1
|
MalagodaPathiranage K, Banerjee R, Martin C. A new approach to RNA synthesis: immobilization of stably and functionally co-tethered promoter DNA and T7 RNA polymerase. Nucleic Acids Res 2024; 52:10607-10618. [PMID: 39011885 PMCID: PMC11417385 DOI: 10.1093/nar/gkae599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 07/17/2024] Open
Abstract
Current approaches to RNA synthesis/manufacturing require substantial (and incomplete) purification post-synthesis. We have previously demonstrated the synthesis of RNA from a complex in which T7 RNA polymerase is tethered to promoter DNA. In the current work, we extend this approach to demonstrate an extremely stable system of functional co-tethered complex to a solid support. Using the system attached to magnetic beads, we carry out more than 20 rounds of synthesis using the initial polymerase-DNA construct. We further demonstrate the wide utility of this system in the synthesis of short RNA, a CRISPR guide RNA, and a protein-coding mRNA. In all cases, the generation of self-templated double stranded RNA (dsRNA) impurities are greatly reduced, by both the tethering itself and by the salt-tolerance that local co-tethering provides. Transfection of the mRNA into HEK293T cells shows a correlation between added salt in the transcription reaction (which inhibits RNA rebinding that generates RNA-templated extensions) and significantly increased expression and reduced innate immune stimulation by the mRNA reaction product. These results point in the direction of streamlined processes for synthesis/manufacturing of high-quality RNA of any length, and at greatly reduced costs.
Collapse
Affiliation(s)
| | - Ruptanu Banerjee
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Craig T Martin
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Malagoda Pathiranage K, Martin CT. A simple approach to improving RNA synthesis: Salt inhibition of RNA rebinding coupled with strengthening promoter binding by a targeted gap in the DNA. Methods Enzymol 2023; 691:209-222. [PMID: 37914447 DOI: 10.1016/bs.mie.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
T7 RNA polymerase is widely used to synthesize RNA of any length, and long-standing protocols exist to efficiently generate large amounts of RNA. Such synthesis, however, is often plagued by so-called "nontemplated additions" at the 3' end, which are in fact templated by the RNA itself and give rise to double-stranded RNA impurities in RNA therapeutics. These additions are generated by RNA polymerase rebinding to the product RNA (independent of DNA) and this rebinding is in competition with promoter binding. This chapter reports on a general approach that simultaneously weakens RNA rebinding by increasing salt, while at the same time increases promoter binding through manipulating the promoter DNA structure, shifting the balance away from self-primed extension. We present two approaches for use in different regimes. For (short) RNAs using synthetic oligonucleotides as DNA, promoter binding is strengthened by using a partially single stranded promoter construct already in wide use in the field. For the synthesis of RNA (of any length), one can replicate the behavior of the first approach by introducing a targeted gap in the promoter, using a PCR primer containing an engineered deoxyuracil that is then excised by a commercially available enzyme system, to leave a promoter-strengthening gap. Both approaches are simple to implement, with only slight variations on standard synthesis approaches, making them valuable tools for a wide range of applications, from basic science to mRNA, CRISPR, lncRNA, and other therapeutics.
Collapse
Affiliation(s)
| | - Craig T Martin
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, United States.
| |
Collapse
|
3
|
High-salt transcription of DNA cotethered with T7 RNA polymerase to beads generates increased yields of highly pure RNA. J Biol Chem 2021; 297:100999. [PMID: 34303704 PMCID: PMC8368030 DOI: 10.1016/j.jbc.2021.100999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
High yields of RNA are routinely prepared following the two-step approach of high-yield in vitro transcription using T7 RNA polymerase followed by extensive purification using gel separation or chromatographic methods. We recently demonstrated that in high-yield transcription reactions, as RNA accumulates in solution, T7 RNA polymerase rebinds and extends the encoded RNA (using the RNA as a template), resulting in a product pool contaminated with longer-than-desired, (partially) double-stranded impurities. Current purification methods often fail to fully eliminate these impurities, which, if present in therapeutics, can stimulate the innate immune response with potentially fatal consequences. In this work, we introduce a novel in vitro transcription method that generates high yields of encoded RNA without double-stranded impurities, reducing the need for further purification. Transcription is carried out at high-salt conditions to eliminate RNA product rebinding, while promoter DNA and T7 RNA polymerase are cotethered in close proximity on magnetic beads to drive promoter binding and transcription initiation, resulting in an increase in overall yield and purity of only the encoded RNA. A more complete elimination of double-stranded RNA during synthesis will not only reduce overall production costs, but also should ultimately enable therapies and technologies that are currently being hampered by those impurities.
