1
|
Wielgat P, Rogowski K, Niemirowicz-Laskowska K, Car H. Sialic Acid-Siglec Axis as Molecular Checkpoints Targeting of Immune System: Smart Players in Pathology and Conventional Therapy. Int J Mol Sci 2020; 21:ijms21124361. [PMID: 32575400 PMCID: PMC7352527 DOI: 10.3390/ijms21124361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
The sialic acid-based molecular mimicry in pathogens and malignant cells is a regulatory mechanism that leads to cross-reactivity with host antigens resulting in suppression and tolerance in the immune system. The interplay between sialoglycans and immunoregulatory Siglec receptors promotes foreign antigens hiding and immunosurveillance impairment. Therefore, molecular targeting of immune checkpoints, including sialic acid-Siglec axis, is a promising new field of inflammatory disorders and cancer therapy. However, the conventional drugs used in regular management can interfere with glycome machinery and exert a divergent effect on immune controlling systems. Here, we focus on the known effects of standard therapies on the sialoglycan-Siglec checkpoint and their importance in diagnosis, prediction, and clinical outcomes.
Collapse
Affiliation(s)
- Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland;
- Correspondence: ; Tel.: +48-85-7450-647
| | - Karol Rogowski
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.R.); (K.N.-L.)
| | - Katarzyna Niemirowicz-Laskowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.R.); (K.N.-L.)
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland;
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.R.); (K.N.-L.)
| |
Collapse
|
2
|
Kanemaru K, Noguchi E, Tahara-Hanaoka S, Mizuno S, Tateno H, Denda-Nagai K, Irimura T, Matsuda H, Sugiyama F, Takahashi S, Shibuya K, Shibuya A. Clec10a regulates mite-induced dermatitis. Sci Immunol 2019; 4:4/42/eaax6908. [DOI: 10.1126/sciimmunol.aax6908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 10/24/2019] [Indexed: 01/19/2023]
Abstract
House dust mite (HDM) is a major allergen that causes allergic diseases such as atopic dermatitis. However, the regulatory mechanisms of HDM-induced immune responses are incompletely understood. NC/Nga mice are an inbred strain that is more susceptible to HDM and develops more severe dermatitis than other strains. Using whole-exome sequencing, we found that NC/Nga mice carry a stop-gain mutation inClec10a, which encodes a C-type lectin receptor, Clec10a (MGL1/CD301a). The repair of this gene mutation using the CRISPR-Cas9 system ameliorated HDM-induced dermatitis, indicating that the Clec10a mutation is responsible for hypersensitivity to HDM in NC/Nga mice. Similarly,Clec10a−/−mice on the C57BL/6J background showed exacerbated HDM-induced dermatitis. Clec10a expressed on skin macrophages inhibits HDM-induced Toll-like receptor 4 (TLR4)–mediated inflammatory cytokine production through the inhibitory immunoreceptor tyrosine activating motif in its cytoplasmic portion. We identified asialoglycoprotein receptor 1 (Asgr1) as a functional homolog of mouse Clec10a in humans. Moreover, we found that a mucin-like molecule in HDM is a ligand for mouse Clec10a and human Asgr1. Skin application of the ligand ameliorated a TLR4 ligand-induced dermatitis in mice. Our findings suggest that Clec10a in mice and Asgr1 in humans play an important role in skin homeostasis against inflammation associated with HDM-induced dermatitis.
Collapse
|
3
|
Novel insights into the immunomodulatory role of the dendritic cell and macrophage-expressed C-type lectin MGL. Immunobiology 2014; 220:185-92. [PMID: 25454488 DOI: 10.1016/j.imbio.2014.10.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 10/02/2014] [Accepted: 10/05/2014] [Indexed: 12/30/2022]
Abstract
Based on their ability to balance tolerance and inflammation, antigen presenting cells, such as dendritic cells and macrophages contribute to the maintenance of immune homeostasis as well as the instigation of immune activation. Acting as key sensors of tissue integrity and pathogen invasion, they are well equipped with a wide variety of pattern recognition receptors, to which the C-type lectin family also belongs. C-type lectins are glycan-binding receptors that mediate cell-cell communication and pathogen recognition, besides participating in the endocytosis of antigens for presentation to T cells and the fine-tuning of immune responses. Here we review the current state-of-the-art on the dendritic cell and macrophage-expressed C-type lectin macrophage galactose-type lectin (MGL), highlighting the binding specificities, signaling properties and modulation of innate and adaptive immunity by its human and murine orthologues.
Collapse
|
4
|
Kumamoto Y, Linehan M, Weinstein JS, Laidlaw BJ, Craft JE, Iwasaki A. CD301b⁺ dermal dendritic cells drive T helper 2 cell-mediated immunity. Immunity 2013; 39:733-43. [PMID: 24076051 DOI: 10.1016/j.immuni.2013.08.029] [Citation(s) in RCA: 299] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 07/29/2013] [Indexed: 12/24/2022]
Abstract
Unlike other types of T helper (Th) responses, whether the development of Th2 cells requires instruction from particular subset of dendritic cells (DCs) remains unclear. By using an in vivo depletion approach, we have shown that DCs expressing CD301b were required for the generation of Th2 cells after subcutaneous immunization with ovalbumin (OVA) along with papain or alum. CD301b⁺ DCs are distinct from epidermal or CD207⁺ dermal DCs (DDCs) and were responsible for transporting antigen injected subcutaneously with Th2-type adjuvants. Transient depletion of CD301b⁺ DCs resulted in less effective accumulation and decreased expression of CD69 by polyclonal CD4⁺ T cells in the lymph node. Moreover, despite intact cell division and interferon-γ production, CD301b⁺ DC depletion led to blunted interleukin-4 production by OVA-specific OT-II transgenic CD4⁺ T cells and significantly impaired Th2 cell development upon infection with Nippostrongylus brasiliensis. These results reveal CD301b⁺ DDCs as the key mediators of Th2 immunity.
