonsolubilized G/E membranes with [gamma-32P]ATP. The c-Src inhibitor PP2 inhibited DPP IV phosphorylation. Oriented proteolysis experiments indicate that a large pool of c-Src is protected in G/E fractions. Following injection of the protein-tyrosine phosphatase inhibitor bpV(phen), DPP IV levels markedly decreased by 40% both in plasma membrane and G/E fractions. In the fraction designated Lh, DPP IV levels decreased by 50% 15 min following insulin injection. Therefore, a pool of DPP IV is tyrosine-phosphorylated in an insulin-dependent manner. The results suggest the presence of a yet to be characterized signalling mechanism whereby DPP IV has access to c-Src-containing signalling platforms.
Collapse
Affiliation(s)
- Nicolas Bilodeau
- Pediatric Research Unit, CRCHUL/CHUQ, Faculty of Medicine, Laval University, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Miron MJ, Gallouzi IE, Lavoie JN, Branton PE. Nuclear localization of the adenovirus E4orf4 protein is mediated through an arginine-rich motif and correlates with cell death. Oncogene 2004; 23:7458-68. [PMID: 15334069 DOI: 10.1038/sj.onc.1207919] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The adenovirus E4orf4 protein induces p53-independent death of human cancer cells by a mechanism requiring interactions with the Balpha subunit of protein phosphatase 2A. When expressed alone E4orf4 localizes predominantly in the nucleus, although significant levels are also present in the cytoplasm. While tyrosine phosphorylation of E4orf4 and recruitment of Src have been linked with E4orf4 cytoplasmic cell death functions, little is known about the functions of E4orf4 in the nucleus. In this study, we identified an arginine-rich motif (E4ARM; residues 66-75) that is necessary and sufficient for nuclear and nucleolar localization. This motif, which is highly homologous to the arginine-rich nuclear and nucleolar localization motif of some lentiviral proteins, was shown to target heterologous proteins to the nucleus and to nucleoli, functions found to be dependent on the overall charge of the motif rather than on specific residues. Furthermore, mutation of arginine residues to alanines but not to lysines in E4ARM was shown to block such targeting activity and, when introduced into full-length E4orf4, to decrease induction of cell death. Finally, coexpression of the ARM motifs of E4orf4, HIV-1 Tat or Rev along with full-length E4orf4 was seen to decrease E4orf4-dependent cell killing. Thus it appears that targeting of E4orf4 to the nucleus and cell nucleoli by E4ARM is an important component of E4orf4-induced cell death.
Collapse
Affiliation(s)
- Marie-Joëlle Miron
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | |
Collapse
|