1
|
Voelkel-Meiman K, Liddle JC, Balsbaugh JL, MacQueen AJ. Proximity labeling reveals new functional relationships between meiotic recombination proteins in S. cerevisiae. PLoS Genet 2024; 20:e1011432. [PMID: 39405359 PMCID: PMC11508090 DOI: 10.1371/journal.pgen.1011432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/25/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024] Open
Abstract
Several protein ensembles facilitate crossover recombination and the associated assembly of synaptonemal complex (SC) during meiosis. In yeast, meiosis-specific factors including the DNA helicase Mer3, the "ZZS" complex consisting of Zip4, Zip2, and Spo16, the RING-domain protein Zip3, and the MutSγ heterodimer collaborate with crossover-promoting activity of the SC component, Zip1, to generate crossover-designated recombination intermediates. These ensembles also promote SC formation - the organized assembly of Zip1 with other structural proteins between aligned chromosome axes. We used proximity labeling to investigate spatial relationships between meiotic recombination and SC proteins in S. cerevisiae. We find that recombination initiation and SC factors are dispensable for proximity labeling of Zip3 by ZZS components, but proteins associated with early steps in recombination are required for Zip3 proximity labeling by MutSγ, suggesting that MutSγ joins Zip3 only after a recombination intermediate has been generated. We also find that zip1 separation-of-function mutants that are crossover deficient but still assemble SC fail to generate protein ensembles where Zip3 can engage ZZS and/or MutSγ. The SC structural protein Ecm11 is proximity labeled by ZZS proteins in a Zip4-dependent and Zip1-independent manner, but labeling of Ecm11 by Zip3 and MutSγ requires, at least in part, Zip1. Finally, mass spectrometry analysis of biotinylated proteins in eleven proximity labeling strains uncovered shared proximity targets of SC and crossover-associated proteins, some of which have not previously been implicated in meiotic recombination or SC formation, highlighting the potential of proximity labeling as a discovery tool.
Collapse
Affiliation(s)
- Karen Voelkel-Meiman
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Jennifer C. Liddle
- Proteomics and Metabolomics Facility, Center for Open Research Resources and Equipment, University of Connecticut, Storrs, Connecticut, United States of America
| | - Jeremy L. Balsbaugh
- Proteomics and Metabolomics Facility, Center for Open Research Resources and Equipment, University of Connecticut, Storrs, Connecticut, United States of America
| | - Amy J. MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| |
Collapse
|
2
|
Fenech EJ, Cohen N, Kupervaser M, Gazi Z, Schuldiner M. A toolbox for systematic discovery of stable and transient protein interactors in baker's yeast. Mol Syst Biol 2023; 19:e11084. [PMID: 36651308 PMCID: PMC9912024 DOI: 10.15252/msb.202211084] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Identification of both stable and transient interactions is essential for understanding protein function and regulation. While assessing stable interactions is more straightforward, capturing transient ones is challenging. In recent years, sophisticated tools have emerged to improve transient interactor discovery, with many harnessing the power of evolved biotin ligases for proximity labelling. However, biotinylation-based methods have lagged behind in the model eukaryote, Saccharomyces cerevisiae, possibly due to the presence of several abundant, endogenously biotinylated proteins. In this study, we optimised robust biotin-ligation methodologies in yeast and increased their sensitivity by creating a bespoke technique for downregulating endogenous biotinylation, which we term ABOLISH (Auxin-induced BiOtin LIgase diminiSHing). We used the endoplasmic reticulum insertase complex (EMC) to demonstrate our approaches and uncover new substrates. To make these tools available for systematic probing of both stable and transient interactions, we generated five full-genome collections of strains in which every yeast protein is tagged with each of the tested biotinylation machineries, some on the background of the ABOLISH system. This comprehensive toolkit enables functional interactomics of the entire yeast proteome.
Collapse
Affiliation(s)
- Emma J Fenech
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Nir Cohen
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Meital Kupervaser
- The de Botton Protein Profiling Institute of the Nancy and Stephen Grand Israel National Centre for Personalized MedicineWeizmann Institute of ScienceRehovotIsrael
| | - Zohar Gazi
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Maya Schuldiner
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
3
|
Perli T, Wronska AK, Ortiz‐Merino RA, Pronk JT, Daran J. Vitamin requirements and biosynthesis in Saccharomyces cerevisiae. Yeast 2020; 37:283-304. [PMID: 31972058 PMCID: PMC7187267 DOI: 10.1002/yea.3461] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022] Open
Abstract
Chemically defined media for yeast cultivation (CDMY) were developed to support fast growth, experimental reproducibility, and quantitative analysis of growth rates and biomass yields. In addition to mineral salts and a carbon substrate, popular CDMYs contain seven to nine B-group vitamins, which are either enzyme cofactors or precursors for their synthesis. Despite the widespread use of CDMY in fundamental and applied yeast research, the relation of their design and composition to the actual vitamin requirements of yeasts has not been subjected to critical review since their first development in the 1940s. Vitamins are formally defined as essential organic molecules that cannot be synthesized by an organism. In yeast physiology, use of the term "vitamin" is primarily based on essentiality for humans, but the genome of the Saccharomyces cerevisiae reference strain S288C harbours most of the structural genes required for synthesis of the vitamins included in popular CDMY. Here, we review the biochemistry and genetics of the biosynthesis of these compounds by S. cerevisiae and, based on a comparative genomics analysis, assess the diversity within the Saccharomyces genus with respect to vitamin prototrophy.
