1
|
Milano SK, Wang C, Erickson JW, Cerione RA, Ramachandran S. Gain-of-function screen of α-transducin identifies an essential phenylalanine residue necessary for full effector activation. J Biol Chem 2018; 293:17941-17952. [PMID: 30266806 DOI: 10.1074/jbc.ra118.003746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/21/2018] [Indexed: 11/06/2022] Open
Abstract
Two regions on the α subunits of heterotrimeric GTP-binding proteins (G-proteins), the Switch II/α2 helix (which changes conformation upon GDP-GTP exchange) and the α3 helix, have been shown to contain the binding sites for their effector proteins. However, how the binding of Gα subunits to their effector proteins is translated into the stimulation of effector activity is still poorly understood. Here, we took advantage of a reconstituted rhodopsin-coupled phototransduction system to address this question and identified a distinct surface and an essential residue on the α subunit of the G-protein transducin (αT) that is necessary to fully activate its effector enzyme, the cGMP phosphodiesterase (PDE). We started with a chimeric G-protein α subunit (αT*) comprising residues mainly from αT and a short stretch of residues from the Gi1 α subunit (αi1), which only weakly stimulates PDE activity. We then reinstated the αT residues by systematically replacing the corresponding αi1 residues within αT* with the aim of fully restoring PDE stimulatory activity. These experiments revealed that the αG/α4 loop and a phenylalanine residue at position 283 are essential for conferring the αT* subunit with full PDE stimulatory capability. We further demonstrated that this same region and amino acid within the α subunit of the Gs protein (αs) are necessary for full adenylyl cyclase activation. These findings highlight the importance of the αG/α4 loop and of an essential phenylalanine residue within this region on Gα subunits αT and αs as being pivotal for their selective and optimal stimulation of effector activity.
Collapse
Affiliation(s)
- Shawn K Milano
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301
| | - Chenyue Wang
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301
| | - Jon W Erickson
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301
| | - Richard A Cerione
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301; Department of Molecular Medicine, Cornell University, Ithaca, New York 14853-6401.
| | - Sekar Ramachandran
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301
| |
Collapse
|
2
|
Zhu Y, Zhang L, Zhang XC, Zhao Y. Structural dynamics of G iα protein revealed by single molecule FRET. Biochem Biophys Res Commun 2017; 491:603-608. [PMID: 28760338 DOI: 10.1016/j.bbrc.2017.07.156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 01/13/2023]
Abstract
The heterotrimeric G proteins (Gαβγ) act as molecular switches to mediate signal transduction from G protein-coupled receptors to downstream effectors. Upon interaction with an activated receptor, G protein exchanges its bound GDP with GTP, stimulating downstream signal transmission. Release of GDP requires a structural rearrangement between the GTPase domain and helical domain of the Gα subunit. Here, we used single molecule fluorescence resonance energy transfer (smFRET) technique to study the conformational dynamics of these two domains in the apo state and in the binding of different ligands. Direct imaging of individual molecules showed that the Giα subunit is highly dynamic, and at least three major conformations of Giα could be observed in the apo state. Upon binding of GDP, Giα becomes dramatically less dynamic, resulting in a closed conformation between the two domains. We postulate that changes between the three conformations are sequential, and the three conformations appear to have distinct affinities toward GDP.
Collapse
Affiliation(s)
- Yongping Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Xuejun C Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yongfang Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| |
Collapse
|
3
|
Cerione RA. The experiences of a biochemist in the evolving world of G protein-dependent signaling. Cell Signal 2017; 41:2-8. [PMID: 28214588 DOI: 10.1016/j.cellsig.2017.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/14/2017] [Indexed: 12/24/2022]
Abstract
This review describes how a biochemist and basic researcher (i.e. myself) came to make a career in the area of receptor-coupled signal transduction and the roles cellular signaling activities play both in normal physiology and in disease. Much of what has been the best part of this research life is due to the time I spent with Bob Lefkowitz (1982-1985), during an extraordinary period in the emerging field of G-protein-coupled receptors. Among my laboratory colleagues were some truly outstanding scientists including Marc Caron, the late Jeffrey Stadel, Berta Strulovici, Jeff Benovic, Brian Kobilka, and Henrik Dohlman, as well as many more. I came to Bob's laboratory after being trained as a physical biochemist and enzymologist. Bob and his laboratory exposed me to a research style that made it possible to connect the kinds of fundamental biochemical and mechanistic questions that I loved to think about with a direct relevance to disease. Indeed, I owe Bob a great deal for having imparted a research style and philosophy that has remained with me throughout my career. Below, I describe how this has taken me on an interesting journey through various areas of cellular signaling, which have a direct relevance to the actions of one or another type of G-protein.