Collapse
|
4
|
Gholamalipour Y, Karunanayake Mudiyanselage A, Martin CT. 3' end additions by T7 RNA polymerase are RNA self-templated, distributive and diverse in character-RNA-Seq analyses. Nucleic Acids Res 2019; 46:9253-9263. [PMID: 30219859 PMCID: PMC6182178 DOI: 10.1093/nar/gky796] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/23/2018] [Indexed: 11/13/2022] Open
Abstract
Synthetic RNA is widely used in basic science, nanotechnology and therapeutics research. The vast majority of this RNA is synthesized in vitro by T7 RNA polymerase or one of its close family members. However, the desired RNA is generally contaminated with products longer and shorter than the DNA-encoded product. To better understand these undesired byproducts and the processes that generate them, we analyze in vitro transcription reactions using RNA-Seq as a tool. The results unambiguously confirm that product RNA rebinds to the polymerase and self-primes (in cis) generation of a hairpin duplex, a process that favorably competes with promoter driven synthesis under high yield reaction conditions. While certain priming modes can be favored, the process is heterogeneous, both in initial priming and in the extent of priming, and already extended products can rebind for further extension, in a distributive process. Furthermore, addition of one or a few nucleotides, previously termed 'nontemplated addition,' also occurs via templated primer extension. At last, this work demonstrates the utility of RNA-Seq as a tool for in vitro mechanistic studies, providing information far beyond that provided by traditional gel electrophoresis.
Collapse
Affiliation(s)
- Yasaman Gholamalipour
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | - Craig T Martin
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
5
|
Henderson KL, Evensen CE, Molzahn CM, Felth LC, Dyke S, Liao G, Shkel IA, Record MT. RNA Polymerase: Step-by-Step Kinetics and Mechanism of Transcription Initiation. Biochemistry 2019; 58:2339-2352. [PMID: 30950601 DOI: 10.1021/acs.biochem.9b00049] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To determine the step-by-step kinetics and mechanism of transcription initiation and escape by E. coli RNA polymerase from the λPR promoter, we quantify the accumulation and decay of transient short RNA intermediates on the pathway to promoter escape and full-length (FL) RNA synthesis over a wide range of NTP concentrations by rapid-quench mixing and phosphorimager analysis of gel separations. Experiments are performed at 19 °C, where almost all short RNAs detected are intermediates in FL-RNA synthesis by productive complexes or end-products in nonproductive (stalled) initiation complexes and not from abortive initiation. Analysis of productive-initiation kinetic data yields composite second-order rate constants for all steps of NTP binding and hybrid extension up to the escape point (11-mer). The largest of these rate constants is for incorporation of UTP into the dinucleotide pppApU in a step which does not involve DNA opening or translocation. Subsequent steps, each of which begins with reversible translocation and DNA opening, are slower with rate constants that vary more than 10-fold, interpreted as effects of translocation stress on the translocation equilibrium constant. Rate constants for synthesis of 4- and 5-mer, 7-mer to 9-mer, and 11-mer are particularly small, indicating that RNAP-promoter interactions are disrupted in these steps. These reductions in rate constants are consistent with the previously determined ∼9 kcal cost of escape from λPR. Structural modeling and previous results indicate that the three groups of small rate constants correspond to sequential disruption of in-cleft, -10, and -35 interactions. Parallels to escape by T7 RNAP are discussed.
