1
|
Chhabra Y, Seiffert P, Gormal RS, Vullings M, Lee CMM, Wallis TP, Dehkhoda F, Indrakumar S, Jacobsen NL, Lindorff-Larsen K, Durisic N, Waters MJ, Meunier FA, Kragelund BB, Brooks AJ. Tyrosine kinases compete for growth hormone receptor binding and regulate receptor mobility and degradation. Cell Rep 2023; 42:112490. [PMID: 37163374 DOI: 10.1016/j.celrep.2023.112490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/07/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
Growth hormone (GH) acts via JAK2 and LYN to regulate growth, metabolism, and neural function. However, the relationship between these tyrosine kinases remains enigmatic. Through an interdisciplinary approach combining cell biology, structural biology, computation, and single-particle tracking on live cells, we find overlapping LYN and JAK2 Box1-Box2-binding regions in GH receptor (GHR). Our data implicate direct competition between JAK2 and LYN for GHR binding and imply divergent signaling profiles. We show that GHR exhibits distinct mobility states within the cell membrane and that activation of LYN by GH mediates GHR immobilization, thereby initiating its nanoclustering in the membrane. Importantly, we observe that LYN mediates cytokine receptor degradation, thereby controlling receptor turnover and activity, and this applies to related cytokine receptors. Our study offers insight into the molecular interactions of LYN with GHR and highlights important functions for LYN in regulating GHR nanoclustering, signaling, and degradation, traits broadly relevant to many cytokine receptors.
Collapse
Affiliation(s)
- Yash Chhabra
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia; The University of Queensland, Institute for Molecular Bioscience, St. Lucia, QLD 4072, Australia; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21204, USA.
| | - Pernille Seiffert
- Structural Biology and NMR Laboratory (SBiNLab) and REPIN, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rachel S Gormal
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Manon Vullings
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, QLD 4072, Australia
| | | | - Tristan P Wallis
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Farhad Dehkhoda
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Sowmya Indrakumar
- Structural Biology and NMR Laboratory (SBiNLab) and REPIN, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark; Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nina L Jacobsen
- Structural Biology and NMR Laboratory (SBiNLab) and REPIN, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nela Durisic
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael J Waters
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, QLD 4072, Australia
| | - Frédéric A Meunier
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory (SBiNLab) and REPIN, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Andrew J Brooks
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia; The University of Queensland, Institute for Molecular Bioscience, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
2
|
Ren F, Swevers L, Lu Q, Zhao Y, Yan J, Li H, Sun J. Effect of mutations in capsid shell protein on the assembly of BmCPV virus-like particles. J Gen Virol 2020; 102. [PMID: 33331809 DOI: 10.1099/jgv.0.001542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is a typical single-layer capsid dsRNA virus belonging to the genus Cypovirus in the family Reoviridae. The results of cryo-electron microscopy showed that the BmCPV capsid consists of 60 asymmetric units, and each asymmetric unit contains one turret protein (TP), two large protrusion proteins (LPP) and two capsid shell proteins (CSP). CSP has the ability to self-assemble into virus-like particles (VLPs), and the small protrusion domain (SPD) in CSP may play an essential role in the assembly of viral capsids. In this study, three critical amino acid sites, D828, S829 and V945, in the SPD were efficiently mutated (point mutation) based on the principle of PCR circular mutagenesis. Moreover, a multi-gene expression system, Ac-MultiBac baculovirus, was used to produce eight different recombinant VLPs in vitro. Transmission electron microscopy showed that the single site and double site mutations had little effect on the efficiency and morphology of the assembly of VLPs. Still, the simultaneous mutation of the three sites had a significant impact. The experimental results demonstrate that the SPD of CSP plays an essential role in assembly of the viral capsid, which lays the foundation for further analysis of the molecular and structural mechanism of BmCPV capsid assembly.