Collapse
Affiliation(s)
- Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853-6401, US.
| |
Collapse
|
4
|
Felline A, Mariani S, Raimondi F, Bellucci L, Fanelli F. Structural Determinants of Constitutive Activation of Gα Proteins: Transducin as a Paradigm. J Chem Theory Comput 2017; 13:886-899. [PMID: 28001387 DOI: 10.1021/acs.jctc.6b00813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (Gα proteins) are intracellular nanomachines deputed to signal transduction. The switch-on process requires the release of bound GDP from a site at the interface between GTPase and helical domains. Nucleotide release is catalyzed by G protein Coupled Receptors (GPCRs). Here we investigate the functional dynamics of wild type (WT) and six constitutively active mutants (CAMs) of the Gα protein transducin (Gt) by combining atomistic molecular dynamics (MD) simulations with Maxwell-Demod discrete MD (MDdMD) simulations of the receptor-catalyzed transition between GDP-bound and nucleotide-free states. Compared to the WT, Gt CAMs increase the overall fluctuations of nucleotide and its binding site. This is accompanied by weakening of native links involving GDP, α1, the G boxes, β1-β3, and α5. Collectively, constitutive activation by the considered mutants seems to associate with weakening of the interfaces between α5 and the surrounding portions and the interface between GTPase (G) and helical (H) domains. These mutational effects associate with increases in the overall fluctuations of the G and H domains, which reflect on the collective motions of the protein. Gt CAMs, with prominence to G56P, T325A, and F332A, prioritize collective motions of the H domain overlapping with the collective motions associated with receptor-catalyzed nucleotide release. In spite of different local perturbations, the mechanisms of nucleotide exchange catalyzed by activating mutations and by receptor are expected to employ similar molecular switches in the nucleotide binding site and to share the detachment of the H domain from the G domain.
Collapse
Affiliation(s)
- Angelo Felline
- Department of Life Sciences, University of Modena and Reggio Emilia , via Campi 103, 41125 Modena, Italy
| | - Simona Mariani
- Department of Life Sciences, University of Modena and Reggio Emilia , via Campi 103, 41125 Modena, Italy
| | - Francesco Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia , via Campi 103, 41125 Modena, Italy
| | - Luca Bellucci
- Department of Life Sciences, University of Modena and Reggio Emilia , via Campi 103, 41125 Modena, Italy
| | - Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia , via Campi 103, 41125 Modena, Italy
| |
Collapse
|
5
|
Li D, Opas EE, Tuluc F, Metzger DL, Hou C, Hakonarson H, Levine MA. Autosomal dominant hypoparathyroidism caused by germline mutation in GNA11: phenotypic and molecular characterization. J Clin Endocrinol Metab 2014; 99:E1774-83. [PMID: 24823460 PMCID: PMC4154081 DOI: 10.1210/jc.2014-1029] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CONTEXT Most cases of autosomal dominant hypoparathyroidism (ADH) are caused by gain-of-function mutations in CASR or dominant inhibitor mutations in GCM2 or PTH. OBJECTIVE Our objectives were to identify the genetic basis for ADH in a multigenerational family and define the underlying disease mechanism. SUBJECTS Here we evaluated a multigenerational family with ADH in which affected subjects had normal sequences in these genes and were shorter than unaffected family members. METHODS We collected clinical and biochemical data from 6 of 11 affected subjects and performed whole-exome sequence analysis on DNA from two affected sisters and their affected father. Functional studies were performed after expression of wild-type and mutant Gα11 proteins in human embryonic kidney-293-CaR cells that stably express calcium-sensing receptors. RESULTS Whole-exome-sequencing followed by Sanger sequencing revealed a heterozygous mutation, c.179G>T; p.R60L, in GNA11, which encodes the α-subunit of G11, the principal heterotrimeric G protein that couples calcium-sensing receptors to signal activation in parathyroid cells. Functional studies of Gα11 R60L showed increased accumulation of intracellular concentration of free calcium in response to extracellular concentration of free calcium with a significantly decreased EC50 compared with wild-type Gα11. By contrast, R60L was significantly less effective than the oncogenic Q209L form of Gα11 as an activator of the MAPK pathway. Compared to subjects with CASR mutations, patients with GNA11 mutations lacked hypercalciuria and had normal serum magnesium levels. CONCLUSIONS Our findings indicate that the germline gain-of-function mutation of GNA11 is a cause of ADH and implicate a novel role for GNA11 in skeletal growth.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics (D.L., C.H., H.H.), Division of Endocrinology and Diabetes (E.E.O., M.A.L.), Division of Allergy and Immunology (F.T.), Division of Pulmonary Medicine (H.H.), and Center for Bone Health (M.A.L.), The Children's Hospital of Philadelphia; and Department of Pediatrics (H.H., M.A.L.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; and Endocrinology and Diabetes Unit (D.L.M.), British Columbia Children's Hospital, and Department of Pediatrics (D.L.M.), University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | | | | | | | | | | | | |
Collapse
|
6
|
Bradford W, Buckholz A, Morton J, Price C, Jones AM, Urano D. Eukaryotic G protein signaling evolved to require G protein-coupled receptors for activation. Sci Signal 2013; 6:ra37. [PMID: 23695163 DOI: 10.1126/scisignal.2003768] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although bioinformatic analysis of the increasing numbers of diverse genome sequences and amount of functional data has provided insight into the evolution of signaling networks, bioinformatics approaches have limited application for understanding the evolution of highly divergent protein families. We used biochemical analyses to determine the in vitro properties of selected divergent components of the heterotrimeric guanine nucleotide-binding protein (G protein) signaling network to investigate signaling network evolution. In animals, G proteins are activated by cell-surface seven-transmembrane (7TM) receptors, which are named G protein-coupled receptors (GPCRs) and function as guanine nucleotide exchange factors (GEFs). In contrast, the plant G protein is intrinsically active, and a 7TM protein terminates G protein activity by functioning as a guanosine triphosphatase-activating protein (GAP). We showed that ancient regulation of the G protein active state is GPCR-independent and "self-activating," a property that is maintained in Bikonts, one of the two fundamental evolutionary clades containing eukaryotes, whereas G proteins of the other clade, the Unikonts, evolved from being GEF-independent to being GEF-dependent. Self-activating G proteins near the base of the Eukaryota are controlled by 7TM-GAPs, suggesting that the ancestral regulator of G protein activation was a GAP-functioning receptor, not a GEF-functioning GPCR. Our findings indicate that the GPCR paradigm describes a recently evolved network architecture found in a relatively small group of Eukaryota and suggest that the evolution of signaling network architecture is constrained by the availability of molecules that control the activation state of nexus proteins.
Collapse
Affiliation(s)
- William Bradford
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
7
|
Conformational dynamics of activation for the pentameric complex of dimeric G protein-coupled receptor and heterotrimeric G protein. Structure 2012; 20:826-40. [PMID: 22579250 DOI: 10.1016/j.str.2012.03.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 03/05/2012] [Accepted: 03/05/2012] [Indexed: 01/08/2023]
Abstract
Photoactivation of rhodopsin (Rho), a G protein-coupled receptor, causes conformational changes that provide a specific binding site for the rod G protein, G(t). In this work we employed structural mass spectrometry techniques to elucidate the structural changes accompanying transition of ground state Rho to photoactivated Rho (Rho(∗)) and in the pentameric complex between dimeric Rho(∗) and heterotrimeric G(t). Observed differences in hydroxyl radical labeling and deuterium uptake between Rho(∗) and the (Rho(∗))(2)-G(t) complex suggest that photoactivation causes structural relaxation of Rho following its initial tightening upon G(t) coupling. In contrast, nucleotide-free G(t) in the complex is significantly more accessible to deuterium uptake allowing it to accept GTP and mediating complex dissociation. Thus, we provide direct evidence that in the critical step of signal amplification, Rho(∗) and G(t) exhibit dissimilar conformational changes when they are coupled in the (Rho(∗))(2)-G(t) complex.
Collapse
|
8
|
Singh G, Ramachandran S, Cerione RA. A constitutively active Gα subunit provides insights into the mechanism of G protein activation. Biochemistry 2012; 51:3232-40. [PMID: 22448927 PMCID: PMC3620018 DOI: 10.1021/bi3001984] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The activation of Gα subunits of heterotrimeric G proteins by G protein-coupled receptors (GPCRs) is a critical event underlying a variety of biological responses. Understanding how G proteins are activated will require structural and biochemical analyses of GPCRs complexed to their G protein partners, together with structure-function studies of Gα mutants that shed light on the different steps in the activation pathway. Previously, we reported that the substitution of a glycine for a proline at position 56 within the linker region connecting the helical and GTP-binding domains of a Gα chimera, designated αT*, yields a more readily exchangeable state for guanine nucleotides. Here we show that GDP-GTP exchange on αT*(G56P), in the presence of the light-activated GPCR, rhodopsin (R*), is less sensitive to the β1γ1 subunit complex than to wild-type αT*. We determined the X-ray crystal structure for the αT*(G56P) mutant and found that the G56P substitution leads to concerted changes that are transmitted to the conformationally sensitive switch regions, the α4-β6 loop, and the β6 strand. The α4-β6 loop has been proposed to be a GPCR contact site that signals to the TCAT motif and weakens the binding of the guanine ring of GDP, whereas the switch regions are the contact sites for the β1γ1 complex. Collectively, these biochemical and structural data lead us to suggest that αT*(G56P) may be adopting a conformation that is normally induced within Gα subunits by the combined actions of a GPCR and a Gβγ subunit complex during the G protein activation event.