Collapse
Affiliation(s)
- Kate L Henderson
- Department of Biochemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Claire E Evensen
- Department of Biochemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Cristen M Molzahn
- Department of Biochemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Lindsey C Felth
- Department of Biochemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Sarah Dyke
- Department of Biochemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Guanyu Liao
- Department of Biochemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Irina A Shkel
- Department of Biochemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - M Thomas Record
- Department of Biochemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
6
|
Koh HR, Roy R, Sorokina M, Tang GQ, Nandakumar D, Patel SS, Ha T. Correlating Transcription Initiation and Conformational Changes by a Single-Subunit RNA Polymerase with Near Base-Pair Resolution. Mol Cell 2018; 70:695-706.e5. [PMID: 29775583 PMCID: PMC5983381 DOI: 10.1016/j.molcel.2018.04.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/23/2018] [Accepted: 04/19/2018] [Indexed: 11/20/2022]
Abstract
We provide a comprehensive analysis of transcription in real time by T7 RNA Polymerase (RNAP) using single-molecule fluorescence resonance energy transfer by monitoring the entire life history of transcription initiation, including stepwise RNA synthesis with near base-pair resolution, abortive cycling, and transition into elongation. Kinetically branching pathways were observed for abortive initiation with an RNAP either recycling on the same promoter or exchanging with another RNAP from solution. We detected fast and slow populations of RNAP in their transition into elongation, consistent with the efficient and delayed promoter release, respectively, observed in ensemble studies. Real-time monitoring of abortive cycling using three-probe analysis showed that the initiation events are stochastically branched into productive and failed transcription. The abortive products are generated primarily from initiation events that fail to progress to elongation, and a majority of the productive events transit to elongation without making abortive products.
Collapse
Affiliation(s)
- Hye Ran Koh
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| | - Rahul Roy
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Maria Sorokina
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Guo-Qing Tang
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Divya Nandakumar
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Taekjip Ha
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA; Departments of Biophysics and Biophysical Chemistry, Biophysics, and Biomedical Engineering, Johns Hopkins University, MD 21205, USA.
| |
Collapse
|
7
|
Ramírez-Tapia LE, Martin CT. New insights into the mechanism of initial transcription: the T7 RNA polymerase mutant P266L transitions to elongation at longer RNA lengths than wild type. J Biol Chem 2012; 287:37352-61. [PMID: 22923611 DOI: 10.1074/jbc.m112.370643] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA polymerases undergo substantial structural and functional changes in transitioning from sequence-specific initial transcription to stable and relatively sequence-independent elongation. Initially, transcribing complexes are characteristically unstable, yielding short abortive products on the path to elongation. However, protein mutations have been isolated in RNA polymerases that dramatically reduce abortive instability. Understanding these mutations is essential to understanding the energetics of initial transcription and promoter clearance. We demonstrate here that the P266L point mutation in T7 RNA polymerase, which shows dramatically reduced abortive cycling, also transitions to elongation later, i.e. at longer lengths of RNA. These two properties of the mutant are not necessarily coupled, but rather we propose that they both derive from a weakening of the barrier to RNA-DNA hybrid-driven rotation of the promoter binding N-terminal platform, a motion necessary to achieve programmatically timed release of promoter contacts in the transition to elongation. Parallels in the multisubunit RNA polymerases are discussed.
Collapse
Affiliation(s)
- Luis E Ramírez-Tapia
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
8
|
Aguirre JD, Chifotides HT, Angeles-Boza AM, Chouai A, Turro C, Dunbar KR. Redox-Regulated Inhibition of T7 RNA Polymerase via Establishment of Disulfide Linkages by Substituted Dppz Dirhodium(II,II) Complexes. Inorg Chem 2009; 48:4435-44. [DOI: 10.1021/ic900164j] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- J. Dafhne Aguirre
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, and Department of Chemistry, The Ohio State University, Columbus, Ohio 43210
| | - Helen T. Chifotides
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, and Department of Chemistry, The Ohio State University, Columbus, Ohio 43210
| | - Alfredo M. Angeles-Boza
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, and Department of Chemistry, The Ohio State University, Columbus, Ohio 43210
| | - Abdellatif Chouai
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, and Department of Chemistry, The Ohio State University, Columbus, Ohio 43210
| | - Claudia Turro
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, and Department of Chemistry, The Ohio State University, Columbus, Ohio 43210
| | - Kim R. Dunbar
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, and Department of Chemistry, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
9
|
Transcription initiation in a single-subunit RNA polymerase proceeds through DNA scrunching and rotation of the N-terminal subdomains. Mol Cell 2008; 30:567-77. [PMID: 18538655 DOI: 10.1016/j.molcel.2008.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/03/2008] [Accepted: 04/07/2008] [Indexed: 11/21/2022]
Abstract
Elucidating the mechanism of transcription initiation by RNA polymerases (RNAP) is essential for understanding gene transcription and regulation. Although several models, such as DNA scrunching, RNAP translation, and RNAP rotation, have been proposed, the mechanism of initiation by T7 RNAP has remained unclear. Using ensemble and single-molecule Förster resonance energy transfer (FRET) studies, we provide evidence for concerted DNA scrunching and rotation during initiation by T7 RNAP. A constant spatial distance between the upstream and downstream edges of initiation complexes making 4-7 nt RNA supports the DNA scrunching model, but not the RNAP translation or the pure rotation model. DNA scrunching is accompanied by moderate hinging motion (18 degrees +/- 4 degrees ) of the promoter toward the downstream DNA. The observed stepwise conformational changes provide a basis to understand abortive RNA synthesis during early stages of initiation and promoter escape during the later stages that allows transition to processive elongation.
