1
|
Boi D, Rubini E, Breccia S, Guarguaglini G, Paiardini A. When Just One Phosphate Is One Too Many: The Multifaceted Interplay between Myc and Kinases. Int J Mol Sci 2023; 24:4746. [PMID: 36902175 PMCID: PMC10003727 DOI: 10.3390/ijms24054746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Myc transcription factors are key regulators of many cellular processes, with Myc target genes crucially implicated in the management of cell proliferation and stem pluripotency, energy metabolism, protein synthesis, angiogenesis, DNA damage response, and apoptosis. Given the wide involvement of Myc in cellular dynamics, it is not surprising that its overexpression is frequently associated with cancer. Noteworthy, in cancer cells where high Myc levels are maintained, the overexpression of Myc-associated kinases is often observed and required to foster tumour cells' proliferation. A mutual interplay exists between Myc and kinases: the latter, which are Myc transcriptional targets, phosphorylate Myc, allowing its transcriptional activity, highlighting a clear regulatory loop. At the protein level, Myc activity and turnover is also tightly regulated by kinases, with a finely tuned balance between translation and rapid protein degradation. In this perspective, we focus on the cross-regulation of Myc and its associated protein kinases underlying similar and redundant mechanisms of regulation at different levels, from transcriptional to post-translational events. Furthermore, a review of the indirect effects of known kinase inhibitors on Myc provides an opportunity to identify alternative and combined therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Dalila Boi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Elisabetta Rubini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Breccia
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
2
|
The Tardigrade Damage Suppressor Protein Modulates Transcription Factor and DNA Repair Genes in Human Cells Treated with Hydroxyl Radicals and UV-C. BIOLOGY 2021; 10:biology10100970. [PMID: 34681069 PMCID: PMC8533384 DOI: 10.3390/biology10100970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/22/2022]
Abstract
Simple Summary The Ramazzottius varieornatus is known to be the most resilient invertebrate on Earth. Belonging to the phylum of Tardigrada, it can live in any habitat, from the deep sea to various terrestrial environments, surviving in extreme temperatures, severe dryness or air deprivation. This exceptional tolerance to extreme conditions is attributable to the Dsup protein, which is able to bind and “protect” the DNA of this micro-animal, allowing it to survive where most other forms of life would quickly die. By introducing Dsup in human cell cultures, we investigated how this protein operates in response to two different extreme conditions: oxidative stress and ultraviolet (UV) irradiation. We learned that Dsup increases cell survival by triggering significantly different cellular mechanisms. In cells treated with hydrogen peroxide, Dsup “physically” protects DNA and activates several detoxification pathways aimed to remove intracellular free radicals. In contrast to this, a direct protection of DNA is not exerted by Dsup after UV irradiation, but the protein seems to activate mechanisms of DNA damage repair more efficiently, promoting faster cell recovery and survival. Even though further studies are required, understanding the mechanisms associated with Dsup resistance to cell damage may represent an important benefit for humans and plants. Abstract The Ramazzottius varieornatus tardigrade is an extremotolerant terrestrial invertebrate with a length of 0.1–1.0 mm. These small animals show an extraordinary tolerance to extreme conditions such as high pressure, irradiation, chemicals and dehydration. These abilities are linked to a recently discovered damage suppressor protein (Dsup). Dsup is a nucleosome-binding protein that avoids DNA damage after X-ray and oxidative stress exposure without impairing cell life in Dsup-transfected animal and plant cells. The exact “protective” role of this protein is still under study. In human cells, we confirmed that Dsup confers resistance to UV-C and H2O2 exposure compared to untransfected cells. A different transcription factor activation was also observed. In addition, a different expression of endogenous genes involved in apoptosis, cell survival and DNA repair was found in Dsup+ cells after H2O2 and UV-C. In UV-C exposed cells, Dsup efficiently upregulates DNA damage repair genes, while H2O2 treatment only marginally involves the activation of pathways responsible for DNA repair in Dsup+ cells. These data are in agreement with the idea of a direct protective effect of the protein on DNA after oxidative stress. In conclusion, our data may help to outline the different mechanisms by which the Dsup protein works in response to different insults.