Collapse
Affiliation(s)
- Yosuke Kumamoto
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
5
|
O'Neill ASG, van den Berg TK, Mullen GED. Sialoadhesin - a macrophage-restricted marker of immunoregulation and inflammation. Immunology 2013. [PMID: 23181380 DOI: 10.1111/imm.12042] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sialoadhesin (Sn, also known as Siglec-1 and CD169) is a macrophage-restricted cell surface receptor that is conserved across mammals. Sn is a member of the sialic acid-binding IgG-like lectin (Siglec) family of proteins characterized by affinity to specifically sialylated ligands, and under normal conditions is expressed on subsets of macrophages in secondary lymphoid tissues, such as lymph node and spleen. However, Sn-positive macrophages can also be found in a variety of pathological conditions, including (autoimmune) inflammatory infiltrates and tumours. Sn has been shown to contribute to sialylated pathogen uptake, antigen presentation and lymphocyte proliferation, and to influence both immunity and tolerance. This review presents Sn as a macrophage-specific marker of inflammation and immunoregulation with the potential to becoming an important biomarker for immunologically active macrophages and a target for therapy.
Collapse
Affiliation(s)
- Alexander S G O'Neill
- Division of Imaging Sciences, King's College London, St Thomas' Hospital, London, UK.
| | | | | |
Collapse
|
6
|
Parasitic infections: a role for C-type lectins receptors. BIOMED RESEARCH INTERNATIONAL 2013; 2013:456352. [PMID: 23509724 PMCID: PMC3581113 DOI: 10.1155/2013/456352] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/12/2012] [Indexed: 02/04/2023]
Abstract
Antigen-presenting cells (APCs) sense the microenvironment through several types of receptors that recognize pathogen-associated molecular patterns. In particular, C-type lectins receptors (CLRs), which are expressed by distinct subsets of dendritic cells (DCs) and macrophages (MØs), recognize and internalize specific carbohydrate antigens in a Ca2+-dependent manner. The targeting of these receptors is becoming an efficient strategy for parasite recognition. However, relatively little is known about how CLRs are involved in both pathogen recognition and the internalization of parasites. The role of CLRs in parasite infections is an area of considerable interest because this research will impact our understanding of the initiation of innate immune responses, which influences the outcome of specific immune responses. This paper attempts to summarize our understanding of the effects of parasites' interactions with CLRs.
Collapse
|
7
|
Abstract
Lymph node (LN) macrophages have long been known for their efficient uptake of lymph-borne antigens. A convergence of studies on innate and adaptive immune responses has led to exciting recent advances in understanding their more specialized properties: presenting antigens to B cells, dendritic cells and T cells, producing trophic factors and cytokines, and, remarkably, being permissive for viral infection, a property critical for mounting anti-viral responses. LN macrophages have been traditionally divided into subsets based on their subcapsular sinus and medullary locations. Here, we classify LN macrophages into three subsets: subcapsular sinus macrophages, medullary sinus macrophages and medullary cord macrophages. We review the literature regarding the roles of these cells in innate and adaptive immune responses and requirements for their development. We also discuss challenges associated with their purification as well as the existence of additional heterogeneity among LN macrophages.
Collapse
Affiliation(s)
| | - Jason G. Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, San Francisco, Calif., USA
| |
Collapse
|
8
|
De Baere MI, Van Gorp H, Nauwynck HJ, Delputte PL. Antibody binding to porcine sialoadhesin reduces phagocytic capacity without affecting other macrophage effector functions. Cell Immunol 2011; 271:462-73. [PMID: 21944562 DOI: 10.1016/j.cellimm.2011.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/18/2011] [Accepted: 08/19/2011] [Indexed: 12/31/2022]
Abstract
Sialoadhesin (Sn) is a macrophage-restricted endocytic receptor involved in cell-cell, cell-matrix and cell-pathogen interactions. Recently, porcine Sn (pSn) was shown to be involved in signaling and lately Sn is gaining interest as a potential target for immunotherapy. However, little is known about the effect of ligand binding to Sn on macrophage effector functions. In this study, we tested the effect of antibody binding to pSn on macrophage viability, phagocytosis of microspheres, uptake and processing of soluble antigens, reactive oxygen/nitrogen species production, MHC I and MHC II cell surface expression and cytokine production. This was done by treatment of porcine primary alveolar macrophages with the pSn-specific mAb 41D3, or an isotype-matched control mAb. No significant effect on most effector functions under study was observed, except for a significant reduction of phagocytosis. Thus, antibody binding to pSn can downregulate phagocytosis, which could have implications on homeostasis, infectious and immune diseases, and immunotherapy.
Collapse
Affiliation(s)
- Miet I De Baere
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | | | | | | |
Collapse
|
9
|
Ueno S, Mojic M, Ohashi Y, Higashi N, Hayakawa Y, Irimura T. Asialoglycoprotein receptor promotes cancer metastasis by activating the EGFR-ERK pathway. Cancer Res 2011; 71:6419-27. [PMID: 21868757 DOI: 10.1158/0008-5472.can-11-1773] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the importance of glycans in malignant cell behavior is well documented, the potential involvement of endogenous lectins as modifiers of progression and metastasis in the tumor microenvironment has not been explored. In this study, we show that loss of the hepatic asialoglycoprotein receptor (ASGPR) in mice severely reduces the frequency of spontaneous lung metastasis after intrahepatic implantation of murine Lewis lung carcinoma (3LL) cells. Conversely, in vitro treatment with recombinant ASGPR increased the invasive and metastatic capacity of 3LL cells before intrahepatic implantation. ASGPR treatment in vitro increased the expression and production of matrix metalloproteinase-9 through activation of the epidermal growth factor receptor-extracellular signal-regulated kinase (EGFR-ERK) pathway. Our findings identify ASGPR as a novel important factor that responds to endogenous lectins in the tumor microenvironment to promote cancer metastasis by activating the EGFR-ERK pathway through interactions with counter-receptors on cancer cells.