Collapse
|
10
|
Xue XC, Liu F, Ou-Yang ZC. A Kinetic Model of Transcription Initiation by RNA Polymerase. J Mol Biol 2008; 378:520-9. [DOI: 10.1016/j.jmb.2008.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 01/23/2008] [Accepted: 03/05/2008] [Indexed: 12/01/2022]
|
11
|
Revyakin A, Liu C, Ebright RH, Strick TR. Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching. Science 2006; 314:1139-43. [PMID: 17110577 PMCID: PMC2754787 DOI: 10.1126/science.1131398] [Citation(s) in RCA: 283] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Using single-molecule DNA nanomanipulation, we show that abortive initiation involves DNA "scrunching"--in which RNA polymerase (RNAP) remains stationary and unwinds and pulls downstream DNA into itself--and that scrunching requires RNA synthesis and depends on RNA length. We show further that promoter escape involves scrunching, and that scrunching occurs in most or all instances of promoter escape. Our results support the existence of an obligatory stressed intermediate, with approximately one turn of additional DNA unwinding, in escape and are consistent with the proposal that stress in this intermediate provides the driving force to break RNAP-promoter and RNAP-initiation-factor interactions in escape.
Collapse
Affiliation(s)
- Andrey Revyakin
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry, Rutgers University, Piscataway NJ 08854, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor NY 11724, USA
| | - Chenyu Liu
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry, Rutgers University, Piscataway NJ 08854, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor NY 11724, USA
- Institut Jacques Monod, Centre National de la Recherche Scientifique UMR7592, 2 Place Jussieu 75251 Paris Cedex 05, France
| | - Richard H. Ebright
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry, Rutgers University, Piscataway NJ 08854, USA
- Corresponding authors Phone: +33-1-4427-8175 (T.S.), 721-445-5179 (R.H.E.) Fax: +33-1-4427-5716 (T.S.); 732-445-5735 (R.H.E.) (T.S.); (R.H.E.)
| | - Terence R. Strick
- Cold Spring Harbor Laboratory, Cold Spring Harbor NY 11724, USA
- Institut Jacques Monod, Centre National de la Recherche Scientifique UMR7592, 2 Place Jussieu 75251 Paris Cedex 05, France
- Corresponding authors Phone: +33-1-4427-8175 (T.S.), 721-445-5179 (R.H.E.) Fax: +33-1-4427-5716 (T.S.); 732-445-5735 (R.H.E.) (T.S.); (R.H.E.)
| |
Collapse
|
12
|
Kapanidis AN, Margeat E, Ho SO, Kortkhonjia E, Weiss S, Ebright RH. Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science 2006; 314:1144-7. [PMID: 17110578 PMCID: PMC2754788 DOI: 10.1126/science.1131399] [Citation(s) in RCA: 318] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Using fluorescence resonance energy transfer to monitor distances within single molecules of abortively initiating transcription initiation complexes, we show that initial transcription proceeds through a "scrunching" mechanism, in which RNA polymerase (RNAP) remains fixed on promoter DNA and pulls downstream DNA into itself and past its active center. We show further that putative alternative mechanisms for RNAP active-center translocation in initial transcription, involving "transient excursions" of RNAP relative to DNA or "inchworming" of RNAP relative to DNA, do not occur. The results support a model in which a stressed intermediate, with DNA-unwinding stress and DNA-compaction stress, is formed during initial transcription, and in which accumulated stress is used to drive breakage of interactions between RNAP and promoter DNA and between RNAP and initiation factors during promoter escape.