Collapse
Affiliation(s)
- Feifei Ren
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Aghia Paraskevi, Athens, Greece.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Aghia Paraskevi, Athens, Greece
| | - Qiuyuan Lu
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yongchao Zhao
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Jiming Yan
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Haiyun Li
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
3
|
Chhabra Y, Wong HY, Nikolajsen LF, Steinocher H, Papadopulos A, Tunny KA, Meunier FA, Smith AG, Kragelund BB, Brooks AJ, Waters MJ. A growth hormone receptor SNP promotes lung cancer by impairment of SOCS2-mediated degradation. Oncogene 2018; 37:489-501. [PMID: 28967904 PMCID: PMC5799715 DOI: 10.1038/onc.2017.352] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 08/13/2017] [Accepted: 08/16/2017] [Indexed: 02/07/2023]
Abstract
Both humans and mice lacking functional growth hormone (GH) receptors are known to be resistant to cancer. Further, autocrine GH has been reported to act as a cancer promoter. Here we present the first example of a variant of the GH receptor (GHR) associated with cancer promotion, in this case lung cancer. We show that the GHRP495T variant located in the receptor intracellular domain is able to prolong the GH signal in vitro using stably expressing mouse pro-B-cell and human lung cell lines. This is relevant because GH secretion is pulsatile, and extending the signal duration makes it resemble autocrine GH action. Signal duration for the activated GHR is primarily controlled by suppressor of cytokine signalling 2 (SOCS2), the substrate recognition component of the E3 protein ligase responsible for ubiquitinylation and degradation of the GHR. SOCS2 is induced by a GH pulse and we show that SOCS2 binding to the GHR is impaired by a threonine substitution at Pro 495. This results in decreased internalisation and degradation of the receptor evident in TIRF microscopy and by measurement of mature (surface) receptor expression. Mutational analysis showed that the residue at position 495 impairs SOCS2 binding only when a threonine is present, consistent with interference with the adjacent Thr494. The latter is key for SOCS2 binding, together with nearby Tyr487, which must be phosphorylated for SOCS2 binding. We also undertook nuclear magnetic resonance spectroscopy approach for structural comparison of the SOCS2 binding scaffold Ile455-Ser588, and concluded that this single substitution has altered the structure of the SOCS2 binding site. Importantly, we find that lung BEAS-2B cells expressing GHRP495T display increased expression of transcripts associated with tumour proliferation, epithelial-mesenchymal transition and metastases (TWIST1, SNAI2, EGFR, MYC and CCND1) at 2 h after a GH pulse. This is consistent with prolonged GH signalling acting to promote cancer progression in lung cancer.
Collapse
Affiliation(s)
- Y Chhabra
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - H Y Wong
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia
| | - L F Nikolajsen
- Structural Biology and NMR Laboratory (SBiNLab), Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - H Steinocher
- Structural Biology and NMR Laboratory (SBiNLab), Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - A Papadopulos
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - K A Tunny
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - F A Meunier
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - A G Smith
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - B B Kragelund
- Structural Biology and NMR Laboratory (SBiNLab), Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - A J Brooks
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - M J Waters
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Ouyang W, Ko SH, Wu D, Wang AY, Barone PW, Hancock WS, Han J. Microfluidic Platform for Assessment of Therapeutic Proteins Using Molecular Charge Modulation Enhanced Electrokinetic Concentration Assays. Anal Chem 2016; 88:9669-9677. [PMID: 27624735 DOI: 10.1021/acs.analchem.6b02517] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Therapeutic proteins (TPs) are critical in modern medicine, yet shortage of TPs in disaster situations and remote areas remains a worldwide challenge. Manufacturing and real-time release of TPs on demand at the point-of-care is considered the key to this issue, which requires reliable and rapid analytics techniques for quality assurance. Herein we report a microfluidic platform that could be implemented in-line and at the point-of-care for real-time decision-making about the quality of a TP. The in vivo efficacy and duration of efficacy of TPs were assessed by the equilibrium and kinetics of TP and TP receptor (TPR) binding, using electrokinetic concentration (EC) and molecular charge modulation (MCM). EC can simultaneously concentrate and separate bound and unbound species in an assay based on electrical mobility, allowing for the quantification of binding. MCM enables the application of EC to arbitrary TPs by enhancing the mobility differences between TPs, TPRs, and TP-TPR complexes. This technology is homogeneous and overcomes many practical challenges of conventional heterogeneous assays. We developed various formats of assays for equilibrium and kinetic analysis and rapid determination of degradation of TPs, obtaining results comparable to state-of-the-art technologies with significantly less time (<1 h) and simpler setup. Finally, we demonstrated that the results of MCM-EC based assays correlated well with those from mass spectrometry and cell-based assay, which are the industrial standards for quality testing of TPs.