Collapse
Affiliation(s)
| | | | - Richard A. Cerione
- To whom correspondence should be addressed: Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401. Tel: (607) 253-3888. Fax: (607) 253-3659,
| |
Collapse
|
9
|
Louet M, Perahia D, Martinez J, Floquet N. A concerted mechanism for opening the GDP binding pocket and release of the nucleotide in hetero-trimeric G-proteins. J Mol Biol 2011; 411:298-312. [PMID: 21663745 DOI: 10.1016/j.jmb.2011.05.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 05/14/2011] [Accepted: 05/20/2011] [Indexed: 11/26/2022]
Abstract
G-protein hetero-trimers play a fundamental role in cell function. Their dynamic behavior at the atomic level remains to be understood. We have studied the Gi hetero-trimer through a combination of molecular dynamics simulations and normal mode analyses. We showed that these big proteins could undergo large-amplitude conformational changes, without any energy penalty and with an intrinsic dynamics centered on their GDP binding pocket. Among the computed collective motions, one of the modes (mode 17) was particularly able to significantly open both the base and the phosphate sides of the GDP binding pocket. This mode describing mainly a motion between the Ras-like and the helical domains of G(α) was in close agreement with some available X-ray data and with many other biochemical/biophysical observations including the kink of helix α5. The use of a new protocol, which allows extraction of the GDP ligand along the computed normal modes, supported that the exit of GDP was largely coupled to an opening motion along mode 17. We propose for the first time a "concerted mechanism" model in which the opening of the GDP pocket and the kink of the α5 helix occur concomitantly and favor GDP release from G(αβγ) complexes. This model is discussed in the context of the G-protein-coupled receptor/G-protein interaction close to the cell membrane.
Collapse
Affiliation(s)
- Maxime Louet
- Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR5247, Université Montpellier 1-Université Montpellier 2, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 05, France
| | | | | | | |
Collapse
|
10
|
Jones JC, Duffy JW, Machius M, Temple BRS, Dohlman HG, Jones AM. The crystal structure of a self-activating G protein alpha subunit reveals its distinct mechanism of signal initiation. Sci Signal 2011; 4:ra8. [PMID: 21304159 PMCID: PMC3551277 DOI: 10.1126/scisignal.2001446] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In animals, heterotrimeric guanine nucleotide-binding protein (G protein) signaling is initiated by G protein-coupled receptors (GPCRs), which activate G protein α subunits; however, the plant Arabidopsis thaliana lacks canonical GPCRs, and its G protein α subunit (AtGPA1) is self-activating. To investigate how AtGPA1 becomes activated, we determined its crystal structure. AtGPA1 is structurally similar to animal G protein α subunits, but our crystallographic and biophysical studies revealed that it had distinct properties. Notably, the helical domain of AtGPA1 displayed pronounced intrinsic disorder and a tendency to disengage from the Ras domain of the protein. Domain substitution experiments showed that the helical domain of AtGPA1 was necessary for self-activation and sufficient to confer self-activation to an animal G protein α subunit. These findings reveal the structural basis for a mechanism for G protein activation in Arabidopsis that is distinct from the well-established mechanism found in animals.
Collapse
Affiliation(s)
- Janice C. Jones
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jeffrey W. Duffy
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mischa Machius
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
- Center for Structural Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Brenda R. S. Temple
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
- R. L. Juliano Structural Bio-informatics Core Facility, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Henrik G. Dohlman
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alan M. Jones
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Ramachandran S, Cerione RA. A dominant-negative Galpha mutant that traps a stable rhodopsin-Galpha-GTP-betagamma complex. J Biol Chem 2011; 286:12702-11. [PMID: 21285355 DOI: 10.1074/jbc.m110.166538] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Residues comprising the guanine nucleotide-binding sites of the α subunits of heterotrimeric (large) G-proteins (Gα subunits), as well as the Ras-related (small) G-proteins, are highly conserved. This is especially the case for the phosphate-binding loop (P-loop) where both Gα subunits and Ras-related G-proteins have a conserved serine or threonine residue. Substitutions for this residue in Ras and related (small) G-proteins yield nucleotide-depleted, dominant-negative mutants. Here we have examined the consequences of changing the conserved serine residue in the P-loop to asparagine, within a chimeric Gα subunit (designated αT*) that is mainly comprised of the α subunit of the retinal G-protein transducin and a limited region from the α subunit of Gi1. The αT*(S43N) mutant exhibits a significantly higher rate of intrinsic GDP-GTP exchange compared with wild-type αT*, with light-activated rhodopsin (R*) causing only a moderate increase in the kinetics of nucleotide exchange on αT*(S43N). The αT*(S43N) mutant, when bound to either GDP or GTP, was able to significantly slow the rate of R*-catalyzed GDP-GTP exchange on wild-type αT*. Thus, GTP-bound αT*(S43N), as well as the GDP-bound mutant, is capable of forming a stable complex with R*. αT*(S43N) activated the cGMP phosphodiesterase (PDE) with a dose-response similar to wild-type αT*. Activation of the PDE by αT*(S43N) was unaffected if either R* or β1γ1 alone was present, whereas it was inhibited when R* and the β1γ1 subunit were added together. Overall, our studies suggest that the S43N substitution on αT* stabilizes an intermediate on the G-protein activation pathway consisting of an activated G-protein-coupled receptor, a GTP-bound Gα subunit, and the β1γ1 complex.