Collapse
Affiliation(s)
- Thomas Perli
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Anna K. Wronska
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | | | - Jack T. Pronk
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Jean‐Marc Daran
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| |
Collapse
|
4
|
Jia X, Zhu Y, Zhang R, Zhu Z, Zhao T, Cheng L, Gao L, Liu B, Zhang X, Wang Y. Ionomic and metabolomic analyses reveal the resistance response mechanism to saline-alkali stress in Malus halliana seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:77-90. [PMID: 31846851 DOI: 10.1016/j.plaphy.2019.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 05/27/2023]
Abstract
Saline-alkali stress is a major abiotic stress limiting plant growth. The selection of saline-alkali-tolerant rootstock is an effective strategy to reduce salinization-alkalization influence in apple production. M. halliana is a highly saline-alkali-resistant apple rootstock in northwestern China. However, few metabolic response studies have been conducted on this species. In plants under saline-alkali stress, the uptake of K, Mg and Zn in M. halliana leaves were inhibited, whereas the absorption of Fe2+, Cu2+ or Mn2+ were increased. Metabolic analysis revealed 140 differentially expressed metabolites, which were mainly involved in alkaloid biosynthesis, phenylalanine biosynthesis, ATP-binding cassette (ABC) transporters, and mineral absorption. Especially, the expression of sucrose, amino acids, alkaloids, flavonoids and carotenoids were significantly upregulated under saline-alkali stress. qRT-PCR analysis demonstrated that NHX8 and ZTP1 involved in Na+ and Fe2+ transport were upregulated, while AKT1, MRS2-4 and ZTP29 involved in K+, Mg2+ and Zn2+ transport were downregulated, respectively. ANT, ATP2A, CALM and SOS2 are involved in Ca2+ signal transduction, and ABCB1, ABCC10 and NatA are key transporters that maintain ionic homeostasis. M. halliana regulates Na+/K+ homeostasis by mediating Ca2+ signalling and ABC transporters. The accumulation of metabolites contributes to improving the saline-alkali resistance of M. halliana because of the scavenging of ROS. An increase in pheophorbide a content in porphyrin and chlorophyll metabolism leads to leaf senescence in M. halliana leaves, which contributes to a reduction in stress-induced injury. These findings provide important insights into the saline-alkali tolerance mechanism in apple, which also provides an important starting point for future research.
Collapse
Affiliation(s)
- Xumei Jia
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, China
| | - Yanfang Zhu
- Gansu Academy of Agricultural Sciences, 730070, Lanzhou, China
| | - Rui Zhang
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, China
| | - Zulei Zhu
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, China
| | - Tong Zhao
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, China
| | - Li Cheng
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, China
| | - Liyang Gao
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, China
| | - Bing Liu
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, China
| | - Xiayi Zhang
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, China
| | - Yanxiu Wang
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, China.
| |
Collapse
|
5
|
Lazar N, Fay A, Nandakumar M, Boyle KE, Xavier J, Rhee K, Glickman MS. Control of biotin biosynthesis in mycobacteria by a pyruvate carboxylase dependent metabolic signal. Mol Microbiol 2017; 106:1018-1031. [PMID: 29052269 PMCID: PMC5916780 DOI: 10.1111/mmi.13865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2017] [Indexed: 01/15/2023]
Abstract
Biotin is an essential cofactor utilized by all domains of life, but only synthesized by bacteria, fungi and plants, making biotin biosynthesis a target for antimicrobial development. To understand biotin biosynthesis in mycobacteria, we executed a genetic screen in Mycobacterium smegmatis for biotin auxotrophs and identified pyruvate carboxylase (Pyc) as required for biotin biosynthesis. The biotin auxotrophy of the pyc::tn strain is due to failure to transcriptionally induce late stage biotin biosynthetic genes in low biotin conditions. Loss of bioQ, the repressor of biotin biosynthesis, in the pyc::tn strain reverted biotin auxotrophy, as did reconstituting the last step of the pathway through heterologous expression of BioB and provision of its substrate DTB. The role of Pyc in biotin regulation required its catalytic activities and could be supported by M. tuberculosis Pyc. Quantitation of the kinetics of depletion of biotinylated proteins after biotin withdrawal revealed that Pyc is the most rapidly depleted biotinylated protein and metabolomics revealed a broad metabolic shift in wild type cells upon biotin withdrawal which was blunted in cell lacking Pyc. Our data indicate that mycobacterial cells monitor biotin sufficiency through a metabolic signal generated by dysfunction of a biotinylated protein of central metabolism.