Collapse
Affiliation(s)
| | | | - Di Wu
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Annie Yu Wang
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | | | - William S Hancock
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | | |
Collapse
|
5
|
Hong P, Lan H, Li Y, Fu Z, Zheng X. Different intracellular signalling properties induced by human and porcine growth hormone. Gen Comp Endocrinol 2016; 229:67-73. [PMID: 26944485 DOI: 10.1016/j.ygcen.2016.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 11/16/2022]
Abstract
Growth hormone (GH) is reportedly species-specific. Primate growth hormone can trigger non-primate growth hormone receptor (GHR), but primates GHR cannot be activated by non-primate GH. However, it is also unclear that why primate GH and non-primate GH have different biological activities. Thus, we analysed primate growth hormone (human growth hormone (hGH)) or non-primate GH (porcine growth hormone (pGH))-induced intracellular signalling in 3T3-F442A cells and rat hepatocytes in a dose- and time-dependent manner to explore the different biological activities between them. The results revealed that both hGH and pGH can activate Janus kinase 2 (JAK2), Signal transducers and activators of transcription 1, 3 and 5 (STATs 1, 3 and 5) and extracellular signal-regulated kinase 1/2 (ERK1/2). There were no significant differences in JAK2 or ERK1/2 tyrosine phosphorylation after hGH and pGH treatment, but there were different between hGH and pGH in STAT/1/3/5 tyrosine phosphorylation, and JAK2, STAT/1/3/5 tyrosine phosphorylation was time-dependent and dose-dependent, whereas ERK1/2 was not. Both hGH and pGH demonstrated similar kinetics for STATs 1, 3 and 5 phosphorylation, but the pGH-mediated tyrosine phosphorylation was weaker than that mediated by hGH. Our observations indicated that the levels of main signalling proteins phosphorylation triggered by hGH or pGH were not exactly the same, which may explain the different biological activities showed by primate GH and non-primate GH.
Collapse
Affiliation(s)
- Pan Hong
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China
| | - Yumeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China
| | - Zhiling Fu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China.
| |
Collapse
|
6
|
Zhang C, Nygaard M, Haxholm GW, Boutillon F, Bernadet M, Hoos S, England P, Broutin I, Kragelund BB, Goffin V. A Residue Quartet in the Extracellular Domain of the Prolactin Receptor Selectively Controls Mitogen-activated Protein Kinase Signaling. J Biol Chem 2015; 290:11890-904. [PMID: 25784554 DOI: 10.1074/jbc.m115.639096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Indexed: 11/06/2022] Open
Abstract
Cytokine receptors elicit several signaling pathways, but it is poorly understood how they select and discriminate between them. We have scrutinized the prolactin receptor as an archetype model of homodimeric cytokine receptors to address the role of the extracellular membrane proximal domain in signal transfer and pathway selection. Structure-guided manipulation of residues involved in the receptor dimerization interface identified one residue (position 170) that in cell-based assays profoundly altered pathway selectivity and species-specific bio-characteristics. Subsequent in vitro spectroscopic and nuclear magnetic resonance analyses revealed that this residue was part of a residue quartet responsible for specific local structural changes underlying these effects. This included alteration of a novel aromatic T-stack within the membrane proximal domain, which promoted selective signaling affecting primarily the MAPK (ERK1/2) pathway. Importantly, activation of the MAPK pathway correlated with in vitro stabilities of ternary ligand·receptor complexes, suggesting a threshold mean lifetime of the complex necessary to achieve maximal activation. No such dependence was observed for STAT5 signaling. Thus, this study establishes a residue quartet in the extracellular membrane proximal domain of homodimeric cytokine receptors as a key regulator of intracellular signaling discrimination.