Collapse
Affiliation(s)
- Sekar Ramachandran
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-6401, USA
| | | |
Collapse
|
12
|
Structural basis for the specific inhibition of heterotrimeric Gq protein by a small molecule. Proc Natl Acad Sci U S A 2010; 107:13666-71. [PMID: 20639466 DOI: 10.1073/pnas.1003553107] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric GTP-binding proteins (G proteins) transmit extracellular stimuli perceived by G protein-coupled receptors (GPCRs) to intracellular signaling cascades. Hundreds of GPCRs exist in humans and are the targets of a large percentage of the pharmaceutical drugs used today. Because G proteins are regulated by GPCRs, small molecules that directly modulate G proteins have the potential to become therapeutic agents. However, strategies to develop modulators have been hampered by a lack of structural knowledge of targeting sites for specific modulator binding. Here we present the mechanism of action of the cyclic depsipeptide YM-254890, which is a recently discovered Gq-selective inhibitor. YM-254890 specifically inhibits the GDP/GTP exchange reaction of alpha subunit of Gq protein (Galphaq) by inhibiting the GDP release from Galphaq. X-ray crystal structure analysis of the Galphaqbetagamma-YM-254890 complex shows that YM-254890 binds the hydrophobic cleft between two interdomain linkers connecting the GTPase and helical domains of the Galphaq. The binding stabilizes an inactive GDP-bound form through direct interactions with switch I and impairs the linker flexibility. Our studies provide a novel targeting site for the development of small molecules that selectively inhibit each Galpha subunit and an insight into the molecular mechanism of G protein activation.
Collapse
|
13
|
Activated alleles of the Schizosaccharomyces pombe gpa2+ Galpha gene identify residues involved in GDP-GTP exchange. EUKARYOTIC CELL 2010; 9:626-33. [PMID: 20139237 DOI: 10.1128/ec.00010-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Schizosaccharomyces pombe glucose/cyclic AMP (cAMP) signaling pathway includes the Gpa2-Git5-Git11 heterotrimeric G protein, whose Gpa2 Galpha subunit directly binds to and activates adenylate cyclase in response to signaling from the Git3 G protein-coupled receptor. To study intrinsic and extrinsic regulation of Gpa2, we developed a plasmid-based screen to identify mutationally activated gpa2 alleles that bypass the loss of the Git5-Git11 Gbetagamma dimer to repress transcription of the glucose-regulated fbp1(+) gene. Fifteen independently isolated mutations alter 11 different Gpa2 residues, with all but one conferring a receptor-independent activated phenotype upon integration into the gpa2(+) chromosomal locus. Biochemical characterization of three activated Gpa2 proteins demonstrated an increased GDP-GTP exchange rate that would explain the mechanism of activation. Interestingly, the amino acid altered in the Gpa2(V90A) exchange rate mutant protein is in a region of Gpa2 with no obvious role in Galpha function, thus extending our understanding of Galpha protein structure-function relationships.
Collapse
|
14
|
Moreau M, Lee GI, Wang Y, Crane BR, Klessig DF. AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitric-oxide synthase. J Biol Chem 2008; 283:32957-67. [PMID: 18801746 DOI: 10.1074/jbc.m804838200] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AtNOS1 was previously identified as a potential nitric-oxide synthase (NOS) in Arabidopsis thaliana, despite lack of sequence similarity to animal NOSs. Although the dwarf and yellowish leaf phenotype of Atnos1 knock-out mutant plants can be rescued by treatment with exogenous NO, doubts have recently been raised as to whether AtNOS1 is a true NOS. Moreover, depending on the type of physiological responses studied, Atnos1 is not always deficient in NO induction and/or detection, as previously reported. Here, we present experimental evidence showing that AtNOS1 is unable to bind and oxidize arginine to NO. These results support the argument that AtNOS1 is not a NOS. We also show that the renamed NO-associated protein 1 (AtNOA1) is a member of the circularly permuted GTPase family (cGTPase). AtNOA1 specifically binds GTP and hydrolyzes it. Complementation experiments of Atnoa1 mutant plants with different constructs of AtNOA1 show that GTP hydrolysis is necessary but not sufficient for the physiological function of AtNOA1. Mutant AtNOA1 lacking the C-terminal domain, although retaining GTPase activity, failed to complement Atnoa1, suggesting that this domain plays a crucial role in planta. cGTPases appear to be RNA-binding proteins, and the closest homolog of AtNOA1, the Bacillus subtilis YqeH, has been shown to participate in ribosome assembly and stability. We propose a similar function for AtNOA1 and discuss it in the light of its potential role in NO accumulation and plant development.
