1
|
Cisse M, Braun U, Leitges M, Fisher A, Pages G, Checler F, Vincent B. ERK1-independent α-secretase cut of β-amyloid precursor protein via M1 muscarinic receptors and PKCα/ε. Mol Cell Neurosci 2011; 47:223-32. [PMID: 21570469 DOI: 10.1016/j.mcn.2011.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/17/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022] Open
|
2
|
Diouf B, Collazos A, Labesse G, Macari F, Choquet A, Clair P, Gauthier-Rouvière C, Guérineau NC, Jay P, Hollande F, Joubert D. A 20-amino acid module of protein kinase C{epsilon} involved in translocation and selective targeting at cell-cell contacts. J Biol Chem 2009; 284:18808-15. [PMID: 19429675 DOI: 10.1074/jbc.m109.004614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the pituitary gland, activated protein kinase C (PKC) isoforms accumulate either selectively at the cell-cell contact (alpha and epsilon) or at the entire plasma membrane (beta1 and delta). The molecular mechanisms underlying these various subcellular locations are not known. Here, we demonstrate the existence within PKCepsilon of a cell-cell contact targeting sequence (3CTS) that, upon stimulation, is capable of targeting PKCdelta, chimerin-alpha1, and the PKCepsilon C1 domain to the cell-cell contact. We show that this selective targeting of PKCepsilon is lost upon overexpression of 3CTS fused to a (R-Ahx-R)(4) (where Ahx is 6-aminohexanoic acid) vectorization peptide, reflecting a dominant-negative effect of the overexpressed 3CTS on targeting selectivity. 3CTS contains a putative amphipathic alpha-helix, a 14-3-3-binding site, and the Glu-374 amino acid, involved in targeting selectivity. We show that the integrity of the alpha-helix is important for translocation but that 14-3-3 is not involved in targeting selectivity. However, PKCepsilon translocation is increased when PKCepsilon/14-3-3 interaction is abolished, suggesting that phorbol 12-myristate 13-acetate activation may initiate two sets of PKCepsilon functions, those depending on 14-3-3 and those depending on translocation to cell-cell contacts. Thus, 3CTS is involved in the modulation of translocation via its 14-3-3-binding site, in cytoplasmic desequestration via the alpha-helix, and in selective PKCepsilon targeting at the cell-cell contact via Glu-374.
Collapse
Affiliation(s)
- Barthélémy Diouf
- CNRS UMR5203, INSERM, U661, University of Montpellier I and II, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Husain S, Crosson CE. Role of PKCepsilon in PGF2alpha-stimulated MMP-2 secretion from human ciliary muscle cells. J Ocul Pharmacol Ther 2008; 24:268-77. [PMID: 18462068 DOI: 10.1089/jop.2008.0014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Studies were designed to examine the roles of individual protein kinase C (PKC) isoforms in the prostaglandin F(2alpha) (PGF(2alpha))-induced matrix metalloproteinase-2 (MMP-2) secretion from human ciliary muscle cells. Studies utilized primary cultures of human ciliary muscle cells. Individual PKC isoforms were detected by Western blotting, using PKC-isoform-specific antibodies. To evaluate MMP-2 secretion, cells were serum-starved overnight, treated with PGF(2alpha) (1 micromol/L) for 4 h and the media analyzed for MMP-2 by Western blotting. To assess ERK1/2 activation, cells were serum-starved overnight, treated with PGF(2alpha) (1 micromol/L) for 5 min and cell lysates analyzed for ERK1/2 phosphorylation by Western blot analysis. To evaluate the roles of individual PKC isoforms, cells were pretreated with PKC inhibitors or siRNAs prior to the addition of PGF(2alpha). In cultured human ciliary muscle cells, the PKC isoforms exhibiting the highest level of expression were PKCalpha, epsilon, iota and lambda. The delta and eta isoforms exhibited moderate levels of expression and beta, gamma, and phi were not detected. The administration of PGF(2alpha) (1 micromol/L) primarily induced the translocation of PKCepsilon from cytosol to the membrane fraction, as well as increased MMP-2 secretion and ERK1/2 phosphorylation. The secretion of MMP-2 was inhibited by pretreatment with the broad-range PKC inhibitor, chelerythrine chloride; however, this response was not blocked by Go-6976, an inhibitor of conventional PKC isoforms. The PGF(2alpha)-induced secretion of MMP-2 was also blocked by pretreatment with the PKCepsilon-selective peptide translocation inhibitor, EAVSLKPT, or the transfection of siRNA-targeting PKCepsilon. The activation of ERK1/2 was inhibited by chelerythrine and the PKCepsilon translocation inhibitor. Human ciliary muscle cells express the alpha, epsilon, iota and lambda PKC isoforms. Stimulation of FP receptors in these cells activates PKCepsilon, resulting in ERK1/2 activation and an eventual increase in MMP-2 secretion. These data support the idea that the activation of FP receptors in vivo modulate uveoscleral outflow through the PKCepsilon-dependent secretion of MMPs.