Collapse
Affiliation(s)
- Chi Zhang
- From the Inserm, U1151, Institut Necker Enfants Malades, Equipe Physiopathologie des Hormones PRL/GH, Paris 75014, France, the Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Mads Nygaard
- the Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Gitte W Haxholm
- the Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Florence Boutillon
- From the Inserm, U1151, Institut Necker Enfants Malades, Equipe Physiopathologie des Hormones PRL/GH, Paris 75014, France, the Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Marie Bernadet
- From the Inserm, U1151, Institut Necker Enfants Malades, Equipe Physiopathologie des Hormones PRL/GH, Paris 75014, France, the Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Sylviane Hoos
- the Institut Pasteur, Plateforme de Biophysique des Macromolécules et de leurs Interactions, Département de Biologie Structurale et Chimie, Paris 75015, France, and
| | - Patrick England
- the Institut Pasteur, Plateforme de Biophysique des Macromolécules et de leurs Interactions, Département de Biologie Structurale et Chimie, Paris 75015, France, and
| | - Isabelle Broutin
- the Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France, Laboratoire de Cristallographie et RMN Biologiques CNRS, UMR 8015, Paris 75006, France
| | - Birthe B Kragelund
- the Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Vincent Goffin
- From the Inserm, U1151, Institut Necker Enfants Malades, Equipe Physiopathologie des Hormones PRL/GH, Paris 75014, France, the Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France,
| |
Collapse
|
7
|
Petridou B. Differences in affinities between the homologous and the heterologous rabbit prolactin-receptor interaction with respect to proliferation and differentiation activities. Gen Comp Endocrinol 2015; 213:118-29. [PMID: 25449135 DOI: 10.1016/j.ygcen.2014.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 09/08/2014] [Accepted: 10/23/2014] [Indexed: 11/23/2022]
Abstract
Interspecies differences in PRL-receptor binding and their relationship with bioactivity deserve investigation since cross-reactivity is relevant to the design of many experiments. We have previously shown that the lower affinity of rabbit prolactin (rbPRL) binding to its homologous receptor is due to its faster and more complete dissociation compared with that of ovine PRL (oPRL). In order to obtain sufficient amounts of rbPRL to study the functional consequences of its low affinity homologous interaction, rbPRL was expressed recombinantly in Escherichia coli (rec rbPRL) as insoluble inclusion bodies, refolded and purified to homogeneity, yielding electrophoretically pure, over 98% monomeric rec rbPRL. Proper renaturation of rec rbPRL was evidenced by comparison of its CD spectra, binding parameters and bioactivity with those determined for the rbPRL. The binding potency of rec rbPRL to its receptor, expressed either endogenously in the mammary gland or recombinantly in mammalian cells is one log unit lower than that to the receptor expressed recombinantly in insect cells. This difference is probably related to differences in cell-dependent receptor densities. The proliferation potency of rbPRL or rec rbPRL was one log unit lower than that of oPRL, consistent with its lower binding affinity, but the differentiation potencies of these PRLs were similar. Thus, the proliferation activity is sensitive to PRL-receptor affinity and dissociation kinetics, whereas the differentiation response is marginally modulated.
Collapse
Affiliation(s)
- Barbara Petridou
- UMR 1313 Génétique Animale et Biologie Intégrative, INRA Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas, France
| |
Collapse
|
8
|
Zhang Z, Xu K, Xin Y, Zhang Z. An efficient method for multiple site-directed mutagenesis using type IIs restriction enzymes. Anal Biochem 2015; 476:26-8. [PMID: 25637305 DOI: 10.1016/j.ab.2015.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 12/26/2022]
Abstract
Site-directed mutagenesis (SDM) methods are very important in modern molecular biology, biochemistry, and protein engineering. Here, we present a novel SDM method that can be used for multiple mutation generation using type IIs restriction enzymes. This approach is faster and more convenient than the overlap polymerase chain reaction (PCR) method due to its having fewer reaction steps and being cheaper than, but as convenient as, enzymatic assembly. We illustrate the usefulness of our method by introducing three mutations into the bacterial Streptococcus thermophilus Cas9 (bStCas9) gene, converting the humanized S. thermophilus Cas9 (hStCas9) gene into nuclease dead or H847A nickase mutants and generating sunnyTALEN mutagenesis from a wild-type TALEN backbone.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kun Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying Xin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiying Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Brooks AJ, Dai W, O'Mara ML, Abankwa D, Chhabra Y, Pelekanos RA, Gardon O, Tunny KA, Blucher KM, Morton CJ, Parker MW, Sierecki E, Gambin Y, Gomez GA, Alexandrov K, Wilson IA, Doxastakis M, Mark AE, Waters MJ. Mechanism of activation of protein kinase JAK2 by the growth hormone receptor. Science 2014; 344:1249783. [PMID: 24833397 DOI: 10.1126/science.1249783] [Citation(s) in RCA: 280] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Signaling from JAK (Janus kinase) protein kinases to STAT (signal transducers and activators of transcription) transcription factors is key to many aspects of biology and medicine, yet the mechanism by which cytokine receptors initiate signaling is enigmatic. We present a complete mechanistic model for activation of receptor-bound JAK2, based on an archetypal cytokine receptor, the growth hormone receptor. For this, we used fluorescence resonance energy transfer to monitor positioning of the JAK2 binding motif in the receptor dimer, substitution of the receptor extracellular domains with Jun zippers to control the position of its transmembrane (TM) helices, atomistic modeling of TM helix movements, and docking of the crystal structures of the JAK2 kinase and its inhibitory pseudokinase domain with an opposing kinase-pseudokinase domain pair. Activation of the receptor dimer induced a separation of its JAK2 binding motifs, driven by a ligand-induced transition from a parallel TM helix pair to a left-handed crossover arrangement. This separation leads to removal of the pseudokinase domain from the kinase domain of the partner JAK2 and pairing of the two kinase domains, facilitating trans-activation. This model may well generalize to other class I cytokine receptors.