Collapse
Affiliation(s)
- Nathaniel Lazar
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Program in Immunology and Microbial Pathogenesis, Weill-Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Allison Fay
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Kerry E. Boyle
- Program in Immunology and Microbial Pathogenesis, Weill-Cornell Graduate School of Medical Sciences, New York, New York, USA
- Program in Computational Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Joao Xavier
- Program in Computational Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Kyu Rhee
- Program in Immunology and Microbial Pathogenesis, Weill-Cornell Graduate School of Medical Sciences, New York, New York, USA
- Weill-Cornell Medical College, New York, New York, USA
| | - Michael S. Glickman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Program in Immunology and Microbial Pathogenesis, Weill-Cornell Graduate School of Medical Sciences, New York, New York, USA
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
6
|
Xue H, Bei Y, Zhan Z, Chen X, Xu X, Fu YV. Utilizing Biotinylated Proteins Expressed in Yeast to Visualize DNA-Protein Interactions at the Single-Molecule Level. Front Microbiol 2017; 8:2062. [PMID: 29123507 PMCID: PMC5662892 DOI: 10.3389/fmicb.2017.02062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/09/2017] [Indexed: 11/30/2022] Open
Abstract
Much of our knowledge in conventional biochemistry has derived from bulk assays. However, many stochastic processes and transient intermediates are hidden when averaged over the ensemble. The powerful technique of single-molecule fluorescence microscopy has made great contributions to the understanding of life processes that are inaccessible when using traditional approaches. In single-molecule studies, quantum dots (Qdots) have several unique advantages over other fluorescent probes, such as high brightness, extremely high photostability, and large Stokes shift, thus allowing long-time observation and improved signal-to-noise ratios. So far, however, there is no convenient way to label proteins purified from budding yeast with Qdots. Based on BirA-Avi and biotin-streptavidin systems, we have established a simple method to acquire a Qdot-labeled protein and visualize its interaction with DNA using total internal reflection fluorescence microscopy. For proof-of-concept, we chose replication protein A (RPA) and origin recognition complex (ORC) as the proteins of interest. Proteins were purified from budding yeast with high biotinylation efficiency and rapidly labeled with streptavidin-coated Qdots. Interactions between proteins and DNA were observed successfully at the single-molecule level.
Collapse
Affiliation(s)
- Huijun Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Bei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zhengyan Zhan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiuqiang Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu V. Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Laboratory Evolution of a Biotin-Requiring Saccharomyces cerevisiae Strain for Full Biotin Prototrophy and Identification of Causal Mutations. Appl Environ Microbiol 2017; 83:AEM.00892-17. [PMID: 28600311 DOI: 10.1128/aem.00892-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/01/2017] [Indexed: 11/20/2022] Open
Abstract
Biotin prototrophy is a rare, incompletely understood, and industrially relevant characteristic of Saccharomyces cerevisiae strains. The genome of the haploid laboratory strain CEN.PK113-7D contains a full complement of biotin biosynthesis genes, but its growth in biotin-free synthetic medium is extremely slow (specific growth rate [μ] ≈ 0.01 h-1). Four independent evolution experiments in repeated batch cultures and accelerostats yielded strains whose growth rates (μ ≤ 0.36 h-1) in biotin-free and biotin-supplemented media were similar. Whole-genome resequencing of these evolved strains revealed up to 40-fold amplification of BIO1, which encodes pimeloyl-coenzyme A (CoA) synthetase. The additional copies of BIO1 were found on different chromosomes, and its amplification coincided with substantial chromosomal rearrangements. A key role of this gene amplification was confirmed by overexpression of BIO1 in strain CEN.PK113-7D, which enabled growth in biotin-free medium (μ = 0.15 h-1). Mutations in the membrane transporter genes TPO1 and/or PDR12 were found in several of the evolved strains. Deletion of TPO1 and PDR12 in a BIO1-overexpressing strain increased its specific growth rate to 0.25 h-1 The effects of null mutations in these genes, which have not been previously associated with biotin metabolism, were nonadditive. This study demonstrates that S. cerevisiae strains that carry the basic genetic information for biotin synthesis can be evolved for full biotin prototrophy and identifies new targets for engineering biotin prototrophy into laboratory and industrial strains of this yeast.IMPORTANCE Although biotin (vitamin H) plays essential roles in all organisms, not all organisms can synthesize this vitamin. Many strains of baker's yeast, an important microorganism in industrial biotechnology, contain at least some of the genes required for biotin synthesis. However, most of these strains cannot synthesize biotin at all or do so at rates that are insufficient to sustain fast growth and product formation. Consequently, this expensive vitamin is routinely added to baker's yeast cultures. In this study, laboratory evolution in biotin-free growth medium yielded new strains that grew as fast in the absence of biotin as in its presence. By analyzing the DNA sequences of evolved biotin-independent strains, mutations were identified that contributed to this ability. This work demonstrates full biotin independence of an industrially relevant yeast and identifies mutations whose introduction into other yeast strains may reduce or eliminate their biotin requirements.