Collapse
Affiliation(s)
- Shahid Husain
- Department of Ophthalmology, Hewitt Laboratory of the Ola B. Williams Glaucoma Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | |
Collapse
|
4
|
Alfa Cissé M, Louis K, Braun U, Mari B, Leitges M, Slack BE, Fisher A, Auberger P, Checler F, Vincent B. Isoform-specific contribution of protein kinase C to prion processing. Mol Cell Neurosci 2008; 39:400-10. [PMID: 18722532 DOI: 10.1016/j.mcn.2008.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 07/11/2008] [Accepted: 07/16/2008] [Indexed: 11/30/2022] Open
Abstract
The cellular prion protein (PrP(c)) undergoes a physiological cleavage between amino acids 111 and 112, thereby leading to the secretion of an amino-terminal fragment referred to as N1. This proteolytic event is either constitutive or regulated by protein kinase C (PKC) and is operated by the disintegrins ADAM9/ADAM10 or ADAM17 respectively. We recently showed that the stimulation of the M1/M3 muscarinic receptors potentiates this cleavage via the phosphorylation and activation of ADAM17. We have examined the contribution of various PKC isoforms in the regulated processing of PrP(c). First we show that the PDBu- and carbachol-stimulated N1 secretions are blocked by the general PKC inhibitor GF109203X. We establish that HEK293 and human-derived rhabdhomyosarcoma cells over-expressing constitutively active PKCalpha, PKCdelta or PKCepsilon, but not PKCzeta, produce increased amounts of N1 and harbor enhanced ability to hydrolyze the fluorimetric substrate of ADAM17, JMV2770. Conversely, over-expression of the corresponding dominant negative proteins abolishes PDBU-stimulated N1 secretion and restores N1 to levels comparable to constitutive production. Moreover, deletion of PKCalpha lowers N1 recovery in primary cultured fibroblasts. Importantly, mutation of threonine 735 of ADAM17 significantly lowers the PDBu-induced N1 formation while transient over-expression of constitutively active PKCalpha, PKCdelta or PKCepsilon, but not PKCzeta, induced both the phosphorylation of ADAM17 on its threonine residues and N1 secretion. As a corollary, T735A mutation concomitantly reversed PKCalpha-, PKCdelta- and PKCepsilon-induced ADAM17 phosphorylation and N1 recovery. Finally, we established that PKCepsilon-dependent N1 production is fully prevented by ADAM17 deficiency. Altogether, the present results provide strong evidence that the activation of PKCalpha, delta and epsilon, but not zeta, isoforms leads to increased N1 secretion via the phosphorylation and activation of ADAM17, a process that likely accounts for M1/M3 muscarinic receptors-mediated control of N1 production.