Collapse
Affiliation(s)
- Magali Moreau
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
Heterotrimeric G proteins couple the activation of heptahelical receptors at the cell surface to the intracellular signaling cascades that mediate the physiological responses to extracellular stimuli. G proteins are molecular switches that are activated by receptor-catalyzed GTP for GDP exchange on the G protein alpha subunit, which is the rate-limiting step in the activation of all downstream signaling. Despite the important biological role of the receptor-G protein interaction, relatively little is known about the structure of the complex and how it leads to nucleotide exchange. This chapter will describe what is known about receptor and G protein structure and outline a strategy for assembling the current data into improved models for the receptor-G protein complex that will hopefully answer the question as to how receptors flip the G protein switch.
Collapse
Affiliation(s)
- William M Oldham
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
16
|
Abscisic acid regulation of guard-cell K+ and anion channels in Gbeta- and RGS-deficient Arabidopsis lines. Proc Natl Acad Sci U S A 2008; 105:8476-81. [PMID: 18541915 DOI: 10.1073/pnas.0800980105] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In mammals, basal currents through G protein-coupled inwardly rectifying K(+) (GIRK) channels are repressed by Galpha(i/o)GDP, and the channels are activated by direct binding of free Gbetagamma subunits released upon stimulation of Galpha(i/o)-coupled receptors. However, essentially all information on G protein regulation of GIRK electrophysiology has been gained on the basis of coexpression studies in heterologous systems. A major advantage of the model organism, Arabidopsis thaliana, is the ease with which knockout mutants can be obtained. We evaluated plants harboring mutations in the sole Arabidopsis Galpha (AtGPA1), Gbeta (AGB1), and Regulator of G protein Signaling (AtRGS1) genes for impacts on ion channel regulation. In guard cells, where K(+) fluxes are integral to cellular regulation of stomatal apertures, inhibition of inward K(+) (K(in)) currents and stomatal opening by the phytohormone abscisic acid (ABA) was equally impaired in Atgpa1 and agb1 single mutants and the Atgpa1 agb1 double mutant. AGB1 overexpressing lines maintained a wild-type phenotype. The Atrgs1 mutation did not affect K(in) current magnitude or ABA sensitivity, but K(in) voltage-activation kinetics were altered. Thus, Arabidopsis cells differ from mammalian cells in that they uniquely use the Galpha subunit or regulation of the heterotrimer to mediate K(in) channel modulation after ligand perception. In contrast, outwardly rectifying (K(out)) currents were unaltered in the mutants, and ABA activation of slow anion currents was conditionally disrupted in conjunction with cytosolic pH clamp. Our studies highlight unique aspects of ion channel regulation by heterotrimeric G proteins and relate these aspects to stomatal aperture control, a key determinant of plant biomass acquisition and drought tolerance.
Collapse
|
17
|
The same mutation in Gsalpha and transducin alpha reveals behavioral differences between these highly homologous G protein alpha-subunits. Proc Natl Acad Sci U S A 2008; 105:2363-8. [PMID: 18258741 DOI: 10.1073/pnas.0712261105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutating Arg-238 to Glu (R238E) in the switch 3 region of a transducin alpha (*Talpha) in which 27 aa of the GTPase domain have been replaced with those of the alpha-subunit of the inhibitory G protein 1 (Gi1alpha), was reported to create an alpha-subunit that is resistant to activation by GTPgammaS, is devoid of resident nucleotide, and has dominant negative (DN) properties. In an attempt to create a DN stimultory G protein alpha (Gsalpha) with a single mutation we created Gsalpha-R265E, equivalent to *Talpha-R238E. Gsalpha-R265E has facilitated activation by GTPgammaS, a slightly facilitated activation by GTP but much reduced receptor plus GTP stimulated activation, and an apparently unaltered ability to interact with receptor as seen in ligand binding studies. Further, the activity profile of Gsalpha-R265E is that of an alpha-subunit with unaltered or increased GTPase activity. The only change in Gsalpha that is similar to that in *Talpha is that the apparent affinity for guanine nucleotides is decreased in both proteins. The molecular basis of the changed properties are discussed based on the known crystal structure of Gsalpha and the changes introduced by the same mutation in a *Talpha (Gtalpha*) with only 23 aa from Gi1alpha. Gtalpha*-R238E, with four fewer mutations in switch 3, was reported to show no evidence of DN properties, is activated by GTPgammaS, and has reduced GTPase activity. The data highlight a critical role for the switch 3 region in setting overall properties of signal-transducing GTPases.
Collapse
|
18
|
Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 2008; 9:60-71. [PMID: 18043707 DOI: 10.1038/nrm2299] [Citation(s) in RCA: 804] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Heterotrimeric G proteins have a crucial role as molecular switches in signal transduction pathways mediated by G-protein-coupled receptors. Extracellular stimuli activate these receptors, which then catalyse GTP-GDP exchange on the G protein alpha-subunit. The complex series of interactions and conformational changes that connect agonist binding to G protein activation raise various interesting questions about the structure, biomechanics, kinetics and specificity of signal transduction across the plasma membrane.