Collapse
Affiliation(s)
- Suguru Ueno
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Ramya TNC, Weerapana E, Liao L, Zeng Y, Tateno H, Liao L, Yates JR, Cravatt BF, Paulson JC. In situ trans ligands of CD22 identified by glycan-protein photocross-linking-enabled proteomics. Mol Cell Proteomics 2010; 9:1339-51. [PMID: 20172905 DOI: 10.1074/mcp.m900461-mcp200] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CD22, a regulator of B-cell signaling, is a siglec that recognizes the sequence NeuAcalpha2-6Gal on glycoprotein glycans as ligands. CD22 interactions with glycoproteins on the same cell (in cis) and apposing cells (in trans) modulate its activity in B-cell receptor signaling. Although CD22 predominantly recognizes neighboring CD22 molecules as cis ligands on B-cells, little is known about the trans ligands on apposing cells. We conducted a proteomics scale study to identify candidate trans ligands of CD22 on B-cells by UV photocross-linking CD22-Fc chimera bound to B-cell glycoproteins engineered to carry sialic acids with a 9-aryl azide moiety. Using mass spectrometry-based quantitative proteomics to analyze the cross-linked products, 27 glycoproteins were identified as candidate trans ligands. Next, CD22 expressed on the surface of one cell was photocross-linked to glycoproteins on apposing B-cells followed by immunochemical analysis of the products with antibodies to the candidate ligands. Of the many candidate ligands, only the B-cell receptor IgM was found to be a major in situ trans ligand of CD22 that is selectively redistributed to the site of cell contact upon interaction with CD22 on the apposing cell.
Collapse
Affiliation(s)
- T N C Ramya
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Westcott DJ, Delproposto JB, Geletka LM, Wang T, Singer K, Saltiel AR, Lumeng CN. MGL1 promotes adipose tissue inflammation and insulin resistance by regulating 7/4hi monocytes in obesity. ACTA ACUST UNITED AC 2009; 206:3143-56. [PMID: 19995956 PMCID: PMC2806469 DOI: 10.1084/jem.20091333] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adipose tissue macrophages (ATMs) play a critical role in obesity-induced inflammation and insulin resistance. Distinct subtypes of ATMs have been identified that differentially express macrophage galactose-type C-type lectin 1 (MGL1/CD301), a marker of alternatively activated macrophages. To evaluate if MGL1 is required for the anti-inflammatory function of resident (type 2) MGL1(+) ATMs, we examined the effects of diet-induced obesity (DIO) on inflammation and metabolism in Mgl1(-/-) mice. We found that Mgl1 is not required for the trafficking of type 2 ATMs to adipose tissue. Surprisingly, obese Mgl1(-/-) mice were protected from glucose intolerance, insulin resistance, and steatosis despite having more visceral fat. This protection was caused by a significant decrease in inflammatory (type 1) CD11c(+) ATMs in the visceral adipose tissue of Mgl1(-/-) mice. MGL1 was expressed specifically in 7/4(hi) inflammatory monocytes in the blood and obese Mgl1(-/-) mice had lower levels of 7/4(hi) monocytes. Mgl1(-/-) monocytes had decreased half-life after adoptive transfer and demonstrated decreased adhesion to adipocytes indicating a role for MGL1 in the regulation of monocyte function. This study identifies MGL1 as a novel regulator of inflammatory monocyte trafficking to adipose tissue in response to DIO.
Collapse
Affiliation(s)
- Daniel J Westcott
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Phan TG, Gray EE, Cyster JG. The microanatomy of B cell activation. Curr Opin Immunol 2009; 21:258-65. [PMID: 19481917 PMCID: PMC3736860 DOI: 10.1016/j.coi.2009.05.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 05/06/2009] [Indexed: 11/20/2022]
Abstract
The logistic problem of B cell antigen encounter in the lymph node has recently been studied by dynamic imaging using two-photon microscopy. These studies combined with the early studies of antigen transport have yielded a more complete picture of the orchestration of B cell activation in vivo. Here we summarize the recent advances and focus on the specialized macrophages that are critical to this process and the role of B cells themselves as antigen transporting cells.
Collapse
Affiliation(s)
- Tri Giang Phan
- Garvan Institute of Medical Research, 384 Victoria St Darlinghurst, Sydney NSW 2010, Australia
| | - Elizabeth E. Gray
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California at San Francisco, 513 Parnassus Ave San Francisco CA 94143, United States of America
| | - Jason G. Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California at San Francisco, 513 Parnassus Ave San Francisco CA 94143, United States of America
| |
Collapse
|
13
|
Wu C, Rauch U, Korpos E, Song J, Loser K, Crocker PR, Sorokin LM. Sialoadhesin-positive macrophages bind regulatory T cells, negatively controlling their expansion and autoimmune disease progression. THE JOURNAL OF IMMUNOLOGY 2009; 182:6508-16. [PMID: 19414805 DOI: 10.4049/jimmunol.0804247] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An important regulatory suppressive function in autoimmune and other inflammatory processes has been ascribed to CD4(+)Foxp3(+) regulatory T cells (Tregs), which requires direct cell-cell communication between Tregs, effector T cells, and APCs. However, the molecular basis for these interactions has not yet been clarified. We show here that sialoadhesin (Sn), the prototype of the siglec family of sialic acid-binding transmembrane proteins, expressed by resident and activated tissue-infiltrating macrophages, directly binds to Tregs, negatively regulating their expansion in an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). In this model, macrophages infiltrate the CNS exhibiting tissue-destructing and demyelinating activity, leading to MS-like symptoms. We show here that severity of EAE symptoms is reduced in Sn knockout (KO) mice compared with wild-type littermates due to an up-regulation of CD4(+)Foxp3(+) Treg lymphocytes. Through the use of a Sn fusion protein, Tregs were shown to express substantial amounts of Sn ligand on their cell surface, and direct interaction of Sn(+) macrophages with Tregs specifically inhibited Treg but not effector T lymphocyte proliferation. Conversely, blocking of Sn on macrophages by Sn-specific Abs resulted in elevated proliferation of Tregs. Data indicate that Sn(+) macrophages regulate Treg homeostasis which subsequently influences EAE progression. We propose a new direct cell-cell interaction-based mechanism regulating the expansion of the Tregs during the immune response, representing a "dialogue" between Sn(+) macrophages and Sn-accessible sialic acid residues on Treg lymphocytes.