Collapse
|
8
|
Chang CY, Chang CP, Chakraborty S, Wang SW, Tseng YK, Wang CC. Modulating the Structure and Function of an Aminoacyl-tRNA Synthetase Cofactor by Biotinylation. J Biol Chem 2016; 291:17102-11. [PMID: 27330079 DOI: 10.1074/jbc.m116.734343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Indexed: 12/20/2022] Open
Abstract
Arc1p is a yeast-specific tRNA-binding protein that forms a ternary complex with glutamyl-tRNA synthetase (GluRSc) and methionyl-tRNA synthetase (MetRS) in the cytoplasm to regulate their catalytic activities and subcellular distributions. Despite Arc1p not being involved in any known biotin-dependent reaction, it is a natural target of biotin modification. Results presented herein show that biotin modification had no obvious effect on the growth-supporting activity, subcellular distribution, tRNA binding, or interactions of Arc1p with GluRSc and MetRS. Nevertheless, biotinylation of Arc1p was temperature dependent; raising the growth temperature from 30 to 37 °C drastically reduced its biotinylation level. As a result, Arc1p purified from a yeast culture that had been grown overnight at 37 °C was essentially biotin free. Non-biotinylated Arc1p was more heat stable, more flexible in structure, and more effective than its biotinylated counterpart in promoting glutamylation activity of the otherwise inactive GluRSc at 37 °C in vitro Our study suggests that the structure and function of Arc1p can be modulated via biotinylation in response to temperature changes.
Collapse
Affiliation(s)
| | | | - Shruti Chakraborty
- the Department of Biotechnology, University of Calcutta, Kolkata 700019, India, and
| | - Shao-Win Wang
- the Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli 35053, Taiwan
| | - Yi-Kuan Tseng
- the Graduate Institute of Statistics, National Central University, Jungli District, Taoyuan 32001, Taiwan
| | | |
Collapse
|
9
|
Aminoacyl-tRNA synthetase complexes in evolution. Int J Mol Sci 2015; 16:6571-94. [PMID: 25807264 PMCID: PMC4394549 DOI: 10.3390/ijms16036571] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/17/2015] [Accepted: 03/11/2015] [Indexed: 11/23/2022] Open
Abstract
Aminoacyl-tRNA synthetases are essential enzymes for interpreting the genetic code. They are responsible for the proper pairing of codons on mRNA with amino acids. In addition to this canonical, translational function, they are also involved in the control of many cellular pathways essential for the maintenance of cellular homeostasis. Association of several of these enzymes within supramolecular assemblies is a key feature of organization of the translation apparatus in eukaryotes. It could be a means to control their oscillation between translational functions, when associated within a multi-aminoacyl-tRNA synthetase complex (MARS), and nontranslational functions, after dissociation from the MARS and association with other partners. In this review, we summarize the composition of the different MARS described from archaea to mammals, the mode of assembly of these complexes, and their roles in maintenance of cellular homeostasis.
Collapse
|
10
|
Swee LK, Lourido S, Bell GW, Ingram JR, Ploegh HL. One-step enzymatic modification of the cell surface redirects cellular cytotoxicity and parasite tropism. ACS Chem Biol 2015; 10:460-5. [PMID: 25360987 PMCID: PMC4478597 DOI: 10.1021/cb500462t] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Surface display of engineered proteins
has many useful applications.
The expression of a synthetic chimeric antigen receptor composed of
an extracellular tumor-specific antibody fragment linked to a cytosolic
activating motif in engineered T cells is now considered a viable
approach for the treatment of leukemias. The risk of de novo tumor development, inherent in the transfer of genetically engineered
cells, calls for alternative approaches for the functionalization
of the lymphocyte plasma membrane. We demonstrate the conjugation
of LPXTG-tagged probes and LPXTG-bearing proteins to endogenous acceptors
at the plasma membrane in a single step using sortase A. We successfully
conjugated biotin probes not only to mouse hematopoietic cells but
also to yeast cells, 293T cells, and Toxoplasma gondii. Installation of single domain antibodies on activated CD8 T cell
redirects cell-specific cytotoxicity to cells that bear the relevant
antigen. Likewise, conjugation of Toxoplasma gondii with single domain antibodies targets the pathogen to cells that
express the antigen recognized by these single domain antibodies.
This simple and robust enzymatic approach enables engineering of the
plasma membrane for research or therapy under physiological reaction
conditions that ensure the viability of the modified cells.