Collapse
|
3
|
Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 2021; 14:121. [PMID: 34372899 PMCID: PMC8351444 DOI: 10.1186/s13045-021-01111-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
MYC oncogene is a transcription factor with a wide array of functions affecting cellular activities such as cell cycle, apoptosis, DNA damage response, and hematopoiesis. Due to the multi-functionality of MYC, its expression is regulated at multiple levels. Deregulation of this oncogene can give rise to a variety of cancers. In this review, MYC regulation and the mechanisms by which MYC adjusts cellular functions and its implication in hematologic malignancies are summarized. Further, we also discuss potential inhibitors of MYC that could be beneficial for treating hematologic malignancies.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Valiente-Alandi I, Potter SJ, Salvador AM, Schafer AE, Schips T, Carrillo-Salinas F, Gibson AM, Nieman ML, Perkins C, Sargent MA, Huo J, Lorenz JN, DeFalco T, Molkentin JD, Alcaide P, Blaxall BC. Inhibiting Fibronectin Attenuates Fibrosis and Improves Cardiac Function in a Model of Heart Failure. Circulation 2019; 138:1236-1252. [PMID: 29653926 DOI: 10.1161/circulationaha.118.034609] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Fibronectin (FN) polymerization is necessary for collagen matrix deposition and is a key contributor to increased abundance of cardiac myofibroblasts (MFs) after cardiac injury. We hypothesized that interfering with FN polymerization or its genetic ablation in fibroblasts would attenuate MF and fibrosis and improve cardiac function after ischemia/reperfusion (I/R) injury. METHODS Mouse and human MFs were used to assess the impact of the FN polymerization inhibitor (pUR4) in attenuating pathological cellular features such as proliferation, migration, extracellular matrix deposition, and associated mechanisms. To evaluate the therapeutic potential of inhibiting FN polymerization in vivo, wild-type mice received daily intraperitoneal injections of either pUR4 or control peptide (III-11C) immediately after cardiac surgery for 7 consecutive days. Mice were analyzed 7 days after I/R to assess MF markers and inflammatory cell infiltration or 4 weeks after I/R to evaluate long-term effects of FN inhibition on cardiac function and fibrosis. Furthermore, inducible, fibroblast-restricted, FN gene-ablated (Tcf21MerCreMer; Fnflox) mice were used to evaluate cell specificity of FN expression and polymerization in the heart. RESULTS pUR4 administration on activated MFs reduced FN and collagen deposition into the extracellular matrix and attenuated cell proliferation, likely mediated through decreased c-myc signaling. pUR4 also ameliorated fibroblast migration accompanied by increased β1 integrin internalization and reduced levels of phosphorylated focal adhesion kinase protein. In vivo, daily administration of pUR4 for 7 days after I/R significantly reduced MF markers and neutrophil infiltration. This treatment regimen also significantly attenuated myocardial dysfunction, pathological cardiac remodeling, and fibrosis up to 4 weeks after I/R. Last, inducible ablation of FN in fibroblasts after I/R resulted in significant functional cardioprotection with reduced hypertrophy and fibrosis. The addition of pUR4 to the FN-ablated mice did not confer further cardioprotection, suggesting that the salutary effects of inhibiting FN polymerization may be mediated largely through effects on FN secreted from the cardiac fibroblast lineage. CONCLUSIONS Inhibiting FN polymerization or cardiac fibroblast gene expression attenuates pathological properties of MFs in vitro and ameliorates adverse cardiac remodeling and fibrosis in an in vivo model of heart failure. Interfering with FN polymerization may be a new therapeutic strategy for treating cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Iñigo Valiente-Alandi
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| | - Sarah J Potter
- Division of Reproductive Sciences (S.J.P., T.D.), Cincinnati Children's Hospital Medical Center
| | - Ane M Salvador
- Department of Integrative Physiology and Pathobiology, Tufts University Schools of Medicine, Boston, MA (A.M.S., F.C.-S., P.A.)
| | - Allison E Schafer
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| | - Tobias Schips
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| | - Francisco Carrillo-Salinas
- Department of Integrative Physiology and Pathobiology, Tufts University Schools of Medicine, Boston, MA (A.M.S., F.C.-S., P.A.)
| | - Aaron M Gibson
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| | | | - Charles Perkins
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| | - Michelle A Sargent
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| | - Jiuzhou Huo
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| | - John N Lorenz
- Department of Molecular and Cellular Physiology (M.C.N., J.N.L., University of Cincinnati College of Medicine, OH
| | - Tony DeFalco
- Division of Reproductive Sciences (S.J.P., T.D.), Cincinnati Children's Hospital Medical Center
| | - Jeffery D Molkentin
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| | - Pilar Alcaide
- Department of Integrative Physiology and Pathobiology, Tufts University Schools of Medicine, Boston, MA (A.M.S., F.C.-S., P.A.)
| | - Burns C Blaxall
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| |
Collapse
|
5
|
Wang Y, Sun B, Zhang Q, Dong H, Zhang J. p300 Acetylates JHDM1A to inhibit osteosarcoma carcinogenesis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2891-2899. [PMID: 31307234 DOI: 10.1080/21691401.2019.1638790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yongkun Wang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baozhen Sun
- Department of Hepatopancreatobiliary Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qiao Zhang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hang Dong
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jingzhe Zhang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Abstract
IMPACT STATEMENT This review provides various genetic and cell line data previously published in a way to explain how cellular stress can lead into genetic instability.
Collapse
Affiliation(s)
- Jung Joo Moon
- 1 JS Yoon Memorial Cancer Research Institute LLC, Lutherville, MD 2109, USA
| | - Alexander Lu
- 1 JS Yoon Memorial Cancer Research Institute LLC, Lutherville, MD 2109, USA
| | - Chulso Moon
- 1 JS Yoon Memorial Cancer Research Institute LLC, Lutherville, MD 2109, USA.,2 Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institution, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Adenovirus E1A oncogene induces rereplication of cellular DNA and alters DNA replication dynamics. J Virol 2013; 87:8767-78. [PMID: 23740993 DOI: 10.1128/jvi.00879-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oncogenic property of the adenovirus (Ad) transforming E1A protein is linked to its capacity to induce cellular DNA synthesis which occurs as a result of its interaction with several host proteins, including pRb and p300/CBP. While the proteins that contribute to the forced induction of cellular DNA synthesis have been intensively studied, the nature of the cellular DNA replication that is induced by E1A in quiescent cells is not well understood. Here we show that E1A expression in quiescent cells leads to massive cellular DNA rereplication in late S phase. Using a single-molecule DNA fiber assay, we studied the cellular DNA replication dynamics in E1A-expressing cells. Our studies show that the DNA replication pattern is dramatically altered in E1A-expressing cells, with increased replicon length, fork velocity, and interorigin distance. The interorigin distance increased by about 3-fold, suggesting that fewer DNA replication origins are used in E1A-expressing cells. These aberrant replication events led to replication stress, as evidenced by the activation of the DNA damage response. In earlier studies, we showed that E1A induces c-Myc as a result of E1A binding to p300. Using an antisense c-Myc to block c-Myc expression, our results indicate that induction of c-Myc in E1A-expressing cells contributes to the induction of host DNA replication. Together, our results suggest that the E1A oncogene-induced cellular DNA replication stress is due to dramatically altered cellular replication events and that E1A-induced c-Myc may contribute to these events.