Collapse
Affiliation(s)
- Chuan Wu
- Institute for Physiological Chemistry and Pathobiochemistry, Muenster University, Muenster, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Singh SK, Streng-Ouwehand I, Litjens M, Weelij DR, García-Vallejo JJ, van Vliet SJ, Saeland E, van Kooyk Y. Characterization of murine MGL1 and MGL2 C-type lectins: distinct glycan specificities and tumor binding properties. Mol Immunol 2009; 46:1240-9. [PMID: 19162326 DOI: 10.1016/j.molimm.2008.11.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 11/17/2008] [Accepted: 11/21/2008] [Indexed: 12/25/2022]
Abstract
Antigen presenting cells (APC) express a variety of pattern recognition receptors, including the C-type lectin receptors (CLR) that specifically recognize carbohydrate structures expressed on self-tissue and pathogens. The CLR play an important role in antigen uptake and presentation and have been shown to mediate cellular interactions. The ligand specificity of the human macrophage galactose-type lectin (MGL) has been characterized extensively. Here, we set out to determine the glycan specificity of the murine homologues, MGL1 and MGL2, using a glycan array. Murine MGL1 was found to be highly specific for Lewis X and Lewis A structures, whereas mMGL2, more similar to the human MGL, recognized N-acetylgalactosamine (GalNAc) and galactose, including the O-linked Tn-antigen, TF-antigen and core 2. The generation of MGL1 and MGL2-Fc proteins allowed us to identify ligands in lymph nodes, and MGL1-Fc additionally recognized high endothelial venules. Strikingly, MGL2 interacted strongly to adenocarcinoma cells, suggesting a potential role in tumor immunity.
Collapse
Affiliation(s)
- Satwinder Kaur Singh
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Martinez-Pomares L. Exploiting Fc chimaeric proteins for the identification of ligands specific for the mannose receptor. Methods Mol Biol 2009; 531:103-22. [PMID: 19347314 DOI: 10.1007/978-1-59745-396-7_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The use of chimaeric molecules bearing tags easily recognised by secondary reagents has facilitated the discovery of protein-protein and protein-carbohydrate interactions using binding assays in situ, in solution and in solid phase. In this chapter we describe our experience in the use of proteins containing selected regions of the mannose receptor fused to the Fc region of human IgG1 or murine IgG2b. Using these reagents we have discovered new and unexpected ligands for the mannose receptor. These ligands were first detected in tissue section using standard histological techniques or ligand blots of whole tissue lysates, identified using affinity chromatography and N-terminal protein sequencing and confirmed using ligand blots or solid-phase-binding assays using purified proteins. These findings have dramatically changed the way we think about this molecule.
Collapse
Affiliation(s)
- Luisa Martinez-Pomares
- Institute of Infection, Immunity and Inflammation, School of Molecular Medical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
16
|
Saba K, Denda-Nagai K, Irimura T. A C-type lectin MGL1/CD301a plays an anti-inflammatory role in murine experimental colitis. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 174:144-52. [PMID: 19095961 DOI: 10.2353/ajpath.2009.080235] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inflammatory bowel disease is caused by abnormal inflammatory and immune responses to harmless substances, such as commensal bacteria, in the large bowel. Such responses appear to be suppressed under healthy conditions, although the mechanism of such suppression is currently unclear. The present study aimed to reveal whether the recognition of bacterial surface carbohydrates by the macrophage galactose-type C-type lectin-1, MGL1/CD301a, induces both the production and secretion of interleukin (IL)-10. Dextran sulfate sodium salt (DSS) was orally administrated to mice that lacked MGL1/CD301a (Mgl1(-/-) mice) and their wild-type littermates. Mgl1(-/-) mice showed significantly more severe inflammation than wild-type mice after administration of DSS. MGL1-positive cells in the colonic lamina propria corresponded to macrophage-like cells with F4/80-high, CD11b-positive, and CD11c-intermediate expression. These cells in Mgl1(-/-) mice produced a lower level of IL-10 mRNA compared with wild-type mice after the administration of DSS for 2 days. Recombinant MGL1 was found to bind both Streptococcus sp. and Lactobacillus sp. among commensal bacteria isolated from mesenteric lymph nodes of DSS-treated mice. Heat-killed Streptococcus sp. induced an increase in IL-10 secretion by MGL1-positive colonic lamina propria macrophages, but not the macrophage population from Mgl1(-/-) mice. These results strongly suggest that MGL1/CD301a plays a protective role against colitis by effectively inducing IL-10 production by colonic lamina propria macrophages in response to invading commensal bacteria.
