1
|
Pérez-Gordones MC, Ramírez-Iglesias JR, Benaim G, Mendoza M. Molecular, immunological, and physiological evidences of a sphingosine-activated plasma membrane Ca 2+-channel in Trypanosoma equiperdum. Parasitol Res 2024; 123:166. [PMID: 38506929 DOI: 10.1007/s00436-024-08188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
The hemoparasite Trypanosoma equiperdum belongs to the Trypanozoon subgenus and includes several species that are pathogenic to animals and humans in tropical and subtropical areas across the world. As with all eukaryotic organisms, Ca2+ is essential for these parasites to perform cellular processes thus ensuring their survival across their life cycle. Despite the established paradigm to study proteins related to Ca2+ homeostasis as potential drug targets, so far little is known about Ca2+ entry into trypanosomes. Therefore, in the present study, the presence of a plasma membrane Ca2+-channel in T. equiperdum (TeCC), activated by sphingosine and inhibited by verapamil, is described. The TeCC was cloned and analyzed using bioinformatic resources, which confirmed the presence of several domains, motifs, and a topology similar to the Ca2+ channels found in higher eukaryotes. Biochemical and confocal microscopy assays using antibodies raised against an internal region of human L-type Ca2+ channels indicate the presence of a protein with similar predicted molar mass to the sequence analyzed, located at the plasma membrane of T. equiperdum. Physiological assays based on Fura-2 signals and Mn2+ quenching performed on whole parasites showed a unidirectional Ca2+ entry, which is activated by sphingosine and blocked by verapamil, with the distinctive feature of insensitivity to nifedipine and Bay K 8644. This suggests a second Ca2+ entry for T. equiperdum, different from the store-operated Ca2+ entry (SOCE) previously described. Moreover, the evidence presented here for the TeCC indicates molecular and pharmacological differences with their mammal counterparts, which deserve further studies to evaluate the potential of this channel as a drug target.
Collapse
Affiliation(s)
- M C Pérez-Gordones
- Instituto de Biología Experimental (IBE), Universidad Central de Venezuela (UCV), Caracas, Venezuela.
| | - J R Ramírez-Iglesias
- Group of Emerging Diseases, Epidemiology & Biodiversity, Master School of Biomedicine, Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador
| | - G Benaim
- Instituto de Biología Experimental (IBE), Universidad Central de Venezuela (UCV), Caracas, Venezuela
- Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| | - M Mendoza
- Centro de Estudios Biomédicos y Veterinarios, Instituto de Estudios Científicos y Tecnológicos (IDECYT), Universidad Nacional Experimental Simón Rodríguez, Caracas, Venezuela
| |
Collapse
|
2
|
Tikhonov DB, Lin L, Yang DSC, Yuchi Z, Zhorov BS. Phenylalkylamines in calcium channels: computational analysis of experimental structures. J Comput Aided Mol Des 2020; 34:1157-1169. [PMID: 32648151 DOI: 10.1007/s10822-020-00330-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022]
Abstract
Experimental 3D structures of calcium channels with phenylalkylamines (PAAs) provide basis for further analysis of atomic mechanisms of these important cardiovascular drugs. In the crystal structure of the engineered calcium channel CavAb with Br-verapamil and in the cryo-EM structure of the Cav1.1 channel with verapamil, the ligands bind in the inner pore. However, there are significant differences between these structures. In the crystal structure the ligand ammonium group is much closer to the ion in the selectivity-filter region Site 3, which is most proximal to the inner pore, than in the cryo-EM structure. Here we used Monte Carlo energy minimizations to dock PAAs in calcium channels. Our computations suggest that in the crystal structure Site 3 is occupied by a water molecule rather than by a calcium ion. Analysis of the published electron density map does not rule out this possibility. In the cryo-EM structures the ammonium group of verapamil is shifted from the calcium ion in Site 3 either along the pore axis, towards the cytoplasm or away from the axis. Our unbiased docking reproduced these binding modes. However, in the cryo-EM structures detergent and lipid molecules interact with verapamil. When we removed these molecules, the nitrile group of verapamil bound to the calcium ion in Site 3. Models of Cav1.2 with different PAAs suggest similar binding modes and direct contacts of the ligands electronegative atoms with the calcium ion in Site 3. Such interactions explain paradoxes in structure-activity relationships of PAAs.
Collapse
Affiliation(s)
- Denis B Tikhonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russian Federation.
| | - Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Daniel S C Yang
- Almazov National Medical Research Centre, St. Petersburg, Russia, 197341
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
| | - Boris S Zhorov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russian Federation.
- Almazov National Medical Research Centre, St. Petersburg, Russia, 197341.