Collapse
Affiliation(s)
- Andrew J Brooks
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia.
| | - Wei Dai
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, USA
| | - Megan L O'Mara
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland 4072, Australia
| | - Daniel Abankwa
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Yash Chhabra
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Rebecca A Pelekanos
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Olivier Gardon
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Kathryn A Tunny
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Kristopher M Blucher
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Craig J Morton
- Biota Structural Biology Laboratory and Australian Cancer Research Foundation (ACRF) Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Michael W Parker
- Biota Structural Biology Laboratory and Australian Cancer Research Foundation (ACRF) Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia. Department of Biochemistry and Molecular Biology and Bio21 Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Emma Sierecki
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Yann Gambin
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Guillermo A Gomez
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Kirill Alexandrov
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Ian A Wilson
- Scripps Research Institute, La Jolla, CA 92037, USA
| | - Manolis Doxastakis
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, USA
| | - Alan E Mark
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia. The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland 4072, Australia
| | - Michael J Waters
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia.
| |
Collapse
|
10
|
Liu Y, Wu T, Song J, Chen X, Zhang Y, Wan Y. A mutant screening method by critical annealing temperature-PCR for site-directed mutagenesis. BMC Biotechnol 2013; 13:21. [PMID: 23497028 PMCID: PMC3606131 DOI: 10.1186/1472-6750-13-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 02/19/2013] [Indexed: 11/24/2022] Open
Abstract
Background Distinguishing desired mutants from parental templates and undesired mutants is a problem not well solved in Quikchange™ mutagenesis. Although Dpn I digestion can eliminate methylated parental (WT) DNA, the efficiency is not satisfying due to the existence of hemi-methylated DNA in the PCR products, which is resistant to Dpn I. The present study designed a novel critical annealing temperature (Tc)-PCR to replace Dpn I digestion for more perfect mutant distinguishing, in which part-overlapping primers containing mutation(s) were used to reduce initial concentration of template DNA in mutagenic PCR. A Tc-PCR with the same mutagenic primers was performed without Dpn I digestion. The Tc for each pair of the primers was identified by gradient PCR. The relationship between PCR-identified Tc and Tm of the primers was analyzed and modeled with correlation and regression. Results Gradient PCR identified a Tc for each of 14 tested mutagenic primers, which could discriminate mismatched parental molecules and undesired mutants from desired mutants. The PCR-identified Tc was correlated to the primer’s Tm (r = 0.804, P<0.0001). Thus, in practical applications, the Tc can be easily calculated with a regression equation, Tc = 48.81 + 0.253*Tm. Conclusions The new protocol introduced a novel Tc-PCR method for mutant screening which can more efficiently and accurately select against parental molecules and undesired mutations in mutagenic sequence segments.
Collapse
Affiliation(s)
- Ying Liu
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, People's Republic of China
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Growth hormone (GH) regulates somatic growth, substrate metabolism and body composition. Its actions are elaborated through the GH receptor (GHR). GHR signalling involves the role of at least three major pathways, STATs, MAPK, and PI3-kinase/Akt. GH receptor function can be modulated by changes to the ligand, to the receptor or by factors regulating signal transduction. Insights on the physico-chemical basis of the binding of GH to its receptor and the stoichiometry required for activation of the GH receptor-dimer has led to the development of novel GH agonists and antagonists. Owing to the fact that GH has short half-life, several approaches have been taken to create long-acting GHR agonists. This includes the pegylation, sustained release formulations, and ligand-receptor fusion proteins. Pegylation of a GH analogue (pegvisomant) which binds but not activate signal transduction forms the basis of a new successful approach to the treatment of acromegaly. GH receptors can be regulated at a number of levels, by modifying receptor expression, surface availability and signalling. Insulin, thyroid hormones and sex hormones are among hormones that modulate GHR through some of these mechanisms. Estrogens inhibit GH signalling by stimulating the expression of SOCS proteins which are negative regulators of cytokine receptor signalling. This review of GHR modulators will cover the effects of ligand modification, and of factors regulating receptor expression and signalling.