Collapse
Affiliation(s)
- Kengo Saba
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
17
|
GENINI SEM, MALINVERNI ROBERTO, DELPUTTE PETERL, FIORENTINI SILVIA, STELLA ALESSANDRA, BOTTI SARA, NAUWYNCK HANSJ, GIUFFRA ELISABETTA. Gene Expression Profiling of Porcine Alveolar Macrophages After Antibody-Mediated Cross-Linking of Sialoadhesin (Sn, Siglec-1). J Recept Signal Transduct Res 2008; 28:185-243. [DOI: 10.1080/10799890802084226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Dauner JG, Williams IR, Jacob J. Differential microenvironment localization of effector and memory CD8 T cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:291-9. [PMID: 18097030 DOI: 10.4049/jimmunol.180.1.291] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CD8 T cells are critical for the clearance of intracellular pathogens. Upon infection, naive CD8 T cells differentiate into effector cells that target and eliminate infected cells. Following clearance of the pathogen, most effector cells die, although a small fraction survives to establish a memory population. Subsequent exposure to the same pathogen induces a rapid response of memory T cells and efficient elimination of the pathogen. Although much is known about the CD8 T cell response, the precise microenvironment location of effector and memory CD8 T cells in secondary lymphoid organs is not well characterized. In this study, we present an in situ analysis of the localization of effector and memory CD8 T cells during the murine immune response to lymphocytic choriomenginits virus. We identified the location of these cells using a transgenic mouse model system in which CD8 T cells are irreversibly tagged with yellow fluorescent protein (YFP) after activation. After infection, YFP+ CD8 T cells were initially observed within T cell zones. Later, these cells were found in the red pulp and a disruption of all CD8 T cell zones was observed. After resolution of the immune response, YFP+ memory CD8 T cells were observed primarily in T cells zones. Thus, in the spleens of mice, effector CD8 T cells localize to the red pulp and memory CD8 T cells localize to the T cell zones. Upon rechallenge, memory CD8 T cells rapidly proliferate and the secondary effector CD8 T cells are found in the red pulp.
Collapse
Affiliation(s)
- Joseph G Dauner
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | | | | |
Collapse
|
19
|
Oo-puthinan S, Maenuma K, Sakakura M, Denda-Nagai K, Tsuiji M, Shimada I, Nakamura-Tsuruta S, Hirabayashi J, Bovin NV, Irimura T. The amino acids involved in the distinct carbohydrate specificities between macrophage galactose-type C-type lectins 1 and 2 (CD301a and b) of mice. Biochim Biophys Acta Gen Subj 2008; 1780:89-100. [DOI: 10.1016/j.bbagen.2007.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 10/16/2007] [Accepted: 10/24/2007] [Indexed: 11/15/2022]
|
20
|
van Vliet SJ, Saeland E, van Kooyk Y. Sweet preferences of MGL: carbohydrate specificity and function. Trends Immunol 2008; 29:83-90. [PMID: 18249034 DOI: 10.1016/j.it.2007.10.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 10/26/2007] [Accepted: 10/30/2007] [Indexed: 01/11/2023]
Abstract
C-type lectins play important roles in both innate and adaptive immune responses. In contrast to the mannose- or fucose-specific C-type lectins DC-SIGN and mannose receptor, the galactose-type lectins, of which only macrophage galactose-type lectin (MGL) is found within the immune system, are less well known. MGL is selectively expressed by immature dendritic cells and macrophages with elevated levels on tolerogenic or alternatively activated subsets. Human MGL has an exclusive specificity for rare terminal GalNAc structures, which are revealed on the tumor-associated mucin MUC1 and CD45 on effector T cells. These findings implicate MGL in the homeostatic control of adaptive immunity. We discuss here the functional similarities and differences between MGL orthologs and compare MGL to its closest homolog, the liver-specific asialoglycoprotein receptor (ASGP-R).
Collapse
Affiliation(s)
- Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
21
|
Komatsu N, Waki M, Sue M, Tokuda C, Kasaoka T, Nakajima M, Higashi N, Irimura T. Heparanase expression in B16 melanoma cells and peripheral blood neutrophils before and after extravasation detected by novel anti-mouse heparanase monoclonal antibodies. J Immunol Methods 2007; 331:82-93. [PMID: 18162185 DOI: 10.1016/j.jim.2007.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 11/13/2007] [Accepted: 11/19/2007] [Indexed: 12/29/2022]
Abstract
Degradation of extracellular matrix is associated with extravasation of metastatic tumor cells and inflammatory cells. Heparanase, the heparan sulfate-specific endo-beta-glucuronidase, is a key enzyme for the matrix degradation, yet its involvement in extravasation and invasion during pathological processes was not fully clarified in vivo. In the present study, we examined heparanase expression in mouse experimental models, lung metastasis of melanoma and skin infiltration of neutrophils. Sixteen novel monoclonal antibodies specific for mouse heparanase were established by enzyme-linked immunosorbent assay with a recombinant mouse proheparanase, immunocytochemical staining of B16F10 melanoma cells cultured in vitro, and immunoprecipitation of the lysate of heparanase transfectant cells. Heparanase expression in metastatic nodules of B16F10 melanoma cells and in neutrophils localized in the inflamed skin was immunohistochemically detected using a monoclonal antibody RIO-1 that recognized the C-terminus of mouse heparanase. Homogeneous and strong heparanase staining was observed in 46% of the lung micrometastases of B16F10 melanoma cells. The staining was intensely positive on the invasive front of larger established metastasis nodules, but it was weak or heterogeneous inside the nodules. Heparanase expression in skin-infiltrating neutrophils was examined after inducing local inflammation with croton oil. The monoclonal antibody stained a significant portion of neutrophils inside and along the blood vessels, whereas it did not stain dermal neutrophils located distant from the vasculatures. The present study strongly suggests that both melanoma cells and neutrophils transiently express heparanase before and during the invasive process in vivo.
Collapse
Affiliation(s)
- Noriko Komatsu
- The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol 2007; 7:255-66. [PMID: 17380156 DOI: 10.1038/nri2056] [Citation(s) in RCA: 1518] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell surfaces in the immune system are richly equipped with a complex mixture of glycans, which can be recognized by diverse glycan-binding proteins. The Siglecs are a family of sialic-acid-binding immunoglobulin-like lectins that are thought to promote cell-cell interactions and regulate the functions of cells in the innate and adaptive immune systems through glycan recognition. In this Review, we describe recent studies on signalling mechanisms and discuss the potential role of Siglecs in triggering endocytosis and in pathogen recognition. Finally, we discuss the postulated functions of the recently discovered CD33-related Siglecs and consider the factors that seem to be driving their rapid evolution.