Collapse
|
8
|
Padmanabhan A, Li X, Bieberich CJ. Protein kinase A regulates MYC protein through transcriptional and post-translational mechanisms in a catalytic subunit isoform-specific manner. J Biol Chem 2013; 288:14158-14169. [PMID: 23504319 PMCID: PMC3656272 DOI: 10.1074/jbc.m112.432377] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/11/2013] [Indexed: 11/06/2022] Open
Abstract
MYC levels are tightly regulated in cells, and deregulation is associated with many cancers. In this report, we describe the existence of a MYC-protein kinase A (PKA)-polo-like kinase 1 (PLK1) signaling loop in cells. We report that sequential MYC phosphorylation by PKA and PLK1 protects MYC from proteasome-mediated degradation. Interestingly, short term pan-PKA inhibition diminishes MYC level, whereas prolonged PKA catalytic subunit α (PKACα) knockdown, but not PKA catalytic subunit β (PKACβ) knockdown, increases MYC. We show that the short term effect of pan-PKA inhibition on MYC is post-translational and the PKACα-specific long term effect on MYC is transcriptional. These data also reveal distinct functional roles among PKA catalytic isoforms in MYC regulation. We attribute this effect to differential phosphorylation selectivity among PKA catalytic subunits, which we demonstrate for multiple substrates. Further, we also show that MYC up-regulates PKACβ, transcriptionally forming a proximate positive feedback loop. These results establish PKA as a regulator of MYC and highlight the distinct biological roles of the different PKA catalytic subunits.
Collapse
Affiliation(s)
- Achuth Padmanabhan
- Department of Biological Sciences, the University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Xiang Li
- Department of Biological Sciences, the University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Charles J Bieberich
- Department of Biological Sciences, the University of Maryland Baltimore County, Baltimore, Maryland 21250; Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland 21201.
| |
Collapse
|
9
|
Disruption of the CREBBP gene and decreased expression of CREB, NFκB p65, c-JUN, c-FOS, BCL2 and c-MYC suggest immune dysregulation. Hum Immunol 2013; 74:911-5. [PMID: 23643710 DOI: 10.1016/j.humimm.2013.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 03/23/2013] [Accepted: 04/10/2013] [Indexed: 02/08/2023]
Abstract
Genomic aberrations in the CREBBP (CREB-binding protein - CREBBP or CBP) gene such as point mutations, small insertions or exonic copy number changes are usually associated with Rubinstein-Taybi syndrome (RTs). In this study, the disruption of the CREBBP gene on chromosome 16p13.3, as revealed by CGH-array and FISH, suggests immune dysregulation in a patient with the Rubinstein Taybi syndrome (RTs) phenotype. Further investigation with Western blot techniques demonstrated decreased expression of CREB, NFκB, c-Jun, c-Fos, BCL2 and cMyc in peripheral blood mononuclear cells, thus indicating that the CREBBP gene is essential for the normal expression of these proteins and the regulation of immune responses.
Collapse
|
10
|
Xue K, Song J, Wei H, Chen L, Ma Y, Liu S, Li Y, Dai Y, Zhao Y, Li N. Synchronous behaviors of CBP and acetylations of lysine 18 and lysine 23 on histone H3 during porcine oocyte first meiotic division. Mol Reprod Dev 2010; 77:605-14. [PMID: 20575085 DOI: 10.1002/mrd.21190] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As a transcriptional coactivator and acetyltransferase, CREB-binding protein (CBP) is widely characterized due to its functions in cell proliferation and development. However, the activities of CBP in oocyte meiosis are not completely clear. Here we showed that the localization and expression of CBP changed regularly with the progression of porcine oocyte meiosis. The emergence of CBP in chromosomal domains is temporally coincident with the establishments of acetylated lysine 18 (AcH3/K18), lysine 23 (AcH3/K23) and dimethylated arginine 17 (dime-H3/R17) of histone H3 at meiotic stages from germinal vesicle breakdown (GVBD) to metaphase I (MI). Both CBP expression and these three histone modifications persisted to telophase I (TI). When trichostatin A (TSA) was used to enhance histone acetylations in porcine oocytes, we found that hyperacetylations of H3K18 and H3K23 occurred at meiotic stage from GVBD to TI, together with advanced and enhanced expression of CBP in the nucleus. In addition, disturbance of CBP activity by treatment with 2-Naphthol-AS-Ephosphate (KG-501, a drug targeting the KIX domain of CBP that disrupts the formation of CBP functional complex) led to synchronous decreases of CBP expression, AcH3/K18 and AcH3/K23 in chromosomal domains during oocyte meiosis. Therefore, these results indicate that the synchronous changes of CBP expression, AcH3/K18 and AcH3/K23 occur during porcine oocyte meiosis.