Collapse
Affiliation(s)
- Achillefs N. Kapanidis
- Department of Chemistry and Biochemistry and Department of Physiology, University of California, Los Angeles, CA 90095, USA
- Clarendon Laboratory, Department of Physics, and IRC in Bionanotechnology, University of Oxford, Oxford, United Kingdom
| | - Emmanuel Margeat
- Department of Chemistry and Biochemistry and Department of Physiology, University of California, Los Angeles, CA 90095, USA
| | - Sam On Ho
- Department of Chemistry and Biochemistry and Department of Physiology, University of California, Los Angeles, CA 90095, USA
| | - Ekaterine Kortkhonjia
- Department of Chemistry and Biochemistry and Department of Physiology, University of California, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute, Department of Chemistry, and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Shimon Weiss
- Department of Chemistry and Biochemistry and Department of Physiology, University of California, Los Angeles, CA 90095, USA
| | - Richard H. Ebright
- Howard Hughes Medical Institute, Department of Chemistry, and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
13
|
Abstract
Abortive transcription, the premature release of short transcripts 2-8 bases in length, is a unique feature of transcription, accompanying the transition from initiation to elongation in all RNA polymerases. The current study focuses on major factors that relate to the stability of initially transcribing abortive complexes in T7 RNA polymerase. Building on previous studies, results reveal that collapse of the DNA from the downstream end of the bubble is a major contributor to the characteristic instability of abortive complexes. Furthermore, transcription from a novel DNA construct containing a nick between positions -14 and -13 of the nontemplate strand suggests that the more flexible promoter reduces somewhat the strain inherent in initially transcribing complexes, with a resulting decrease in abortive product release. Finally, as assessed by exonuclease III footprinting and transcription profiles, a DNA construct defective in bubble collapse specifically from the downstream end exhibits less abortive cycling and little perturbation of the final transition to elongation, including the process of promoter release.
Collapse
Affiliation(s)
- Peng Gong
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9336, USA
| | | |
Collapse
|
14
|
Bandwar RP, Tang GQ, Patel SS. Sequential release of promoter contacts during transcription initiation to elongation transition. J Mol Biol 2006; 360:466-83. [PMID: 16780876 DOI: 10.1016/j.jmb.2006.05.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 05/10/2006] [Accepted: 05/11/2006] [Indexed: 11/17/2022]
Abstract
Bacteriophage T7 RNA polymerase undergoes major conformational changes as transcription proceeds from initiation to elongation. Using limited trypsin digestion and stopped-flow fluorescence kinetic methods, we have monitored promoter release, initial bubble collapse, and refolding of the 152-205 region (subdomain H), the latter being important for RNA channel formation. The kinetic studies show that the conformational changes are temporally coupled, commencing at the synthesis of 9 nt and completing by the synthesis of 12 nt of RNA. The temporal coupling of initial bubble collapse and RNA channel formation is proposed to facilitate proper binding of the RNA dissociated from the late initiation complexes into the RNA channel. Using promoter mutations, we have determined that promoter contacts are broken sequentially during transition from initiation to elongation. The specificity loop interactions are broken after synthesis of 8 nt or 9 nt of RNA, whereas the upstream promoter contacts persists up to synthesis of 12 nt of RNA. Both promoter contacts need to be broken for transition into elongation. The A-15C mutation resulted in efficient transition to elongation by synthesis of 9 nt of RNA, whereas the C-9A mutation resulted in early transition to elongation by synthesis of 7-8 nt of RNA. The effect of early promoter clearance in the mutant promoters was observed as reduced production of long abortive products.