Collapse
Affiliation(s)
- Paul R Crocker
- Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD 15EH, UK.
| | | | | |
Collapse
|
24
|
York MR, Nagai T, Mangini AJ, Lemaire R, van Seventer JM, Lafyatis R. A macrophage marker, Siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced by type I interferons and toll-like receptor agonists. ACTA ACUST UNITED AC 2007; 56:1010-20. [PMID: 17328080 DOI: 10.1002/art.22382] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Microarray analyses of peripheral blood leukocytes have shown that patients with systemic lupus erythematosus express increased levels of type I interferon (IFN)-regulated genes. In this study we examined gene expression by peripheral blood mononuclear cells (PBMCs) from patients with systemic sclerosis (SSc) to better understand the dysregulation of the immune system in this disease. METHODS PBMC gene expression was analyzed by microarray and confirmed by real-time polymerase chain reaction (PCR). Surface protein expression of Siglec-1 was analyzed by flow cytometry in PBMCs from healthy control subjects and patients with SSc, and in control PBMCs that were cultured in vitro with Toll-like receptor (TLR) agonists. RESULTS SSc patients showed increased expression of a cluster of IFN-regulated genes, including Siglec-1 (CD169, sialoadhesin). This result was verified and extended by real-time PCR, showing that a subset of the SSc patients expressed strikingly increased levels of Siglec-1 messenger RNA (mRNA). Flow cytometry of PBMCs from SSc patients and healthy controls showed increased Siglec-1 surface protein expression, which was restricted to CD14+ monocytes. In vitro studies showed that type I IFN and certain TLR agonists, including TLR-7 and TLR-9, induced Siglec-1 mRNA and protein expression. Moreover, TLR induction of surface Siglec-1 was shown to be type I IFN-dependent. Increased numbers of Siglec-1+ cells were observed by immunohistochemistry in the skin of SSc patients compared with healthy controls. CONCLUSION Increased expression of Siglec-1 in circulating SSc monocytes and tissue macrophages suggests that type I IFN-mediated activation of monocytes occurs in SSc, possibly through TLR activation of IFN secretion. These observations indicate a potential role for type I IFN-activated monocyte/macrophages in the pathogenesis of SSc.
Collapse
Affiliation(s)
- Michael R York
- Boston University Medical Center, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
25
|
Robinson MJ, Sancho D, Slack EC, LeibundGut-Landmann S, Reis e Sousa C. Myeloid C-type lectins in innate immunity. Nat Immunol 2006; 7:1258-65. [PMID: 17110942 DOI: 10.1038/ni1417] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
C-type lectins expressed on myeloid cells comprise a family of proteins that share a common structural motif, and some act as receptors in pathogen recognition. But just as the presence of leucine-rich repeats alone is not sufficient to define a Toll-like receptor, the characterization of C-type lectin receptors in innate immunity requires the identification of accompanying signaling motifs. Here we focus on the known signaling pathways of myeloid C-type lectins and on their possible functions as autonomous activating or inhibitory receptors involved in innate responses to pathogens or self.
Collapse
Affiliation(s)
- Matthew J Robinson
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3PX, United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Jiang HR, Hwenda L, Makinen K, Oetke C, Crocker PR, Forrester JV. Sialoadhesin promotes the inflammatory response in experimental autoimmune uveoretinitis. THE JOURNAL OF IMMUNOLOGY 2006; 177:2258-64. [PMID: 16887986 DOI: 10.4049/jimmunol.177.4.2258] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Macrophages are a prominent component of the effector cell compartment in a number of CD4+ T cell-mediated organ-specific autoimmune diseases. In this study, we investigated the role of the sialic acid binding Ig-like lectin sialoadhesin (Sn, Siglec-1) in a model of interphotoreceptor retinal binding protein peptide-induced experimental autoimmune uveoretinitis in mice with targeted deletion of Sn. Our data show that compared with wild-type mice, experimental autoimmune uveoretinitis is reduced in severity in the initial stages in the Sn knockout (KO) mice. In addition, there is a reduction in the proliferative capacity of T cells from the KO mice draining lymph nodes after immunization with interphotoreceptor retinal binding protein peptides, which is manifest some days before disease onset and persists for the duration of disease. Furthermore, activated T cells from the draining lymph nodes of Sn KO mice secrete lower levels of IFN-gamma. The data suggest a role for Sn in "fine tuning" the immune response to autoantigens by modulating T cell priming.
Collapse
Affiliation(s)
- Hui-Rong Jiang
- Department of Ophthalmology, Medical School Foresterhill, Aberdeen, United Kingdom
| | | | | | | | | | | |
Collapse
|
27
|
van Vliet SJ, Gringhuis SI, Geijtenbeek TBH, van Kooyk Y. Regulation of effector T cells by antigen-presenting cells via interaction of the C-type lectin MGL with CD45. Nat Immunol 2006; 7:1200-8. [PMID: 16998493 DOI: 10.1038/ni1390] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 08/02/2006] [Indexed: 11/09/2022]
Abstract
Homeostatic control of T cells involves tight regulation of effector T cells to prevent excessive activation that can cause tissue damage and autoimmunity. Little is known, however, about whether antigen-presenting cells (APCs) are also involved in maintaining immune system homeostasis once effector T cells are stimulated. Here we found that immature APCs downregulated effector T cell function by a mechanism involving the C-type lectin MGL expressed by APCs. Glycosylation-dependent interactions of MGL with CD45 on effector T cells negatively regulated T cell receptor-mediated signaling and T cell-dependent cytokine responses, which in turn decreased T cell proliferation and increased T cell death. Thus, regulation of effector T cells by MGL expressed on APCs may provide a target for regulating chronic inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Sandra J van Vliet
- Department of Molecular Cell Biology & Immunology, Vrije University Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
28
|
Abstract
Sialic acids are a family of acidic sugars with a 9-carbon backbone, prominently expressed in animals of deuterostome lineage. Siglecs are the largest family of vertebrate endogenous receptors that recognize glycoconjugates containing sialic acids. Although a few Siglecs are well-conserved throughout vertebrate evolution and show similar binding preference regardless of the species of origin, most others, particularly the CD33-related subfamily of Siglecs, show marked inter-species differences in repertoire, sequence, and binding preference. The diversification of CD33-related Siglecs may be driven by direct competition against pathogens, and/or by necessity to catch up with the changing landscape of endogenous glycans, which may in turn be changing to escape exploitation by other pathogens.