Collapse
Affiliation(s)
- Moustapha Alfa Cissé
- Institut de Pharmacologie Moléculaire et Cellulaire du CNRS, UMR6097, UNSA, Equipe labellisée Fondation pour la Recherche Médicale, Sophia-Antipolis, Valbonne, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kasper G, Reule M, Tschirschmann M, Dankert N, Stout-Weider K, Lauster R, Schrock E, Mennerich D, Duda GN, Lehmann KE. Stromelysin-3 over-expression enhances tumourigenesis in MCF-7 and MDA-MB-231 breast cancer cell lines: involvement of the IGF-1 signalling pathway. BMC Cancer 2007; 7:12. [PMID: 17233884 PMCID: PMC1783860 DOI: 10.1186/1471-2407-7-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 01/17/2007] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Stromelysin-3 (ST-3) is over-expressed in the majority of human carcinomas including breast carcinoma. Due to its known effect in promoting tumour formation, but its impeding effect on metastasis, a dual role of ST-3 in tumour progression, depending on the cellular grade of dedifferentiation, was hypothesized. METHODS The present study was designed to investigate the influence of ST-3 in vivo and in vitro on the oestrogen-dependent, non-invasive MCF-7 breast carcinoma cell line as well as on the oestrogen-independent, invasive MDA-MB-231 breast carcinoma cell line. Therefore an orthotopic human xenograft tumour model in nude mice, as well as a 3D matrigel cell culture system, were employed. RESULTS Using both in vitro and in vivo techniques, we have demonstrated that over-expression of ST-3 in MCF-7 and MDA-MB-231 cells leads to both increased cell numbers and tumour volumes. This observation was dependent upon the presence of growth factors. In particular, the enhanced proliferative capacity was in MCF-7/ST-3 completely and in MDA-MB-231/ST-3 cells partially dependent on the IGF-1 signalling pathway. Microarray analysis of ST-3 over-expressing cells revealed that in addition to cell proliferation, further biological processes seemed to be affected, such as cell motility and stress response. The MAPK-pathway as well as the Wnt and PI3-kinase pathways, appear to also play a potential role. Furthermore, we have demonstrated that breast cancer cell lines of different differentiation status, as well as the non-tumourigenic cell line MCF-10A, have a comparable capability to induce endogenous ST-3 expression in fibroblasts. CONCLUSION These data reveal that ST-3 is capable of enhancing tumourigenesis in highly differentiated "early stage" breast cancer cell lines as well as in further progressed breast cancer cell lines that have already undergone epithelial-mesenchymal transition. We propose that ST-3 induction in tumour fibroblasts leads to the stimulation of the IGF-1R pathway in carcinoma cells, thus enhancing their proliferative capacity. In addition, further different cellular processes seem to be activated by ST-3, possibly accounting for the dual role of ST-3 in tumour progression and metastasis.
Collapse
Affiliation(s)
- Grit Kasper
- Musculoskeletal Research Center Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Niels Dankert
- Musculoskeletal Research Center Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Karen Stout-Weider
- Institute of Medical Genetics, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | | | - Evelin Schrock
- Institute of Clinical Genetics, Technische Universität, Dresden, Germany
| | | | - Georg N Duda
- Musculoskeletal Research Center Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Kerstin E Lehmann
- Center for Cardiovascular Research, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Mousseaux D, Le Gallic L, Ryan J, Oiry C, Gagne D, Fehrentz JA, Galleyrand JC, Martinez J. Regulation of ERK1/2 activity by ghrelin-activated growth hormone secretagogue receptor 1A involves a PLC/PKCvarepsilon pathway. Br J Pharmacol 2006; 148:350-65. [PMID: 16582936 PMCID: PMC1751558 DOI: 10.1038/sj.bjp.0706727] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The growth hormone secretagogue receptor 1a (GHSR-1a) is a G-protein coupled receptor, involved in the biological actions of ghrelin by triggering inositol phosphates and calcium intracellular second messengers. It has also been reported that ghrelin could activate the 44- and 42-kDa extracellular signal-regulated protein kinases (ERK1/2) in different cell lines, but it is not clear whether this regulation is GHSR-1a dependent or not. 2. To provide direct evidence for the coupling of GHSR-1a to ERK1/2 activation, this pathway has been studied in a heterologous expression system. 3. Thus, in Chinese hamster ovary (CHO) cells we showed that ghrelin induced, via the human GHSR-1a, a transient and dose-dependent activation of ERK1/2 leading to activation of the transcriptional factor Elk1. 4. We then investigated the precise mechanisms involved in GHSR-1a-mediated ERK1/2 activation using various specific inhibitors and dominant-negative mutants and found that internalization of GHSR-1a was not necessary. Our results also indicate that phospholipase C (PLC) was involved in GHSR-1a-mediated ERK1/2 activation, however, pathways like tyrosine kinases, including Src, and phosphoinositide 3-kinases were not found to be involved. GHSR-1a-mediated ERK1/2 activation was abolished both by a general protein kinase C (PKC) inhibitor, Gö6983, and by PKC depletion using overnight pretreatment with phorbol ester. Moreover, the calcium chelator, BAPTA-AM, and the inhibitor of conventional PKCs, Gö6976, had no effect on the GHSR-1a-mediated ERK1/2 activation, suggesting the involvement of novel PKC isoforms (epsilon, delta), but not conventional or atypical PKCs. Further analyses suggest that PKCepsilon is required for the activation of ERK1/2. 5. Taken together, these data suggest that ghrelin, through GHSR-1a, activates the Elk1 transcriptional factor and ERK1/2 by a PLC- and PKCepsilon-dependent pathway.