Collapse
Affiliation(s)
- Lee Kim Swee
- Whitehead Institute
for Biomedical Research, 9 Cambridge
Center, Cambridge, Massachusetts 02142, United States
| | - Sebastian Lourido
- Whitehead Institute
for Biomedical Research, 9 Cambridge
Center, Cambridge, Massachusetts 02142, United States
| | - George W. Bell
- Whitehead Institute
for Biomedical Research, 9 Cambridge
Center, Cambridge, Massachusetts 02142, United States
| | - Jessica R. Ingram
- Whitehead Institute
for Biomedical Research, 9 Cambridge
Center, Cambridge, Massachusetts 02142, United States
| | - Hidde L. Ploegh
- Whitehead Institute
for Biomedical Research, 9 Cambridge
Center, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
11
|
Nguyen NTT, Saguez C, Conesa C, Lefebvre O, Acker J. Identification of proteins associated with RNA polymerase III using a modified tandem chromatin affinity purification. Gene 2015; 556:51-60. [DOI: 10.1016/j.gene.2014.07.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 01/12/2023]
|
12
|
Hasim S, Tati S, Madayiputhiya N, Nandakumar R, Nickerson KW. Histone biotinylation inCandida albicans. FEMS Yeast Res 2013; 13:529-39. [DOI: 10.1111/1567-1364.12056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Sahar Hasim
- School of Biological Sciences; University of Nebraska; Lincoln; NE; USA
| | - Swetha Tati
- School of Biological Sciences; University of Nebraska; Lincoln; NE; USA
| | | | - Renu Nandakumar
- Department of Biochemistry; Redox Biology Center; University of Nebraska; Lincoln; NE; USA
| | | |
Collapse
|
13
|
Kumar S, Li C, Montigny C, le Maire M, Barth A. Conformational changes of recombinant Ca2+-ATPase studied by reaction-induced infrared difference spectroscopy. FEBS J 2013; 280:5398-407. [PMID: 23331704 DOI: 10.1111/febs.12131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/21/2012] [Accepted: 01/11/2013] [Indexed: 11/28/2022]
Abstract
Recombinant Ca(2+)-ATPase was expressed in Saccharomyces cerevisiae with a biotin-acceptor domain linked to its C-terminus by a thrombin cleavage site. We obtained 200 μg of ~ 70% pure recombinant sarcoendoplasmic reticulum Ca(2+)-ATPase isoform 1a (SERCA1a) from a 6-L yeast culture. The catalytic cycle of SERCA1a was followed in real time using rapid scan FTIR spectroscopy. Different intermediate states (Ca2 E1P and Ca2 E2P) of the recombinant protein were accumulated using different buffer compositions. The difference spectra of their formation from Ca2 E1 had the same spectral features as those from the native rabbit SERCA1a. The enzyme-specific activity for the active enzyme fraction in both samples was also similar. The results show that the recombinant protein obtained from the yeast-based expression system has similar structural and dynamic properties as native rabbit SERCA1a. It is now possible to apply this expression system together with IR spectroscopy to the investigation of the role of individual amino acids.
Collapse
Affiliation(s)
- Saroj Kumar
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | | | | | | | | |
Collapse
|
14
|
Tawde MD, Freimuth P. Toxic misfolding of Arabidopsis cellulases in the secretory pathway of Pichia pastoris. Protein Expr Purif 2012; 85:211-7. [PMID: 22929090 DOI: 10.1016/j.pep.2012.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 08/11/2012] [Accepted: 08/13/2012] [Indexed: 11/24/2022]
Abstract
Plants produce a large number of cellulases that are either secreted or anchored in the plasma membrane where they likely function in various aspects of cellulose synthesis, modification and degradation during plant growth and development. Very few of these enzymes have been characterized in any detail, however. Here we attempted to produce two Arabidopsis modular cellulases, which contain a catalytic domain belonging to glycoside hydrolase family 9 (GH9) and a carbohydrate binding module (CBM), in the yeast Pichia pastoris. Neither of the intact modular enzymes was detectably produced, although the independently expressed GH9 catalytic domain of one enzyme was secreted when the protein was expressed at low temperature. Expression of intact and truncated cellulases at the standard temperature caused extensive cell lysis, with release of high concentrations of endogenous proteins into the culture medium. Cell lysis appeared to result from misfolding of cellulase proteins within the Pichia secretory pathway. The toxicity of these misfolded cellulases potentially could be exploited to derive host strains with enhanced capability to fold recombinant secretory proteins.
Collapse
Affiliation(s)
- Mangala D Tawde
- Department of Biological Sciences and Geology, Queensborough Community College, Bayside, NY 11364, USA
| | | |
Collapse
|
15
|
Austin RJ, Smidansky HM, Holstein CA, Chang DK, Epp A, Josephson NC, Martin DB. Proteomic analysis of the androgen receptor via MS-compatible purification of biotinylated protein on streptavidin resin. Proteomics 2011; 12:43-53. [PMID: 22116683 DOI: 10.1002/pmic.201100348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/19/2011] [Accepted: 10/25/2011] [Indexed: 11/09/2022]
Abstract
The strength of the streptavidin/biotin interaction poses challenges for the recovery of biotinylated molecules from streptavidin resins. As an alternative to high-temperature elution in urea-containing buffers, we show that mono-biotinylated proteins can be released with relatively gentle heating in the presence of biotin and 2% SDS/Rapigest, avoiding protein carbamylation and minimizing streptavidin dissociation. We demonstrate the utility of this mild elution strategy in two studies of the human androgen receptor (AR). In the first, in which formaldehyde cross-linked complexes are analyzed in yeast, a mass spectrometry-based comparison of the AR complex using SILAC reveals an association between the androgen-activated AR and the Hsp90 chaperonin, while Hsp70 chaperonins associate specifically with the unliganded complex. In the second study, the endogenous AR is quantified in the LNCaP cell line by absolute SILAC and MRM-MS showing approximately 127,000 AR copies per cell, substantially more than previously measured using radioligand binding.