Collapse
Affiliation(s)
- Kai Xue
- State Key Laboratories for AgroBiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sankar N, Kadeppagari RK, Thimmapaya B. c-Myc-induced aberrant DNA synthesis and activation of DNA damage response in p300 knockdown cells. J Biol Chem 2009; 284:15193-205. [PMID: 19332536 DOI: 10.1074/jbc.m900776200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We previously showed that in quiescent cells, p300/CBP (CREB-binding protein)family coactivators repress c-myc and prevent premature induction of DNA synthesis. p300/CBP-depleted cells exit G(1) early and continue to accumulate in S phase but do not progress into G(2)/M, and eventually they die of apoptosis. Here, we show that the S-phase arrest in these cells is because of an intra-S-phase block. The inappropriate DNA synthesis that occurs as a result of forced expression of c-myc leads to the activation of the DNA damage response as evidenced by the phosphorylation of several checkpoint related proteins and the formation of foci containing gamma-H2AX. The activation of checkpoint response is related to the induction of c-myc, as the phosphorylation of checkpoint proteins can be reversed when cells are treated with a c-Myc inhibitor or when Myc synthesis is blocked by short hairpin RNA. Using the DNA fiber assay, we show that in p300-depleted cells initiation of replication occurs from multiple replication origins. Chromatin loading of the Cdc45 protein also indicates increased origin activity in p300 knockdown cells. Immunofluorescence experiments indicate that c-Myc colocalizes with replication foci, consistent with the recently reported direct role of c-Myc in the initiation of DNA synthesis. Thus, the inappropriate S-phase entry of p300 down-regulated cells is likely to be because of c-Myc-induced deregulated replication origin activity, which results in replicative stress, activation of a DNA damage response, and S-phase arrest. Our results point to an important role for p300 in maintaining genomic integrity by negatively regulating c-myc.
Collapse
Affiliation(s)
- Natesan Sankar
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
12
|
Karmakar S, Foster EA, Smith CL. Estradiol downregulation of the tumor suppressor gene BTG2 requires estrogen receptor-alpha and the REA corepressor. Int J Cancer 2009; 124:1841-51. [PMID: 19117054 DOI: 10.1002/ijc.24133] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
B-cell Translocation Gene 2 (BTG2/TIS21/PC3) is an anti-proliferative tumor suppressor gene whose expression is significantly reduced in breast carcinomas, and in MCF-7 and T-47D breast cancer cell lines treated with estradiol (E2). In this study the mechanisms involved in E2 down regulation of BTG2 gene expression were examined. Depletion of ERalpha by siRNA indicated that the receptor is required for E2 down regulation of BTG2 mRNA levels, and cycloheximide experiments indicated that the effect of E2 on BTG2 expression was independent of intermediary protein synthesis. Chromatin immunoprecipitation analyses revealed that ERalpha interacts with the BTG2 promoter in a ligand-independent fashion whereas transfection experiments indicated that ERalpha's DNA and ligand binding domains are required for E2 repression of BTG promoter activity. Surprisingly, histone deacetylase (HDACs) activity is essential for basal expression as evidenced by trichostatin A inhibition of BTG2 mRNA levels. Estradiol treatment did not alter histone H3 acetylation although it did induce displacement of RNA polymerase II from the BTG2 gene. Depletion of the ER specific corepressor REA (Repressor of Estrogen Receptor Activity) significantly abrogated E2-mediated BTG2 repression. Taken together, our results reveal a requirement of HDAC activity for basal BTG2 expression and the ERalpha-REA interaction for estrogen repression of the BTG2 gene. The ability of E2-bound ERalpha and REA to suppress BTG2 expression indicates a positive role for this corepressor in regulation of breast cancer cell proliferation.
Collapse
Affiliation(s)
- Sudipan Karmakar
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
13
|
Adenovirus transforming protein E1A induces c-Myc in quiescent cells by a novel mechanism. J Virol 2009; 83:4810-22. [PMID: 19279113 DOI: 10.1128/jvi.02145-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously we showed that the E1A binding proteins p300 and CBP negatively regulate c-Myc in quiescent cells and that binding of E1A to p300 results in the induction of c-Myc and thereby induction of S phase. We demonstrated that p300 and HDAC3 cooperate with the transcription factor YY1 at an upstream YY1 binding site and repress the Myc promoter. Here we show that the small E1A protein induces c-Myc by interfering with the protein-protein interaction between p300, YY1, and HDAC3. Wild-type E1A but not the E1A mutants that do not bind to p300 interfered in recruitment of YY1, p300, and HDAC3 to the YY1 binding site. As E1A started to accumulate after infection, it transiently associated with promoter-bound p300. Subsequently, YY1, p300, and HDAC3 began to dissociate from the promoter. Later in infection, E1A dissociated from the promoter as well as p300, YY1, and HDAC3. Removal of HDAC3 from the promoter correlated with increased acetylation of Myc chromatin and induction. In vivo E1A stably associated with p300 and dissociated YY1 and HDAC3 from the trimolecular complex. In vitro protein-protein interaction studies indicated that E1A initially binds to the p300-YY1-HDAC3 complex, briefly associates with it, and then dissociates the complex, recapitulating somewhat the in vivo situation. Thus, E1A binding to the C-terminal region of p300 disrupts the important corepressor function provided by p300 in repressing c-Myc. Our results reveal a novel mechanism by which a viral oncoprotein activates c-Myc in quiescent cells and raise the possibility that the oncoproteins encoded by the small-DNA tumor viruses may use this mechanism to induce c-Myc, which may be critical for cell transformation.