Collapse
|
19
|
Go L, Mitchell J. Receptor-coupling properties of the invertebrate visual guanine nucleotide binding protein iGqalpha. Cell Signal 2007; 19:1919-27. [PMID: 17560078 DOI: 10.1016/j.cellsig.2007.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 04/29/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
Invertebrate visual iG(q)alpha is homologous to mammalian mG(q)alpha in two of the three domains important for G protein interaction with receptors; the C-terminus and the linker regions that connect the helical and ras-like domains of the alpha subunit. The third receptor-interacting domain, the N-terminus, contains a six amino acid extension MTLESI in mG(q)alpha that is not present in iG(q)alpha. In co-expression studies we assessed the promiscuity and efficacy of receptor coupling to phospholipase C (PLC) by iG(q)alpha, a non-palmitoylated mutant iG(q)alpha(C3,4A), mG(q)alpha and G(15)alpha. The invertebrate G proteins and mG(q)alpha only coupled to G(q)-coupled receptors (m1 muscarinic acetylcholine receptor (mChR1), alpha(1A)-adrenergic receptor (alpha1-AR)) and not to the G(i/s)-coupled receptors (CCR1 receptor, beta2-adrenergic receptor or dopamine D1 receptor) while G(15)alpha coupled to all receptors. iG(q)alpha and iG(q)alpha(C3,4A) both had double the efficacy for PLC activation compared to the mammalian G proteins when co-expressed with mChR1 and alpha1-AR. The increased efficacy of iG(q)alpha compared to mG(q)alpha was also seen downstream of PLC with carbachol stimulation of the mitogen-activated protein kinase, ERK1/2. Addition of the MTLESI extension onto the N-terminus of iG(q)alpha decreased its efficacy by 35% whereas deletion of this sequence from mG(q)alpha increased its efficacy by 60% in the PLC and ERK1/2 assays. iG(q)alpha, iG(q)alpha(C3,4A) and mG(q)alpha all displayed similar receptor-independent AlF(4)(-)activation of PLC and guanosine triphosphate hydrolysis (GTPase) activity. iG(q)alpha, and iG(q)alpha(C3,4A) both had increased receptor-activated guanosine 5'-[gamma-[(35)S]thio]triphosphate ([(35)S]GTPgammaS) binding when compared to mG(q)alpha when co-expressed with the mChR1. These results demonstrate that G(q) protein efficacy is at least partially determined by the presence of the amino-terminal MTLESI extension. Comparison of [(35)S]GTPgammaS binding rates helps explain the increased efficacy of the invertebrate G proteins.
Collapse
Affiliation(s)
- Lynle Go
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
20
|
Oldham WM, Van Eps N, Preininger AM, Hubbell WL, Hamm HE. Mapping allosteric connections from the receptor to the nucleotide-binding pocket of heterotrimeric G proteins. Proc Natl Acad Sci U S A 2007; 104:7927-32. [PMID: 17463080 PMCID: PMC1876549 DOI: 10.1073/pnas.0702623104] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric G proteins function as molecular relays that mediate signal transduction from heptahelical receptors in the cell membrane to intracellular effector proteins. Crystallographic studies have demonstrated that guanine nucleotide exchange on the Galpha subunit causes specific conformational changes in three key "switch" regions of the protein, which regulate binding to Gbetagamma subunits, receptors, and effector proteins. In the present study, nitroxide side chains were introduced at sites within the switch I region of Galphai to explore the structure and dynamics of this region throughout the G protein cycle. EPR spectra obtained for each of the Galpha(GDP), Galpha(GDP)betagamma heterotrimer and Galpha(GTPgammaS) conformations are consistent with the local environment observed in the corresponding crystal structures. Binding of the heterotrimer to activated rhodopsin to form the nucleotide-free (empty) complex, for which there is no crystal structure, causes prominent changes relative to the heterotrimer in the structure of switch I and contiguous sequences. The data identify a putative pathway of allosteric changes triggered by receptor binding and, together with previously published data, suggest elements of a mechanism for receptor-catalyzed nucleotide exchange.
Collapse
Affiliation(s)
- William M. Oldham
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-6600; and
| | - Ned Van Eps
- Jules Stein Eye Institute, Department of Ophthalmology and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Anita M. Preininger
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-6600; and
| | - Wayne L. Hubbell
- Jules Stein Eye Institute, Department of Ophthalmology and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-6600; and
| |
Collapse
|
21
|
|
22
|
Oldham WM, Van Eps N, Preininger AM, Hubbell WL, Hamm HE. Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins. Nat Struct Mol Biol 2006; 13:772-7. [PMID: 16892066 DOI: 10.1038/nsmb1129] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 07/06/2006] [Indexed: 12/31/2022]
Abstract
Heptahelical receptors activate intracellular signaling pathways by catalyzing GTP for GDP exchange on the heterotrimeric G protein alpha subunit (G alpha). Despite the crucial role of this process in cell signaling, little is known about the mechanism of G protein activation. Here we explore the structural basis for receptor-mediated GDP release using electron paramagnetic resonance spectroscopy. Binding to the activated receptor (R*) causes an apparent rigid-body movement of the alpha5 helix of G alpha that would perturb GDP binding at the beta6-alpha5 loop. This movement was not observed when a flexible loop was inserted between the alpha5 helix and the R*-binding C terminus, which uncouples R* binding from nucleotide exchange, suggesting that this movement is necessary for GDP release. These data provide the first direct observation of R*-mediated conformational changes in G proteins and define the structural basis for GDP release from G alpha.