Collapse
Affiliation(s)
- Vita Birzniece
- Pituitary Research Unit, Garvan Institute of Medical Research and Department of Endocrinology, St. Vincent's Hospital, NSW, Australia
| | | | | |
Collapse
|
12
|
Conway-Campbell BL, Brooks AJ, Robinson PJ, Perani M, Waters MJ. The extracellular domain of the growth hormone receptor interacts with coactivator activator to promote cell proliferation. Mol Endocrinol 2008; 22:2190-202. [PMID: 18635665 PMCID: PMC5419461 DOI: 10.1210/me.2008-0128] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 07/07/2008] [Indexed: 02/08/2023] Open
Abstract
The presence of GH receptor (GHR) in the cell nucleus correlates with cell division, and targeting the GHR to the nucleus results in constitutive proliferation and transformation because of increased sensitivity to autocrine GH. Here we have sought additional mechanisms that might account for the enhanced proliferation seen with nuclear GHR, commencing with a yeast two-hybrid (Y2H) screen for interactors with the extracellular domain of the GHR [GH-binding protein (GHBP)]. We find that the GHBP is a transcriptional activator in yeast and mammalian cells, and this activity resides in the lower cytokine receptor module. Activity is dependent on S226, the conserved serine of the cytokine receptor consensus WSXWS box. By using parallel GHBP affinity columns and tandem mass spectrometry of tryptic digests of proteins bound to wild-type GHBP and S226A columns, we identified proteins that bind to the transcriptionally active GHBP. These include a nucleoporin and two transcriptional regulators, notably the coactivator activator (CoAA), which is also an RNA binding splicing protein. Binding of CoAA to the GHBP was confirmed by glutathione S-transferase pulldown and coimmunoprecipitation, and shown to be GH dependent in pro-B Ba/F3 cells. Importantly, stable expression of CoAA in Ba/F3 cells resulted in an increased maximum proliferation in response to GH, but not IL-3. Because CoAA overexpression has been identified in many cancers and its stable expression promotes cell proliferation and cell transformation in NIH-3T3 cells, we suggest CoAA contributes to the proliferative actions of nuclear GHR by the hormone-dependent recruitment of this powerful coactivator to the GHR.
Collapse
|
13
|
Higham CE, Trainer PJ. Growth hormone excess and the development of growth hormone receptor antagonists. Exp Physiol 2008; 93:1157-69. [PMID: 18617577 DOI: 10.1113/expphysiol.2008.042515] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In 1990, a single amino acid substitution in the growth hormone (GH) gene at position 119 was found to transform the consequent protein from an agonist to an antagonist at the growth hormone receptor (GHR). Further amino acid substitutions plus prolongation of the half-life of the protein by pegylation resulted in the first clinically effective GHR antagonist, pegvisomant. Following extensive clinical trials, this medication has emerged as the most efficacious therapy for treatment-resistant acromegaly. Subsequent advances in our understanding of GH-GHR interactions and downstream GH signalling pathways suggest that pegvisomant binds to preformed GHR dimers and prevents rotational changes within the receptor-GH complex necessary for intracellular signalling to occur. This article reviews the discovery of pegvisomant, from initial experimental data to successful licensing of the drug for treatment-resistant acromegaly, and discusses its other potential therapeutic uses in diseases with abnormalities in the GH-IGF-I axis.
Collapse
Affiliation(s)
- C E Higham
- Department of Endocrinology, Christie Hospital, Manchester M20 4BX, UK
| | | |
Collapse
|
14
|
Barclay JL, Anderson ST, Waters MJ, Curlewis JD. Regulation of Suppressor of Cytokine Signaling 3 (SOC3) by Growth Hormone in Pro-B Cells. Mol Endocrinol 2007; 21:2503-15. [PMID: 17609438 DOI: 10.1210/me.2006-0498] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractSuppressor of cytokine signaling 3 (SOCS3) is expressed by lymphoid cells and can modulate the sensitivity of these cells to cytokine stimulation through inhibition of Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signaling pathways. This study employed a mouse pro-B cell line expressing the human GH receptor (BaF/3-GHR), to elucidate the signal transduction pathways used by GH to elicit SOCS3 expression. GH treatment of these cells caused a rapid, dose-dependent increase in SOCS3 mRNA expression, which was independent of de novo protein synthesis. As expected, GH treatment increased JAK-dependent STAT5 tyrosine phosphorylation, which bound to the proximal STAT response element (pSRE) on the SOCS3 promoter. This process appeared to involve STAT5b, rather than STAT5a. In addition, GH activation of the SOCS3 promoter required a nearby activator protein (AP) 1/cAMP response element (CRE), which bound cAMP response element binding protein, c-Fos, and c-Jun. Moreover, inhibitors of p38 MAPK and c-Jun N-terminal kinase prevented GH-stimulation of SOCS3 mRNA expression in these cells, suggesting a role for these kinases in SOCS3 transcription. Importantly, GH stimulation increased binding of FOXO3a to the SOCS3 promoter at a site overlapping the AP1/CRE response element, and overexpression of FOXO3a in these cells augmented SOCS3 promoter activation. In addition, we show a direct interaction between FOXO3a and STAT5 in these cells, which may provide a link between STAT5 and the AP1 transcription factors on the SOCS3 promoter. We conclude that regulation of SOCS3 expression by GH in a pro-B cell involves not only the pSRE, but also a transcriptionally active complex involving cAMP response element binding protein/c-Fos/c-Jun and FOXO3a. This study has implications for cytokine regulation of SOCS gene expression in lymphoid cells.