Collapse
|
14
|
Uncoupling between Ig somatic hypermutation and oncogene mutation in mouse lymphoma. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:418-26. [DOI: 10.1016/j.bbamcr.2008.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/21/2008] [Accepted: 10/21/2008] [Indexed: 01/08/2023]
|
15
|
Singhal G, Kadeppagari RK, Sankar N, Thimmapaya B. Simian virus 40 large T overcomes p300 repression of c-Myc. Virology 2008; 377:227-32. [PMID: 18570961 DOI: 10.1016/j.virol.2008.04.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 04/30/2008] [Indexed: 11/17/2022]
Abstract
We previously showed that in quiescent cells p300/CBP negatively regulates the cell cycle G1-S transition by keeping c-Myc in a repressed state and that adenovirus E1A induces c-Myc by binding to p300/CBP. Studies have shown that p300/CBP binding to simian virus 40 large T is indirect and mediated by p53. By using a series of large T mutants that fail to bind to various cellular proteins including p53 as well as cells where p300 is overexpressed or p53 is knocked down, we show that the association of large T with p300 contributes to the induction of c-Myc and the cell cycle. The induction of c-Myc by this mechanism is likely to be important in large T mediated cell cycle induction and cell transformation.
Collapse
Affiliation(s)
- Ghata Singhal
- Microbiology and Immunology Department, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
16
|
Sankar N, Baluchamy S, Kadeppagari RK, Singhal G, Weitzman S, Thimmapaya B. p300 provides a corepressor function by cooperating with YY1 and HDAC3 to repress c-Myc. Oncogene 2008; 27:5717-28. [PMID: 18542060 DOI: 10.1038/onc.2008.181] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We showed earlier that p300/CBP plays an important role in G1 progression by negatively regulating c-Myc and thereby preventing premature G1 exit. Here, we have studied the mechanism by which p300 represses c-Myc and show that in quiescent cells p300 cooperates with histone deacetylase 3 (HDAC3) to repress transcription. p300 and HDAC3 are recruited to the upstream YY1-binding site of the c-Myc promoter resulting in chromatin deacetylation and repression of c-Myc transcription. Consistent with this, ablation of p300, YY1 or HDAC3 expression results in chromatin acetylation and induction of c-Myc. These three proteins exist as a complex in vivo and form a multiprotein complex with the YY1-binding site in vitro. The C-terminal region of p300 is both necessary and sufficient for the repression of c-Myc. These and other results suggest that in quiescent cells the C-terminal region of p300 provides corepressor function and facilitates the recruitment of p300 and HDAC3 to the YY1-binding site and represses the c-Myc promoter. This corepressor function of p300 prevents the inappropriate induction of c-Myc and S phase.
Collapse
Affiliation(s)
- N Sankar
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
17
|
Dysregulation of CREB binding protein triggers thrombin-induced proliferation of vascular smooth muscle cells. Mol Cell Biochem 2008; 315:123-30. [PMID: 18496732 DOI: 10.1007/s11010-008-9795-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 05/06/2008] [Indexed: 10/22/2022]
Abstract
Thrombin is a potent mitogen for vascular smooth muscle cells (VSMCs). CBP has been regarded as a potential therapeutic target on the basis of its ability to affect cell growth. Therefore we hypothesized that CBP mediates thrombin-induced proliferation of VSMCs. We constructed recombinant adenoviral vector that expresses four short hairpin RNA (shRNA) targeting rat CBP mRNA (CBP-shRNA/Ad). VSMCs were infected with CBP-shRNA/Ad and treated with thrombin. CBP level were analyzed by quantitative real-time PCR and Western blot. To evaluate VSMC proliferation, the cell cycle and DNA synthesis were analyzed by flow cytometry and (3)H-thymidine incorporation, respectively. CBP-shRNA/Ad infection inhibited thrombin-induced CBP expression in a dose-dependent manner concomitant with a decrease in the percentage of cells in the S phase and in DNA synthesis. These findings suggest that CBP plays a pivotal role in the S phase progression of VSMCs.