Collapse
Affiliation(s)
- Takashi Angata
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
29
|
Avril T, North SJ, Haslam SM, Willison HJ, Crocker PR. Probing the cis interactions of the inhibitory receptor Siglec-7 with alpha2,8-disialylated ligands on natural killer cells and other leukocytes using glycan-specific antibodies and by analysis of alpha2,8-sialyltransferase gene expression. J Leukoc Biol 2006; 80:787-96. [PMID: 16857734 DOI: 10.1189/jlb.1005559] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Siglec-7 is a CD33-related sialic acid-binding Ig-like lectin expressed strongly on NK cells, where it can function as an inhibitory receptor. Its sialic acid-binding activity on NK cells is masked by cis interactions with sialylated glycans, which are likely to be important for regulating the inhibitory function of Siglec-7, which exhibits an unusual preference for alpha2,8-linked disialic acids, a motif found in "b-series" gangliosides and some glycoproteins. To investigate the presence of alpha2,8-linked disialic acids on NK cells, T cells, monocytes, and B cells, we first analyzed their expression of all known alpha2,8-sialyltransferase genes by quantitative PCR. Unlike T cells, B cells, and monocytes, NK cells consistently expressed mRNA encoding ST8Sia VI, which creates alpha2,8-linked disialic acids on O-linked glycans of glycoproteins. All blood leukocytes expressed ST8Sia IV, implicated in polysialic acid synthesis, and NK cells variably expressed high levels of ST8Sia V mRNA required for GT3 expression. Two human IgM antibodies, Ha1 and Pi1, with specificity for the alpha2,8-disialyl motif reacted strongly with NK cells in a sialic acid-dependent manner and less strongly with T cells and monocytes. Antibody-induced clustering of Siglec-7 on NK cells resulted in partial colocalization with anti-Ha1. Finally, MALDI-TOF mass spectrometric analysis of isolated NK cell O-glycans revealed the presence of a peak at mass-to-charge ratio of 1619.4 mass units, corresponding to a putative alpha2,8-disialylated glycan. Together, these results suggest that NK cells are decorated with alpha2,8-disialic acid structures implicated in regulation of cellular activation via interactions with Siglec-7.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Cell Line, Tumor
- Gene Expression Profiling
- Humans
- Killer Cells, Natural/immunology
- Lectins/immunology
- Lectins/metabolism
- Leukocytes/immunology
- Leukocytes, Mononuclear/enzymology
- Leukocytes, Mononuclear/immunology
- Ligands
- Mice
- Polysaccharides/chemistry
- Polysaccharides/immunology
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Sensitivity and Specificity
- Sialic Acids/chemistry
- Sialic Acids/metabolism
- Sialyltransferases/biosynthesis
- Sialyltransferases/genetics
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
- Stereoisomerism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Tony Avril
- Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | | | | | | | |
Collapse
|
30
|
Blasius AL, Colonna M. Sampling and signaling in plasmacytoid dendritic cells: the potential roles of Siglec-H. Trends Immunol 2006; 27:255-60. [PMID: 16679063 DOI: 10.1016/j.it.2006.04.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 03/24/2006] [Accepted: 04/21/2006] [Indexed: 11/23/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) detect viruses through toll-like receptor (TLR)7 and TLR9 and respond by secreting type I interferons (IFNs). Because TLR7 and TLR9 are present in endosomes, a mechanism is required to capture and deliver viruses to TLRs. A member of the sialic acid binding Ig-like lectin (Siglec) family, Siglec-H, has recently been identified as a specific surface marker for pDCs in mice. Siglec-H is endocytosed and can mediate the uptake of antigens for processing and presentation. Thus, Siglec-H might have a role in the capture of viruses or other pathogens for their delivery to intracellular TLRs. Paradoxically, Siglec-H also transmits intracellular signals through the associated adaptor DAP12, which reduces pDC responses to TLR ligands. In this review, we discuss models to explain the potential outcomes of Siglec-H engagement in the pDC secretion of type I IFN.
Collapse
Affiliation(s)
- Amanda L Blasius
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
31
|
Oetke C, Vinson MC, Jones C, Crocker PR. Sialoadhesin-deficient mice exhibit subtle changes in B- and T-cell populations and reduced immunoglobulin M levels. Mol Cell Biol 2006; 26:1549-57. [PMID: 16449664 PMCID: PMC1367192 DOI: 10.1128/mcb.26.4.1549-1557.2006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sialoadhesin (Sn, also called Siglec-1 or CD169) is a transmembrane receptor and the prototypic member of the Siglec family of sialic acid binding immunoglobulin-like lectins. It is expressed on specialized subsets of resident macrophages in hematopoietic and lymphoid tissues and on inflammatory macrophages. In order to investigate its function, we generated Sn-deficient mice and confirmed that these mice are true nulls by fluorescence-activated cell sorter analysis and immunohistochemistry. Mice deficient in Sn were viable and fertile and showed no developmental abnormalities. Analysis of cell populations revealed no differences in bone marrow, peritoneal cavity, and thymus, but there was a small increase in CD8 T cells and a decrease in B220-positive cells in spleens and lymph nodes of Sn-deficient mice. Furthermore, in spleen there was a slight decrease in follicular B cells with an increase in numbers of marginal zone B cells. B- and T-cell maturation as well as responses to stimulation with thioglycolate were only slightly affected by Sn deficiency. Immunoglobulin titers in Sn-deficient mice were significantly decreased for immunoglobulin M (IgM) but similar for IgG subclasses. These results suggest a role for sialoadhesin in regulating cells of the immune system rather than in influencing steady-state hematopoiesis.