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
3
|
Ca V1.3 L-type Ca 2+ channel contributes to the heartbeat by generating a dihydropyridine-sensitive persistent Na + current. Sci Rep 2017; 7:7869. [PMID: 28801600 PMCID: PMC5554211 DOI: 10.1038/s41598-017-08191-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/07/2017] [Indexed: 11/22/2022] Open
Abstract
The spontaneous activity of sinoatrial node (SAN) pacemaker cells is generated by a functional interplay between the activity of ionic currents of the plasma membrane and intracellular Ca2+ dynamics. The molecular correlate of a dihydropyridine (DHP)-sensitive sustained inward Na+ current (Ist), a key player in SAN automaticity, is still unknown. Here we show that Ist and the L-type Ca2+ current (ICa,L) share CaV1.3 as a common molecular determinant. Patch-clamp recordings of mouse SAN cells showed that Ist is activated in the diastolic depolarization range, and displays Na+ permeability and minimal inactivation and sensitivity to ICa,L activators and blockers. Both CaV1.3-mediated ICa,L and Ist were abolished in CaV1.3-deficient (CaV1.3−/−) SAN cells but the CaV1.2-mediated ICa,L current component was preserved. In SAN cells isolated from mice expressing DHP-insensitive CaV1.2 channels (CaV1.2DHP−/−), Ist and CaV1.3-mediated ICa,L displayed overlapping sensitivity and concentration–response relationships to the DHP blocker nifedipine. Consistent with the hypothesis that CaV1.3 rather than CaV1.2 underlies Ist, a considerable fraction of ICa,L was resistant to nifedipine inhibition in CaV1.2DHP−/− SAN cells. These findings identify CaV1.3 channels as essential molecular components of the voltage-dependent, DHP-sensitive Ist Na+ current in the SAN.
Collapse
|
4
|
de Fátima Reis C, de Andrade DML, Neves BJ, de Almeida Ribeiro Oliveira L, Pinho JF, da Silva LP, Cruz JDS, Bara MTF, Andrade CH, Rocha ML. Blocking the L-type Ca2+ channel (Cav 1.2) is the key mechanism for the vascular relaxing effect of Pterodon spp. and its isolated diterpene methyl-6α-acetoxy-7β-hydroxyvouacapan-17β-oate. Pharmacol Res 2015; 100:242-9. [DOI: 10.1016/j.phrs.2015.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/14/2015] [Accepted: 08/07/2015] [Indexed: 11/27/2022]
|
5
|
Hasreiter J, Goldnagl L, Böhm S, Kubista H. Cav1.2 and Cav1.3 L-type calcium channels operate in a similar voltage range but show different coupling to Ca(2+)-dependent conductances in hippocampal neurons. Am J Physiol Cell Physiol 2014; 306:C1200-13. [PMID: 24760982 DOI: 10.1152/ajpcell.00329.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the central nervous system, L-type voltage-gated calcium channels (LTCCs) come in two isoforms, namely Cav1.2 and Cav1.3 channels. It has been shown previously that these channels differ in biophysical properties, in subcellular localization, and in the coupling to the gene transcription machinery. In previous work on rat hippocampal neurons we have identified an excitatory cation conductance and an inhibitory potassium conductance as important LTCC coupling partners. Notably, a stimulus-dependent interplay of LTCC-mediated Ca(2+) influx and activation of these Ca(2+)-dependent conductances was found to give rise to characteristic voltage responses. However, the contribution of Cav1.2 and Cav1.3 to these voltage responses remained unknown. Hence, the relative contribution of the LTCC isoforms therein was the focus of the current study on hippocampal neurons derived from genetically modified mice, which either lack a LTCC isoform (Cav1.3 knockout mice) or express a dihydropyridine-insensitive LTCC isoform (Cav1.2DHP(-)-knockin mice). We identified common and alternate ion channel couplings of Cav1.2 and Cav1.3 channels. Whereas hyperpolarizing Ca(2+)-dependent conductances were coupled to both Cav1.2 and Cav1.3 channels, an afterdepolarizing potential was only induced by the activity of Cav1.2 channels. Unexpectedly, the activity of Cav1.2 channels was found at relatively hyperpolarized membrane voltages. Our data add important information about the differences between Cav1.2 and Cav1.3 channels that furthers our understanding of the physiological and pathophysiological neuronal roles of these calcium channels. Moreover, our findings suggest that Cav1.3 knockout mice together with Cav1.2DHP(-)-knockin mice provide valuable models for future investigation of hippocampal LTCC-dependent afterdepolarizations.