Collapse
|
18
|
|
19
|
James MA, Lee JH, Klingelhutz AJ. HPV16-E6 associated hTERT promoter acetylation is E6AP dependent, increased in later passage cells and enhanced by loss of p300. Int J Cancer 2006; 119:1878-85. [PMID: 16708385 PMCID: PMC2223064 DOI: 10.1002/ijc.22064] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The E6 oncoprotein from high-risk HPV types activates human telomerase reverse transcriptase (hTERT) transcription in human keratinocytes. Studies on how E6 regulates hTERT have implicated E-box or X-box elements in the hTERT promoter (Veldman et al., Proc Natl Acad Sci USA 2003;100:8211-14; Oh et al., J Virol 2001;75:5559-66; Gewin et al., Genes Dev 2004;18:2269-82), but the mechanism of activation by E6 is still controversial and not well defined. Here, we demonstrate that induction of both hTERT expression and telomerase activity by HPV-16 E6 in early passage keratinocytes is associated with acetylation of histone H3 at the hTERT promoter, is dependent on the E6 associated protein (E6AP) and is not exclusively reliant on E-box or X-box elements. Further increases in histone acetylation of the hTERT promoter and hTERT transcriptional activity in E6 expressing cells that had been passaged extensively in culture were found to occur only with the endogenous promoter and not with an exogenously introduced hTERT promoter construct. Telomerase activity at both early and late passages, however, was dependent on E6AP expression, implying a continued reliance on E6 function for telomerase activity. Our results demonstrate that E6 induces hTERT promoter acetylation, but that further increases in telomerase activity and histone acetylation in later passage E6 expressing cells are independent of E6 activation of the core hTERT promoter. We also provide evidence that the transcription factor p300 is a potential repressor of telomerase activation and histone acetylation in the context of E6 expression. These studies give insight into how immortalization by HPV results in upregulation of hTERT and furthers our understanding of how telomerase is activated during the process of malignant transformation.
Collapse
Affiliation(s)
- Michael A James
- Department of Microbiology and Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
20
|
Janaki Ramaiah M, Parnaik VK. An essential GT motif in the lamin A promoter mediates activation by CREB-binding protein. Biochem Biophys Res Commun 2006; 348:1132-7. [PMID: 16904066 DOI: 10.1016/j.bbrc.2006.07.171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 07/28/2006] [Indexed: 10/24/2022]
Abstract
Lamin A is an important component of nuclear architecture in mammalian cells. Mutations in the human lamin A gene lead to highly degenerative disorders that affect specific tissues. In studies directed towards understanding the mode of regulation of the lamin A promoter, we have identified an essential GT motif at -55 position by reporter gene assays and mutational analysis. Binding of this sequence to Sp transcription factors has been observed in electrophoretic mobility shift assays and by chromatin immunoprecipitation studies. Further functional analysis by co-expression of recombinant proteins and ChIP assays has shown an important regulatory role for CREB-binding protein in promoter activation, which is mediated by the GT motif.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, Andhra Pradesh, India
| | | |
Collapse
|
21
|
Kwok RPS, Liu XT, Smith GD. Distribution of co-activators CBP and p300 during mouse oocyte and embryo development. Mol Reprod Dev 2006; 73:885-94. [PMID: 16596650 DOI: 10.1002/mrd.20440] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
cAMP response element binding protein (CREB)-binding protein (CBP) and p300 are two structurally related transcriptional co-activators that activate expression of many eukaryotic genes. Current dogma would suggest that these transcriptional co-activators have similar mechanisms of transcription regulation. Studies of CBP or p300 homozygotic mouse mutants indicate that normal embryogenesis requires the existence of both factors. However, whether this is indicative of a dosage effect of these two proteins, or whether these proteins play different roles in mouse embryo development is not clear. Here we demonstrated that both factors are first found in the cytoplasm of oocytes within primordial follicles, and that they enter into the oocyte nucleus at different stages of oocyte growth, suggesting that they may play different roles in gene expression during oocyte growth and development. Consistent with this model, in the pre-implantation mouse embryos, from the two-cell stage to the blastocyst stage, the localizations of CBP and p300 are different, at times opposite, indicating that CBP and p300 also have different functions in early mouse embryogenesis.
Collapse
Affiliation(s)
- Roland P S Kwok
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
22
|
Iyer NG, Xian J, Chin SF, Bannister AJ, Daigo Y, Aparicio S, Kouzarides T, Caldas C. p300 is required for orderly G1/S transition in human cancer cells. Oncogene 2006; 26:21-9. [PMID: 16878158 DOI: 10.1038/sj.onc.1209771] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of the transcriptional coactivator p300 in cell cycle control has not been analysed in detail due to the lack of appropriate experimental systems. We have now examined cell cycle progression of p300-deficient cancer cell lines, where p300 was disrupted either by gene targeting (p300(-) cells) or knocked down using RNAi. Despite significant proliferation defects under normal growth conditions, p300-deficient cells progressed rapidly through G1 with premature S-phase entry. Accelerated G1/S transition was associated with early retinoblastoma (RB) hyperphosphorylation and activation of E2F targets. The p300-acetylase activity was dispensable since expression of a HAT-deficient p300 mutant reversed these changes. Co-immunoprecipitation showed p300/RB interaction occurs in vivo during G1, and this interaction has two peaks: in early G1 with unphosphorylated RB and in late G1 with phosphorylated RB. In vitro kinase assays showed that p300 directly inhibits cdk6-mediated RB phosphorylation, suggesting p300 acts in early G1 to prevent RB hyperphosphorylation and delay premature S-phase entry. Paradoxically, continued cycling of p300(-) cells despite prolonged serum depletion was observed, and this occurred in association with persistent RB hyperphosphorylation. Altogether, these results suggest that p300 has an important role in G1/S control, possibly by modulating RB phosphorylation.