Collapse
Affiliation(s)
- Ryan J Austin
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Vijay Kumar N, Rangarajan PN. Catabolite repression of phosphoenolpyruvate carboxykinase by a zinc finger protein under biotin- and pyruvate carboxylase-deficient conditions in Pichia pastoris. MICROBIOLOGY-SGM 2011; 157:3361-3369. [PMID: 21948049 DOI: 10.1099/mic.0.053488-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have identified a methanol- and biotin-starvation-inducible zinc finger protein named ROP [repressor of phosphoenolpyruvate carboxykinase (PEPCK)] in the methylotrophic yeast Pichia pastoris. When P. pastoris strain GS115 (wild-type, WT) is cultured in biotin-deficient, glucose-ammonium (Bio(-)) medium, growth is suppressed due to the inhibition of anaplerotic synthesis of oxaloacetate, catalysed by the biotin-dependent enzyme pyruvate carboxylase (PC). Deletion of ROP results in a strain (ΔROP) that can grow under biotin-deficient conditions due to derepression of a biotin- and PC-independent pathway of anaplerotic synthesis of oxaloacetate. Northern analysis as well as microarray expression profiling of RNA isolated from WT and ΔROP strains cultured in Bio(-) medium indicate that expression of the phosphoenolpyruvate carboxykinase gene (PEPCK) is induced in ΔROP during biotin- or PC-deficiency even under glucose-abundant conditions. There is an excellent correlation between PEPCK expression and growth of ΔROP in Bio(-) medium, suggesting that ROP-mediated regulation of PEPCK may have a crucial role in the biotin- and PC-independent growth of the ΔROP strain. To our knowledge, ROP is the first example of a zinc finger transcription factor involved in the catabolite repression of PEPCK in yeast cells cultured under biotin- or PC-deficient and glucose-abundant conditions.
Collapse
Affiliation(s)
- Nallani Vijay Kumar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pundi N Rangarajan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
17
|
Frechin M, Kern D, Martin RP, Becker HD, Senger B. Arc1p: Anchoring, routing, coordinating. FEBS Lett 2009; 584:427-33. [DOI: 10.1016/j.febslet.2009.11.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 11/09/2009] [Accepted: 11/09/2009] [Indexed: 10/20/2022]
|
18
|
Pendini NR, Bailey LM, Booker GW, Wilce MC, Wallace JC, Polyak SW. Biotin protein ligase from Candida albicans: Expression, purification and development of a novel assay. Arch Biochem Biophys 2008; 479:163-9. [DOI: 10.1016/j.abb.2008.08.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 08/29/2008] [Accepted: 08/31/2008] [Indexed: 11/25/2022]
|
19
|
Tian R, Li L, Tang W, Liu H, Ye M, Zhao ZK, Zou H. Chemical proteomic study of isoprenoid chain interactome with a synthetic photoaffinity probe. Proteomics 2008; 8:3094-104. [DOI: 10.1002/pmic.200800021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Abstract
Although the role of biotin in metabolic reactions has long been recognized, its influence on transcription has only recently been discovered. A key protein in biotin-mediated transcription regulation is the biotin protein ligase, the enzyme responsible for catalyzing covalent linkage of the vitamin to biotin-dependent carboxylases. In the biotin regulatory system of Escherichia coli, the best characterized of the biotin-sensing systems, the biotin protein ligase functions both as the biotinylating enzyme and as a transcription repressor. Detailed mechanistic studies of this system are reviewed. In addition, recent studies have revealed other biotin-sensing systems in organisms ranging from bacteria to humans. These systems and the central role of the biotin protein ligase in each are also reviewed.
Collapse
Affiliation(s)
- Dorothy Beckett
- Department of Chemistry and Biochemistry, College of Chemical and Life Sciences, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
21
|
Brandberg T, Karimi K, Taherzadeh MJ, Franzén CJ, Gustafsson L. Continuous fermentation of wheat-supplemented lignocellulose hydrolysate with different types of cell retention. Biotechnol Bioeng 2007; 98:80-90. [PMID: 17335066 DOI: 10.1002/bit.21410] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Medium supplementation and process alternatives for fuel ethanol production from dilute acid lignocellulose hydrolysate were investigated. Dilute acid lignocellulose hydrolysate supplemented with enzymatically hydrolysed wheat flour could sustain continuous anaerobic cultivation of Saccharomyces cerevisiae ATCC 96581 if further supplemented with ammonium sulphate and biotin. This medium composition allowed for a hexose utilisation of 73% and an ethanol production of 36 mmol l(-1) h(-1) in chemostat cultivation at dilution rate 0.10 h(-1). Three different methods for cell retention were compared for improved fermentation of supplemented lignocellulose hydrolysate: cell recirculation by filtration, cell recirculation by sedimentation and cell immobilisation in calcium alginate. All three cell retention methods improved the hexose conversion and increased the volumetric ethanol production rate. Recirculation of 75% of the bioreactor outlet flow by filtration improved the hexose utilisation from 76% to 94%. Sedimentation turned out to be an efficient method for cell separation; the cell concentration in the reactor was 32 times higher than in the outflow after 60 h of substrate feeding. However, chemostat and continuous cell recirculation cultures became severely inhibited when the dilution rate was increased to 0.20 h(-1). In contrast, an immobilised system kept producing ethanol at a stable level also at dilution rate 0.30 h(-1).