Collapse
Affiliation(s)
- William M Oldham
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6600, USA
| | | | | | | | | |
Collapse
|
23
|
Majumdar S, Ramachandran S, Cerione RA. New insights into the role of conserved, essential residues in the GTP binding/GTP hydrolytic cycle of large G proteins. J Biol Chem 2006; 281:9219-26. [PMID: 16469737 DOI: 10.1074/jbc.m513837200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GTP hydrolytic (GTPase) reaction terminates signaling by both large (heterotrimeric) and small (Ras-related) GTP-binding proteins (G proteins). Two residues that are necessary for GTPase activity are an arginine (often called the "arginine finger") found either in the Switch I domains of the alpha subunits of large G proteins or contributed by the GTPase-activating proteins of small G proteins, and a glutamine that is highly conserved in the Switch II domains of Galpha subunits and small G proteins. However, questions still exist regarding the mechanism of the GTPase reaction and the exact role played by the Switch II glutamine. Here, we have characterized the GTP binding and GTPase activities of mutants in which the essential arginine or glutamine residue has been changed within the background of a Galpha chimera (designated alpha(T)*), comprised mainly of the alpha subunit of retinal transducin (alpha(T)) and the Switch III region from the alpha subunit of G(i1). As expected, both the alpha(T)*(R174C) and alpha(T)*(Q200L) mutants exhibited severely compromised GTPase activity. Neither mutant was capable of responding to aluminum fluoride when monitoring changes in the fluorescence of Trp-207 in Switch II, although both stimulated effector activity in the absence of rhodopsin and Gbetagamma. Surprisingly, each mutant also showed some capability for being activated by rhodopsin and Gbetagamma to undergo GDP-[(35)S]GTPgammaS exchange. The ability of the mutants to couple to rhodopsin was not consistent with the assumption that they contained only bound GTP, prompting us to examine their nucleotide-bound states following their expression and purification from Escherichia coli. Indeed, both mutants contained bound GDP as well as GTP, with 35-45% of each mutant being isolated as GDP-P(i) complexes. Overall, these findings suggest that the R174C and Q200L mutations reveal Galpha subunit states that occur subsequent to GTP hydrolysis but are still capable of fully stimulating effector activity.
Collapse
|
24
|
Pereira R, Cerione RA. A switch 3 point mutation in the alpha subunit of transducin yields a unique dominant-negative inhibitor. J Biol Chem 2005; 280:35696-703. [PMID: 16103122 DOI: 10.1074/jbc.m504935200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rhodopsin/transducin-coupled vertebrate vision system has served as a paradigm for G protein-coupled signaling. We have taken advantage of this system to identify new types of constitutively active, transducin-alpha (alphaT) subunits. Here we have described a novel dominant-negative mutation, made in the background of a chimera consisting of alphaT and the alpha subunit of G(i1) (designated alphaT*), which involves the substitution of a conserved arginine residue in the conformationally sensitive Switch 3 region. Changing Arg-238 to either lysine or alanine had little or no effect on the ability of alphaT* to undergo rhodopsin-stimulated GDP-GTP exchange, whereas substituting glutamic acid for arginine at this position yielded an alphaT* subunit (alphaT*(R238E)) that was incapable of undergoing rhodopsin-dependent nucleotide exchange and was unable to bind or stimulate the target/effector enzyme (cyclic GMP phosphodiesterase). Moreover, unlike the GDP-bound forms of alphaT*, alphaT*(R238A) and alphaT*(R238K), the alphaT*(R238E) mutant did not respond to aluminum fluoride (AlF4(-)), as read out by changes in Trp-207 fluorescence. However, surprisingly, we found that alphaT*(R238E) effectively blocked rhodopsin-catalyzed GDP-GTP exchange on alphaT*, as well as rhodopsin-stimulated phosphodiesterase activity. Analysis by high pressure liquid chromatography indicated that the alphaT*(R238E) mutant exists in a nucleotide-free state. Nucleotide-free forms of G alpha subunits were typically very sensitive to proteolytic degradation, but alphaT*(R238E) exhibited a resistance to trypsin-proteolysis similar to that observed with activated forms of alphaT*. Overall, these findings indicated that by mutating a single residue in Switch 3, it is possible to generate a unique type of dominant-negative G alpha subunit that can effectively block signaling by G protein-coupled receptors.
Collapse
Affiliation(s)
- Ryan Pereira
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|