Collapse
Affiliation(s)
- Julia Hasreiter
- Center of Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Lena Goldnagl
- Center of Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Stefan Böhm
- Center of Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Helmut Kubista
- Center of Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Liao P, Soong TW. Understanding alternative splicing of Cav1.2 calcium channels for a new approach towards individualized medicine. J Biomed Res 2013; 24:181-6. [PMID: 23554629 PMCID: PMC3596553 DOI: 10.1016/s1674-8301(10)60027-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Indexed: 11/28/2022] Open
Abstract
Calcium channel blockers (CCBs) are widely used to treat cardiovascular diseases such as hypertension, angina pectoris, hypertrophic cardiomyopathy, and supraventricular tachycardia. CCBs selectively inhibit the inward flow of calcium ions through voltage-gated calcium channels, particularly Cav1.2, that are expressed in the cardiovascular system. Changes to the molecular structure of Cav1.2 channels could affect sensitivity of the channels to blockade by CCBs. Recently, extensive alternative splicing was found in Cav1.2 channels that generated wide phenotypic variations. Cardiac and smooth muscles express slightly different, but functionally important Cav1.2 splice variants. Alternative splicing could also modulate the gating properties of the channels and giving rise to different responses to inhibition by CCBs. Importantly, alternative splicing of Cav1.2 channels may play an important role to influence the outcome of many cardiovascular disorders. Therefore, the understanding of how alternative splicing impacts Cav1.2 channels pharmacology in various diseases and different organs may provide the possibility for individualized therapy with minimal side effects.
Collapse
Affiliation(s)
- Ping Liao
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433
| | | |
Collapse
|
7
|
Cheng RCK, Tikhonov DB, Zhorov BS. Structural model for phenylalkylamine binding to L-type calcium channels. J Biol Chem 2009; 284:28332-28342. [PMID: 19700404 DOI: 10.1074/jbc.m109.027326] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phenylalkylamines (PAAs), a major class of L-type calcium channel (LTCC) blockers, have two aromatic rings connected by a flexible chain with a nitrile substituent. Structural aspects of ligand-channel interactions remain unclear. We have built a KvAP-based model of LTCC and used Monte Carlo energy minimizations to dock devapamil, verapamil, gallopamil, and other PAAs. The PAA-LTCC models have the following common features: (i) the meta-methoxy group in ring A, which is proximal to the nitrile group, accepts an H-bond from a PAA-sensing Tyr_IIIS6; (ii) the meta-methoxy group in ring B accepts an H-bond from a PAA-sensing Tyr_IVS6; (iii) the ammonium group is stabilized at the focus of P-helices; and (iv) the nitrile group binds to a Ca(2+) ion coordinated by the selectivity filter glutamates in repeats III and IV. The latter feature can explain Ca(2+) potentiation of PAA action and the presence of an electronegative atom at a similar position of potent PAA analogs. Tyr substitution of a Thr in IIIS5 is known to enhance action of devapamil and verapamil. Our models predict that the para-methoxy group in ring A of devapamil and verapamil accepts an H-bond from this engineered Tyr. The model explains structure-activity relationships of PAAs, effects of LTCC mutations on PAA potency, data on PAA access to LTCC, and Ca(2+) potentiation of PAA action. Common and class-specific aspects of action of PAAs, dihydropyridines, and benzothiazepines are discussed in view of the repeat interface concept.
Collapse
Affiliation(s)
- Ricky C K Cheng
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Denis B Tikhonov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.
| |
Collapse
|
8
|
Striessnig J, Koschak A, Sinnegger-Brauns MJ, Hetzenauer A, Nguyen NK, Busquet P, Pelster G, Singewald N. Role of voltage-gated L-type Ca2+ channel isoforms for brain function. Biochem Soc Trans 2006; 34:903-9. [PMID: 17052224 DOI: 10.1042/bst0340903] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Voltage-gated LTCCs (L-type Ca2+ channels) are established drug targets for the treatment of cardiovascular diseases. LTCCs are also expressed outside the cardiovascular system. In the brain, LTCCs control synaptic plasticity in neurons, and DHP (dihydropyridine) LTCC blockers such as nifedipine modulate brain function (such as fear memory extinction and depression-like behaviour). Voltage-sensitive Ca2+ channels Cav1.2 and Cav1.3 are the predominant brain LTCCs. As DHPs and other classes of organic LTCC blockers inhibit both isoforms, their pharmacological distinction is impossible and their individual contributions to defined brain functions remain largely unknown. Here, we summarize our recent experiments with two genetically modified mouse strains, which we generated to explore the individual biophysical features of Cav1.2 and Cav1.3 LTCCs and to determine their relative contributions to various physiological peripheral and neuronal functions. The results described here also allow predictions about the pharmacotherapeutic potential of isoform-selective LTCC modulators.
Collapse
Affiliation(s)
- J Striessnig
- Department of Pharmacology and Toxicology, Institute for Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Peter-Mayrstr. 1/I, A-6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | |
Collapse
|