Collapse
Affiliation(s)
- Tomas Brandberg
- Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
22
|
Chen I, Choi YA, Ting AY. Phage display evolution of a peptide substrate for yeast biotin ligase and application to two-color quantum dot labeling of cell surface proteins. J Am Chem Soc 2007; 129:6619-25. [PMID: 17472384 PMCID: PMC2629800 DOI: 10.1021/ja071013g] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Site-specific protein labeling with Escherichia coli biotin ligase (BirA) has been used to introduce fluorophores, quantum dots (QDs), and photocross-linkers onto recombinant proteins fused to a 15-amino acid acceptor peptide (AP) substrate for BirA and expressed on the surface of living mammalian cells. Here, we used phage display to engineer a new and orthogonal biotin ligase-AP pair for site-specific protein labeling. Yeast biotin ligase (yBL) does not recognize the AP, but we discovered a new 15-amino acid substrate for yBL called the yeast acceptor peptide (yAP), using two generations of phage display selection from 15-mer peptide libraries. The yAP is not recognized by BirA, and thus, we were able to specifically label AP and yAP fusion proteins coexpressed in the same cell with differently colored QDs. We fused the yAP to a variety of recombinant proteins and demonstrated biotinylation by yBL at the N-terminus, C-terminus, and within a flexible internal region. yBL is extremely sequence-specific, as endogenous proteins on the surface of yeast and HeLa cells are not biotinylated. This new methodology expands the scope of biotin ligase labeling to two-color imaging and yeast-based applications.
Collapse
|
23
|
Tehlivets O, Scheuringer K, Kohlwein SD. Fatty acid synthesis and elongation in yeast. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:255-70. [PMID: 16950653 DOI: 10.1016/j.bbalip.2006.07.004] [Citation(s) in RCA: 309] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 07/14/2006] [Accepted: 07/17/2006] [Indexed: 12/30/2022]
Abstract
Fatty acids are essential compounds in the cell. Since the yeast Saccharomyces cerevisiae does not feed typically on fatty acids, cellular function and growth relies on endogenous synthesis. Since all cellular organelles are involved in--or dependent on--fatty acid synthesis, multiple levels of control may exist to ensure proper fatty acid composition and homeostasis. In this review, we summarize what is currently known about enzymes involved in cellular fatty acid synthesis and elongation, and discuss potential links between fatty acid metabolism, physiology and cellular regulation.
Collapse
Affiliation(s)
- Oksana Tehlivets
- Institute of Molecular Biosciences, University of Graz, A8010 Graz, Austria
| | | | | |
Collapse
|
24
|
Mühlenhoff U, Gerl MJ, Flauger B, Pirner HM, Balser S, Richhardt N, Lill R, Stolz J. The ISC [corrected] proteins Isa1 and Isa2 are required for the function but not for the de novo synthesis of the Fe/S clusters of biotin synthase in Saccharomyces cerevisiae. EUKARYOTIC CELL 2007; 6:495-504. [PMID: 17259550 PMCID: PMC1828929 DOI: 10.1128/ec.00191-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The yeast Saccharomyces cerevisiae is able to use some biotin precursors for biotin biosynthesis. Insertion of a sulfur atom into desthiobiotin, the final step in the biosynthetic pathway, is catalyzed by biotin synthase (Bio2). This mitochondrial protein contains two iron-sulfur (Fe/S) clusters that catalyze the reaction and are thought to act as a sulfur donor. To identify new components of biotin metabolism, we performed a genetic screen and found that Isa2, a mitochondrial protein involved in the formation of Fe/S proteins, is necessary for the conversion of desthiobiotin to biotin. Depletion of Isa2 or the related Isa1, however, did not prevent the de novo synthesis of any of the two Fe/S centers of Bio2. In contrast, Fe/S cluster assembly on Bio2 strongly depended on the Isu1 and Isu2 proteins. Both isa mutants contained low levels of Bio2. This phenotype was also found in other mutants impaired in mitochondrial Fe/S protein assembly and in wild-type cells grown under iron limitation. Low Bio2 levels, however, did not cause the inability of isa mutants to utilize desthiobiotin, since this defect was not cured by overexpression of BIO2. Thus, the Isa proteins are crucial for the in vivo function of biotin synthase but not for the de novo synthesis of its Fe/S clusters. Our data demonstrate that the Isa proteins are essential for the catalytic activity of Bio2 in vivo.