Collapse
Affiliation(s)
- Johanna L Barclay
- School of Biomedical Sciences, University of Queensland, Queensland 4072, Australia
| | | | | | | |
Collapse
|
15
|
Weidemann T, Höfinger S, Müller K, Auer M. Beyond dimerization: a membrane-dependent activation model for interleukin-4 receptor-mediated signalling. J Mol Biol 2006; 366:1365-73. [PMID: 17223132 DOI: 10.1016/j.jmb.2006.11.095] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/27/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
Class I cytokine receptors efficiently transfer activation signals from the extracellular space to the cytoplasm and play a dominant role in growth control and differentiation of human tissues. Although a significant body of literature is devoted to this topic, a consistent mechanistic picture for receptor activation in the membrane environment is still missing. Using the interleukin-4 receptor (IL-4R) as an example, we propose that the membrane-proximal stem-loop of the extracellular domains contains pivotal elements of a rotational switch. Interfacial energies of amino acid side-chains contained in the highly conserved WSXWS at the surface of the lipid bilayer suggest a new functional role for this motif. A generic activation mechanism for this receptor class is presented, which may impact the design of a new generation of biophysical assay systems.
Collapse
Affiliation(s)
- Thomas Weidemann
- Innovative Screening Technologies, Novartis Institutes for BioMedical Research, Brunnerstr 59, A-1235 Vienna, Austria.
| | | | | | | |
Collapse
|
16
|
Abstract
Growth hormone (GH) is a major regulator of postnatal growth and metabolism. There are extensive clinical applications for GH or its antagonists, including treatments for dwarfism, cancer and metabolic wasting. Owing to this, there is considerable interest in the mechanisms of GH receptor (GHR) activation. It is conventionally thought that GH induces dimerization of two GHR monomers, which initiates intracellular signaling cascades. However, recent studies have provided evidence for a ligand-induced conformational change within constitutively dimerized GHRs being responsible for activating signaling pathways. This review will relate the new model of GHR activation to the activation of related cytokine receptors and discuss the implication of this new model for the design of small GH mimetics and antagonists for therapeutic use.
Collapse
Affiliation(s)
- Rebecca A Pelekanos
- a University of Queensland, Institute for Molecular Bioscience, Building 80, Services Road, St Lucia, Queensland, 4072, Australia.
| | - Michael J Waters
- b University of Queensland, Institute for Molecular Bioscience, Building 80, Services Road, St Lucia, Queensland, 4072, Australia.
| |
Collapse
|
17
|
Holloway MG, Laz EV, Waxman DJ. Codependence of growth hormone-responsive, sexually dimorphic hepatic gene expression on signal transducer and activator of transcription 5b and hepatic nuclear factor 4alpha. Mol Endocrinol 2005; 20:647-60. [PMID: 16239260 DOI: 10.1210/me.2005-0328] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Targeted disruption of the signal transducer and activator of transcription 5b gene (STAT5b) leads to decreased expression in male mouse liver of a male-predominant cytochrome (Cyp) 2d protein, whereas female-predominant Cyp2b proteins are increased. Presently, we characterize the effects of STAT5b deficiency on 15 specific, individual Cyp RNAs and other sexually dimorphic liver gene products. All seven male-specific RNAs investigated were decreased to normal female levels in STAT5b-deficient male liver, whereas five of eight female-specific RNAs, designated class I female genes, were increased in expression up to 200-fold or more. STAT5b deficiency had a much more modest effect on the expression of these genes in females. Hypophysectomy and GH replacement studies demonstrated positive GH pulse regulation of all seven male RNAs and negative GH pulse regulation of class I, but not class II, female RNAs in wild-type, but not in STAT5b-deficient, male mice. A majority of the sex-specific genes responded in parallel to the loss of STAT5b and the loss of hepatocyte nuclear factor 4alpha, indicating that both transcription factors are essential and suggesting they may coregulate sexually dimorphic liver gene expression. Continuous GH treatment of intact male mice, which overrides the endogenous male, pulsatile plasma GH pattern, down-regulated all seven male RNAs and induced expression of the five class I female RNAs within 4-7 d; however, induction of class II female RNAs was delayed until d 7-14. Given the slow responses of all 15 genes to changes in plasma GH status, GH regulation of sex-specific Cyp expression is proposed to be indirect and mediated by STAT5b- and hepatocyte nuclear factor 4alpha-dependent factors that may include repressors of female-specific Cyps and other targets of GH action.