Collapse
Affiliation(s)
- Rajiv P Bandwar
- Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
15
|
Guo Q, Nayak D, Brieba LG, Sousa R. Major conformational changes during T7RNAP transcription initiation coincide with, and are required for, promoter release. J Mol Biol 2005; 353:256-70. [PMID: 16169559 DOI: 10.1016/j.jmb.2005.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 08/05/2005] [Accepted: 08/10/2005] [Indexed: 10/25/2022]
Abstract
During transcription initiation conformational changes in the transcriptional machinery are required to accommodate the growing RNA, to allow the polymerase to release the promoter, and to endow the elongation complex with high processivity. In T7 RNA polymerase these changes involve refolding and reorientation of elements of the N-terminal domain, as well as changes in how the DNA is bound within the complex. However, when and where these conformational changes occur is unknown, and the role of these changes in allowing the polymerase to disengage the promoter is poorly understood. To address this we have used chemical nucleases tethered to the polymerase to monitor conformational changes, and engineered disulfide bonds to block conformational changes at defined steps in transcription. We find that many of the major structural transitions occur cooperatively, at a point coincident with promoter release. Moreover, promoter release requires that two elements of the polymerase which form a continuous promoter recognition surface in the initial transcription complex move apart: if this movement is blocked the polymerase cannot disengage the promoter.
Collapse
Affiliation(s)
- Qing Guo
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
16
|
Guo Q, Sousa R. Weakening of the T7 promoter-polymerase interaction facilitates promoter release. J Biol Chem 2005; 280:14956-61. [PMID: 15711016 DOI: 10.1074/jbc.m500518200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During transcription initiation, RNA polymerases retain interactions with their promoters until the RNA is extended to 8-13 nucleotides, at which point the polymerase releases the promoter and moves downstream. It has been shown that release of the T7 promoter is inhibited when the T7 RNA polymerase-promoter interaction is strengthened. Here we asked whether release would be facilitated when the T7 promoter-polymerase interaction is weakened by the introduction of promoter mutations known to reduce promoter activity. Using chemical and enzymatic probes to monitor the position of the polymerase as a function of RNA length, we found that promoter mutations upstream of -4 facilitated release of the polymerase from the promoter, but more downstream mutations did not have such effects. We also found that released complexes turn over more slowly than promoter-bound complexes, indicating that retention of promoter interactions contributes to the dissociation of short RNAs during initial transcription.
Collapse
Affiliation(s)
- Qing Guo
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | |
Collapse
|
17
|
Martin CT, Esposito EA, Theis K, Gong P. Structure and function in promoter escape by T7 RNA polymerase. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 80:323-47. [PMID: 16164978 DOI: 10.1016/s0079-6603(05)80008-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
MESH Headings
- Bacteriophage T7/genetics
- Bacteriophage T7/metabolism
- Base Sequence
- DNA, Viral/chemistry
- DNA, Viral/genetics
- DNA, Viral/metabolism
- DNA-Directed RNA Polymerases/chemistry
- DNA-Directed RNA Polymerases/genetics
- DNA-Directed RNA Polymerases/metabolism
- Models, Biological
- Models, Molecular
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational
- Peptide Chain Initiation, Translational
- Promoter Regions, Genetic
- Protein Conformation
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Transcription, Genetic
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Craig T Martin
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | |
Collapse
|
18
|
Guo Q, Sousa R. Multiple roles for the T7 promoter nontemplate strand during transcription initiation and polymerase release. J Biol Chem 2004; 280:3474-82. [PMID: 15561715 DOI: 10.1074/jbc.m412287200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription initiation begins with recruitment of an RNA polymerase to a promoter. Polymerase-promoter interactions are retained until the nascent RNA is extended to 8-12 nucleotides. It has been proposed that accumulation of "strain" in the transcription complex and RNA displacement of promoter-polymerase interactions contribute to releasing the polymerase from the promoter, and it has been further speculated that too strong a promoter interaction can inhibit the release step, whereas a weak interaction may facilitate release. We examined the effects of partial deletion of the nontemplate strand on release of T7 RNA polymerase from the T7 promoter. T7 polymerase will initiate from such partially single-stranded promoters but binds them with higher affinity than duplex promoters. We found that release on partially single-stranded promoters is strongly inhibited. The inhibition of release is not due to an indirect effect on transcription complex structure or loss of specific polymerase-nontemplate strand interactions, because release on partially single-stranded templates is recovered if the interaction with the promoter is weakened by a promoter base substitution. This same substitution also appears to allow the polymerase to escape more readily from a duplex promoter. Our results further suggest that template-nontemplate strand reannealing drives dissociation of abortive transcripts during initial transcription and that loss of interactions with either the nontemplate strand or duplex DNA downstream of the RNA lead to increased transcription complex slippage during initiation.
Collapse
Affiliation(s)
- Qing Guo
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | |
Collapse
|