Collapse
Affiliation(s)
- Delphine Mousseaux
- Laboratoire des Aminoacides, Peptides et Protéines (LAPP), CNRS UMR-5810, UMI et UMII, UFR Pharmacie, 15 avenue Charles Flahault, Montpellier 34093, Cedex 5, France
| | - Lionel Le Gallic
- Laboratoire des Aminoacides, Peptides et Protéines (LAPP), CNRS UMR-5810, UMI et UMII, UFR Pharmacie, 15 avenue Charles Flahault, Montpellier 34093, Cedex 5, France
| | - Joanne Ryan
- Laboratoire des Aminoacides, Peptides et Protéines (LAPP), CNRS UMR-5810, UMI et UMII, UFR Pharmacie, 15 avenue Charles Flahault, Montpellier 34093, Cedex 5, France
| | - Catherine Oiry
- Laboratoire des Aminoacides, Peptides et Protéines (LAPP), CNRS UMR-5810, UMI et UMII, UFR Pharmacie, 15 avenue Charles Flahault, Montpellier 34093, Cedex 5, France
| | - Didier Gagne
- Laboratoire des Aminoacides, Peptides et Protéines (LAPP), CNRS UMR-5810, UMI et UMII, UFR Pharmacie, 15 avenue Charles Flahault, Montpellier 34093, Cedex 5, France
| | - Jean-Alain Fehrentz
- Laboratoire des Aminoacides, Peptides et Protéines (LAPP), CNRS UMR-5810, UMI et UMII, UFR Pharmacie, 15 avenue Charles Flahault, Montpellier 34093, Cedex 5, France
| | - Jean-Claude Galleyrand
- Laboratoire des Aminoacides, Peptides et Protéines (LAPP), CNRS UMR-5810, UMI et UMII, UFR Pharmacie, 15 avenue Charles Flahault, Montpellier 34093, Cedex 5, France
- Author for correspondence:
| | - Jean Martinez
- Laboratoire des Aminoacides, Peptides et Protéines (LAPP), CNRS UMR-5810, UMI et UMII, UFR Pharmacie, 15 avenue Charles Flahault, Montpellier 34093, Cedex 5, France
| |
Collapse
|
7
|
|
8
|
Collazos A, Diouf B, Guérineau NC, Quittau-Prévostel C, Peter M, Coudane F, Hollande F, Joubert D. A spatiotemporally coordinated cascade of protein kinase C activation controls isoform-selective translocation. Mol Cell Biol 2006; 26:2247-61. [PMID: 16508001 PMCID: PMC1430303 DOI: 10.1128/mcb.26.6.2247-2261.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 12/22/2005] [Indexed: 12/22/2022] Open
Abstract
In pituitary GH3B6 cells, signaling involving the protein kinase C (PKC) multigene family can self-organize into a spatiotemporally coordinated cascade of isoform activation. Indeed, thyrotropin-releasing hormone (TRH) receptor activation sequentially activated green fluorescent protein (GFP)-tagged or endogenous PKCbeta1, PKCalpha, PKCepsilon, and PKCdelta, resulting in their accumulation at the entire plasma membrane (PKCbeta and -delta) or selectively at the cell-cell contacts (PKCalpha and -epsilon). The duration of activation ranged from 20 s for PKCalpha to 20 min for PKCepsilon. PKCalpha and -epsilon selective localization was lost in the presence of Gö6976, suggesting that accumulation at cell-cell contacts is dependent on the activity of a conventional PKC. Constitutively active, dominant-negative PKCs and small interfering RNAs showed that PKCalpha localization is controlled by PKCbeta1 activity and is calcium independent, while PKCepsilon localization is dependent on PKCalpha activity. PKCdelta was independent of the cascade linking PKCbeta1, -alpha, and -epsilon. Furthermore, PKCalpha, but not PKCepsilon, is involved in the TRH-induced beta-catenin relocation at cell-cell contacts, suggesting that PKCepsilon is not the unique functional effector of the cascade. Thus, TRH receptor activation results in PKCbeta1 activation, which in turn initiates a calcium-independent but PKCbeta1 activity-dependent sequential translocation of PKCalpha and -epsilon. These results challenge the current understanding of PKC signaling and raise the question of a functional dependence between isoforms.
Collapse
Affiliation(s)
- Alejandra Collazos
- Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, F-34094 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|