Collapse
Affiliation(s)
- N G Iyer
- Cancer Genomics Program, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Baluchamy S, Sankar N, Navaraj A, Moran E, Thimmapaya B. Relationship between E1A binding to cellular proteins, c-myc activation and S-phase induction. Oncogene 2006; 26:781-7. [PMID: 16862175 DOI: 10.1038/sj.onc.1209825] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We recently showed that p300/CREB-binding protein (CBP) plays an important role in maintaining cells in G0/G1 phase by keeping c-myc in a repressed state. Consistent with this, adenovirus E1A oncoprotein induces c-myc in a p300-dependent manner, and the c-myc induction is linked to S-phase induction. The induction of S phase by E1A is dependent on its binding to and inactivating several host proteins including p300/CBP. To determine whether there is a correlation between the host proteins binding to the N-terminal region of E1A, activation of c-myc and induction of S phase, we assayed the c-myc and S-phase induction in quiescent human cells by infecting them with Ad N-terminal E1A mutants with mutations that specifically affect binding to different chromatin-associated proteins including pRb, p300, p400 and p300/CBP-associated factor (PCAF). We show that the mutants that failed to bind to p300 or pRb were severely defective for c-myc and S-phase induction. The induction of c-myc and S phase was only moderately affected when E1A failed to bind to p400. Furthermore, analysis of the E1A mutants that fail to bind to p300, and both p300 and PCAF suggests that PCAF may also play a role in c-myc repression, and that the two chromatin-associated proteins may repress c-myc independently. In summary, these results suggest that c-myc deregulation by E1A through its interaction with these chromatin-associated proteins is an important step in the E1A-mediated cell cycle deregulation and possibly in cell transformation.
Collapse
Affiliation(s)
- S Baluchamy
- Department of Microbiology-Immunology Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
24
|
Saha RN, Pahan K. HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ 2006; 13:539-50. [PMID: 16167067 PMCID: PMC1963416 DOI: 10.1038/sj.cdd.4401769] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Gradual disclosure of the molecular basis of selective neuronal apoptosis during neurodegenerative diseases reveals active participation of acetylating and deacetylating agents during the process. Several studies have now successfully manipulated neuronal vulnerability by influencing the dose and enzymatic activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs), enzymes regulating acetylation homeostasis within the nucleus, thus focusing on the importance of balanced acetylation status in neuronal vitality. It is now increasingly becoming clear that acetylation balance is greatly impaired during neurodegenerative conditions. Herein, we attempt to illuminate molecular means by which such impairment is manifested and how the compromised acetylation homeostasis is intimately coupled to neurodegeneration. Finally, we discuss the therapeutic potential of reinstating the HAT-HDAC balance to ameliorate neurodegenerative diseases.
Collapse
Affiliation(s)
- RN Saha
- Section of Neuroscience, Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE 68583-0740, USA
| | - K Pahan
- Section of Neuroscience, Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE 68583-0740, USA
| |
Collapse
|
25
|
Han SW, Roman J. Fibronectin induces cell proliferation and inhibits apoptosis in human bronchial epithelial cells: pro-oncogenic effects mediated by PI3-kinase and NF-κB. Oncogene 2006; 25:4341-9. [PMID: 16518410 DOI: 10.1038/sj.onc.1209460] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The extracellular matrix glycoprotein, fibronectin, influences a variety of cellular functions including adhesion, migration, survival, differentiation, and growth. Fibronectin has also been shown to increase the migration and proliferation of human lung carcinoma cells. However, the role of fibronectin in controlling lung airway epithelial cell phenotype remains unknown. Here, we demonstrate that fibronectin stimulates the proliferation of human bronchial epithelial cells (BEAS-2B and 16-HBE). Of note, fibronectin induced the mRNA and protein expression of c-Myc and cyclin D1, while it decreased the expressions of cyclin-dependent kinase inhibitor p21 (WAF-1/CIP1/MDA-6) (p21) and the tumor suppressor gene phosphatase and tensin homolog deleted on chromosome ten (PTEN). Fibronectin also stimulated the phosphorylation of the phosphatidylinositol 3 kinase (PI3-K) downstream signal Akt. The inhibitor of PI3-K, Wortmannin, and anti-alpha5beta1 integrin antibodies abrogated the effect of fibronectin on c-Myc, cyclin D1, p21, and PTEN expression. The stimulatory effect of fibronectin was mediated by nuclear factor kappaB (NF-kappaB) since fibronectin induced the expression of the p65 component of NF-kappaB and enhanced NF-kappaB DNA binding. Furthermore, we found that p65 small interfering RNA inhibited the effect of fibronectin on c-Myc, cyclin D1, p21, PTEN expression, and on fibronectin-induced cell proliferation. Finally, we found that fibronectin inhibits apoptosis by reducing DNA fragmentation and inhibiting the activities of caspases 3/7. Taken together, our findings demonstrate that fibronectin stimulates human bronchial epithelial cell growth and inhibits apoptosis through activation of NF-kappaB, which, in turn, increases the expression of c-Myc and cyclin D1 and decreases p21 and PTEN via alpha5beta1 integrin-dependent signals that include PI3-K/Akt. Therefore, alternations in the extracellular matrix composition of the lung, with increased fibronectin, might promote epithelial cell growth and thereby contribute to oncogenesis in certain settings.