Collapse
Affiliation(s)
- Minita G Holloway
- Division of Cell and Molecular Biology, Department of Biology, Boston University, 5 Cummington Street, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
18
|
Landsman T, Waxman DJ. Role of the cytokine-induced SH2 domain-containing protein CIS in growth hormone receptor internalization. J Biol Chem 2005; 280:37471-80. [PMID: 16154995 DOI: 10.1074/jbc.m504125200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytokine-inducible SH2 domain-containing protein CIS inhibits signaling from the growth hormone (GH) receptor (GHR) to STAT5b by a proteasome-dependent mechanism. Here, we used the GH-responsive rat liver cell line CWSV-1 to investigate the role of CIS and the proteasome in GH-induced GHR internalization. Cell-surface GHR localization and internalization were monitored in GH-stimulated cells by confocal immunofluorescence microscopy using an antibody directed against the GHR extracellular domain. In GH naïve cells, GHR was detected in small, randomly distributed granules on the cell surface and in the cytoplasm, with accumulation in the perinuclear area. GH treatment induced a rapid (within 5 min) internalization of GH.GHR complexes, which coincided with the onset of GHR tyrosine phosphorylation and the appearance in the cytosol of distinct granular structures containing internalized GH. GHR signaling to STAT5b continued for approximately 30-40 min, however, indicating that GHR signaling and deactivation of the GH.GHR complex both proceed from an intracellular compartment. The internalization of GH and GHR was inhibited by CIS-R107K, a dominant-negative SH2 domain mutant of CIS, and by the proteasome inhibitors MG132 and epoxomicin, which prolong GHR signaling to STAT5b. GH pulse-chase studies established that the internalized GH.GHR complexes did not recycle back to the cell surface in significant amounts under these conditions. Given the established specificity of CIS-R107K for blocking the GHR signaling inhibitory actions of CIS, but not those of other SOCS/CIS family members, these findings implicate CIS and the proteasome in the control of GHR internalization following receptor activation and suggest that CIS-dependent receptor internalization is a prerequisite for efficient termination of GHR signaling.
Collapse
Affiliation(s)
- Tanya Landsman
- Division of Cell and Molecular Biology, Department of Biology, Boston University, MA 02215, USA
| | | |
Collapse
|
19
|
Brown RJ, Adams JJ, Pelekanos RA, Wan Y, McKinstry WJ, Palethorpe K, Seeber RM, Monks TA, Eidne KA, Parker MW, Waters MJ. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer. Nat Struct Mol Biol 2005; 12:814-21. [PMID: 16116438 DOI: 10.1038/nsmb977] [Citation(s) in RCA: 293] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 07/20/2005] [Indexed: 02/08/2023]
Abstract
Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.
Collapse
Affiliation(s)
- Richard J Brown
- Institute for Molecular Bioscience and School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The year 2004 represents a milestone for the biosensor research community: in this year, over 1000 articles were published describing experiments performed using commercially available systems. The 1038 papers we found represent an approximately 10% increase over the past year and demonstrate that the implementation of biosensors continues to expand at a healthy pace. We evaluated the data presented in each paper and compiled a 'top 10' list. These 10 articles, which we recommend every biosensor user reads, describe well-performed kinetic, equilibrium and qualitative/screening studies, provide comparisons between binding parameters obtained from different biosensor users, as well as from biosensor- and solution-based interaction analyses, and summarize the cutting-edge applications of the technology. We also re-iterate some of the experimental pitfalls that lead to sub-optimal data and over-interpreted results. We are hopeful that the biosensor community, by applying the hints we outline, will obtain data on a par with that presented in the 10 spotlighted articles. This will ensure that the scientific community at large can be confident in the data we report from optical biosensors.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|