Collapse
Affiliation(s)
- Ulrich Mühlenhoff
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35033 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Jidenko M, Lenoir G, Fuentes JM, le Maire M, Jaxel C. Expression in yeast and purification of a membrane protein, SERCA1a, using a biotinylated acceptor domain. Protein Expr Purif 2006; 48:32-42. [PMID: 16603381 DOI: 10.1016/j.pep.2006.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 02/24/2006] [Accepted: 03/01/2006] [Indexed: 11/19/2022]
Abstract
We have recently described the final steps leading to the crystallization of a mammalian membrane protein, the rabbit sarcoplasmic reticulum Ca2+-ATPase, after heterologous expression. Here, we detail the initial steps leading to this new purification method. A biotin acceptor domain was fused at the C-terminal part of Ca2+-ATPase and a thrombin site was inserted between both coding regions. The recombinant protein was expressed under the control of a galactose-inducible promoter in the yeast Saccharomyces cerevisiae. The biotinylation reaction of the protein was performed directly in vivo in yeast. After solubilization of the yeast light membrane fraction, the biotinylated protein was retained specifically using the strong biotin-avidin interaction. Finally, digestion by the protease thrombin allowed the separation of the Ca2+-ATPase from the biotinylated domain. At this step, Ca2+-ATPase is in a relatively purified form (about 40%). After a size-exclusion HPLC step, the purity of the protein is about 70%, and evaluation of the conformational changes during the catalytic cycle by monitoring the intrinsic fluorescence is demonstrated. The major advantage of this avidin procedure is the particularly good specific ATPase activity as compared with that of a purified His-tagged Ca2+-ATPase.
Collapse
Affiliation(s)
- Marie Jidenko
- Unité de Recherche Associée 2096 of the Centre National de la Recherche Scientifique and Service de Biophysique des Fonctions Membranaires, Département de Biologie Joliot Curie, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
26
|
van Werven FJ, Timmers HTM. The use of biotin tagging in Saccharomyces cerevisiae improves the sensitivity of chromatin immunoprecipitation. Nucleic Acids Res 2006; 34:e33. [PMID: 16500888 PMCID: PMC1383622 DOI: 10.1093/nar/gkl003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Affinity tagging has been used in many global studies towards protein function. We describe a highly efficient system for in vivo biotinylation of transcription factors in the yeast Saccharomyces cerevisiae, which is based on the bacterial BirA biotin ligase. The strength of the biotin-streptavidin interaction was exploited to improve detection of in vivo protein-DNA complexes in chromatin immunoprecipitation (ChIP) experiments. In a test system using the biotin-tagged LexA DNA-binding protein, we found that stringent washing conditions resulted in a strong improvement of the signal-to-noise ratios. Yeast strains with chromosomally integrated versions of tagged transcription factor genes were generated using N- or C-terminal biotin-tagging cassettes. ChIP experiments with biotinylated Rbp3p, a RNA polymerase II subunit, showed that Rbp3p-binding could even be detected at weakly expressed genes. Other methods failed to detect RNA polymerase II binding at such genes. Our results show that biotinylation of yeast transcription factors improves the detection of in vivo protein-DNA complexes.
Collapse
Affiliation(s)
| | - H. Th. Marc Timmers
- To whom correspondence should be addressed. Tel: +31 30 2538981; Fax: +31 30 253 9035;
| |
Collapse
|
27
|
Pérez-Vázquez V, Uribe S, Velázquez-Arellano A. Effects of biotin on growth and protein biotinylation in Saccharomyces cerevisiae. J Nutr Biochem 2005; 16:438-40. [PMID: 15992687 DOI: 10.1016/j.jnutbio.2005.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 03/30/2005] [Accepted: 03/30/2005] [Indexed: 11/27/2022]
Abstract
In mammals, biotin, well known for its role as the cofactor of carboxylases, also controls the expression not only of proteins involved in this function, but also of a large number and variety of other different proteins. As a first step towards looking for a rationale for these phenomena, we intend to compare these regulatory functions of biotin between the rat and the much less evolutionized eukaryote, Saccharomyces cerevisiae. Thus far, we have measured growth in yeast cultured on different concentrations of biotin to choose the experimental conditions to be used (2, 200 and 2000 microM) and have found that a band corresponding to the biotinylated S. cerevisiae Arc1p protein appears at streptavidin Western blots at a biotin concentration above 2000 muM, its density increasing with higher biotin amounts. We will now study changes in yeast transcriptome with these varying concentrations and compare them with changes observed in the rat.
Collapse
Affiliation(s)
- Victoriano Pérez-Vázquez
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, UNAM, Mexico, DF 04530, Mexico.
| | | | | |
Collapse
|
28
|
Current awareness on yeast. Yeast 2005; 22:241-8. [PMID: 15762016 DOI: 10.1002/yea.1159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|