Collapse
Affiliation(s)
- S W Han
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
26
|
Clarke AS, Samal E, Pillus L. Distinct roles for the essential MYST family HAT Esa1p in transcriptional silencing. Mol Biol Cell 2006; 17:1744-57. [PMID: 16436512 PMCID: PMC1415314 DOI: 10.1091/mbc.e05-07-0613] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Among acetyltransferases, the MYST family enzyme Esa1p is distinguished for its essential function and contribution to transcriptional activation and DNA double-stranded break repair. Here we report that Esa1p also plays a key role in silencing RNA polymerase II (Pol II)-transcribed genes at telomeres and within the ribosomal DNA (rDNA) of the nucleolus. These effects are mediated through Esa1p's HAT activity and correlate with changes within the nucleolus. Esa1p is enriched within the rDNA, as is the NAD-dependent protein deacetylase Sir2p, and the acetylation levels of key Esa1p histone targets are reduced in the rDNA in esa1 mutants. Although mutants of both ESA1 and SIR2 have enhanced rates of rDNA recombination, esa1 effects are more modest yet result in distinct structural changes of rDNA chromatin. Surprisingly, increased expression of ESA1 can bypass the requirement for Sir2p in rDNA silencing, suggesting that these two enzymes with seemingly opposing activities both contribute to achieve optimal nucleolar chromatin structure and function.
Collapse
Affiliation(s)
- Astrid S Clarke
- Division of Biological Sciences, UCSD Cancer Center and Center for Molecular Genetics, University of California-San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
27
|
Qi Y, Tu Y, Yang D, Chen Q, Xiao J, Chen Y, Fu J, Xiao X, Zhou Z. Cyclin a but not cyclin D1 is essential for c-myc-modulated cell-cycle progression. J Cell Physiol 2006; 210:63-71. [PMID: 17013808 DOI: 10.1002/jcp.20816] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The proto-oncogene c-myc is a key player in cell-cycle regulation and is deregulated in a broad range of human cancers and cell proliferation disorders. Here we reported that overexpression of c-myc in human embryonic lung fibroblasts (HEL) that have low endogenous c-myc enriched S phase cells with increased expression of cyclin D3, E, A, Cdk2, and Cdk4, and decreased expression of p21 and p27. To the opposite, using RNAi to downregulate c-myc expression in A549 cells that have high endogenous c-myc enriched G1 phase cells with decreased expression of cyclin D3, E, A, Cdk2, Cdk4, and increased expression of p21 and p27. We found that cyclin A expression was the most susceptive to changes in c-myc levels and essential in c-myc-modulated cell cycle pathway via co-transfection, however, cyclin D1 showed no change between treated and control groups in either HEL or A549 cells. Our results indicated that upregulation of c-myc expression promotes cell cycling in HEL cells, whereas downregulation of c-myc expression causes G1 phase arrest in A549 cells, and the c-myc-mediated cell-cycle regulation pathway was dependent on cyclin A and involved cyclin D3, E, Cdk2, Cdk4, p21, and p27, but not cyclin D1.
Collapse
Affiliation(s)
- Yitao Qi
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Jethanandani P, Kramer RH. Alpha7 integrin expression is negatively regulated by deltaEF1 during skeletal myogenesis. J Biol Chem 2005; 280:36037-46. [PMID: 16129691 DOI: 10.1074/jbc.m508698200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alpha7 integrin levels increase dramatically as myoblasts differentiate to myotubes. A negative regulatory element with putative sites for deltaEF1 is present in the alpha7 proximal promoter region. To define the role of deltaEF1 in regulating alpha7 integrin expression, we overexpressed deltaEF1 in C2C12 myoblasts. This resulted in a major down-regulation of alpha7 protein expression. Promoter assays revealed that C2C12 myoblasts transfected with deltaEF1 showed a decrease in activity of the 2.8-kb alpha7 promoter fragment, indicating regulation of alpha7 integrin at the transcriptional level. We have identified two E-box-like sites for deltaEF1 in the negative regulatory region. Mutation of these sites enhanced alpha7 promoter activity, indicating that these sites function in repression. MYOD, an activator of alpha7 integrin transcription, can compete with deltaEF1 for binding at these sites in gel shift assay. By using chromatin immunoprecipitation, we demonstrated a reciprocal binding of deltaEF1 and MYOD to this regulatory element depending on the stage of differentiation: deltaEF1 is preferentially bound in myoblasts to this region, whereas MYOD is bound in myotubes. The N-terminal region of deltaEF1 is necessary for alpha7 repression, and this region also binds the co-activator p300/CBP. Importantly, we found that the p300/CBP co-activator can overcome repression by deltaEF1, suggesting that deltaEF1 can titrate limiting amounts of this co-activator. These findings suggest that deltaEF1 has a role in suppressing integrin expression in myoblasts by displacing MYOD and competing for p300/CBP co-activator.
Collapse
Affiliation(s)
- Poonam Jethanandani
- Department of Cell and Tissue Biology, University of California, San Francisco, California 94143-0640, USA
| | | |
Collapse
|
29
|
McMullen NM, Gaspard GJ, Pasumarthi KBS. Reactivation of cardiomyocyte cell cycle: A potential approach for myocardial regeneration. ACTA ACUST UNITED AC 2005. [DOI: 10.1002/sita.200400050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|