Collapse
Affiliation(s)
- Cornelia Oetke
- The Wellcome Trust Biocentre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | | | | | | |
Collapse
|
32
|
Chen Y, Pikkarainen T, Elomaa O, Soininen R, Kodama T, Kraal G, Tryggvason K. Defective microarchitecture of the spleen marginal zone and impaired response to a thymus-independent type 2 antigen in mice lacking scavenger receptors MARCO and SR-A. THE JOURNAL OF IMMUNOLOGY 2006; 175:8173-80. [PMID: 16339556 DOI: 10.4049/jimmunol.175.12.8173] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The macrophage scavenger receptor macrophage receptor with a collagenous structure (MARCO) is expressed in mice by the marginal zone macrophages of the spleen and by macrophages of the medullary cords of lymph nodes, as well as the peritoneal macrophages. MARCO is a relative of scavenger receptor A (SR-A), the more widely expressed prototypic member of the scavenger receptor family. In the present study, we found that genetic ablation of MARCO leads to changes in the organization of the splenic marginal zone, and causes a significant reduction in the size of the resident peritoneal macrophage population, possibly due to changes in adhesion and migration capacity. In mice lacking both MARCO and SR-A these effects are even more apparent. During ontogeny, the appearance and organization of the MARCO-expressing cells in the spleen precedes the appearance of other receptors on macrophages in the marginal zone, such as SIGNR1 and Siglec-1. In the absence of MARCO, a clear delay in the organization of the marginal zone was observed. Similar findings were seen when the reappearance of the various subsets from precursors was studied after depleting macrophages from the adult spleen by a liposome treatment. When challenged with a pneumococcal polysaccharide vaccine, a T-independent type 2 Ag for which an intact marginal zone is crucial, the knockout mice exhibited a clearly impaired response. These findings suggest that both MARCO and SR-A, in addition to being important scavenger receptors, could be involved in the positioning and differentiation of macrophages, possibly through interaction with endogenous ligands.
Collapse
MESH Headings
- Animals
- Antigens, T-Independent/immunology
- Cell Count
- Cell Differentiation
- Macrophages, Peritoneal/cytology
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Knockout
- Pneumococcal Vaccines/pharmacology
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/immunology
- Receptors, Immunologic/physiology
- Scavenger Receptors, Class A/deficiency
- Scavenger Receptors, Class A/immunology
- Scavenger Receptors, Class A/physiology
- Spleen/immunology
- Spleen/pathology
Collapse
Affiliation(s)
- Yunying Chen
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
33
|
Martens JH, Kzhyshkowska J, Falkowski-Hansen M, Schledzewski K, Gratchev A, Mansmann U, Schmuttermaier C, Dippel E, Koenen W, Riedel F, Sankala M, Tryggvason K, Kobzik L, Moldenhauer G, Arnold B, Goerdt S. Differential expression of a gene signature for scavenger/lectin receptors by endothelial cells and macrophages in human lymph node sinuses, the primary sites of regional metastasis. J Pathol 2006; 208:574-89. [PMID: 16440291 DOI: 10.1002/path.1921] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sentinel lymph node biopsy for several cancers has shown that metastatic tumour cells are preferentially arrested in the lymph node sinuses. To study the molecular components of this sinusoidal trap, gene profiling of lymph node (sinuses) versus tonsil (no sinuses) was performed. Among other groups of molecules, an intriguing gene signature of scavenger and lectin-like receptors was identified. Nine of the 13 genes were preferentially expressed in sinusoidal cells by immunohistochemistry. Using stabilin-2 and monoclonal antibody 3A5 as exclusive endothelial cell (EC) and macrophage (Mvarphi) markers, respectively, lymph node sinusoidal ECs (stabilin-2+, LYVE-1+, DC-SIGNR+, MARCO+, stabilin-1+, MMR+) and sinusoidal Mvarphi (MMR+, DC-SIGN+, sialoadhesin+, CD163+, stabilin-1+ ) showed distinct, but overlapping expression patterns of the signature molecules by double labelling immunofluorescence. The number of stabilin-1+ sinusoidal Mvarphi, however, varied considerably between samples, indicating turnover/differentiation dynamics in this sinusoidal cell population. In the hepatic sinuses, LYVE-1 and CD36 were strongly up-regulated on both sinusoidal ECs and Mvarphi, while DC-SIGNR and DC-SIGN were strongly down-regulated; in contrast to lymph node sinusoidal ECs, MARCO was confined to Mvarphi (Kupffer cells) in the liver sinuses. As Mvarphi are not present in the wall and lumen of splenic sinuses, splenic sinuses expressed a considerably reduced repertoire of scavenger/lectin receptors lacking sialoadhesin, CD36, CD163, and MARCO; in addition, DC-SIGNR was absent from splenic sinusoidal ECs, while DC-SIGN and thrombomodulin were strongly expressed. Interestingly, most of the signature molecules are known to mediate tumour cell adhesion in addition to their functions as scavenger or pattern recognition receptors. This study establishes a gene and tissue database platform to test the hypothesis that additive expression of the lymph node sinus signature genes in sinusoidal ECs and Mvarphi may contribute to selective tumour cell metastasis in lymph nodes and liver including organ-specific mechanisms, such as intraluminal retention or transmigration, while sparing the spleen.
Collapse
Affiliation(s)
- J-H Martens
- Department of Dermatology, University Medical Centre Mannheim, Ruprecht-Karls University Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Perlman S, Holmes KV. Porcine arterivirus entry in macrophages: heparan sulfate-mediated attachment, sialoadhesin-mediated internalization, and a cell-specific factor mediating virus disassembly and genome release. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:247-52. [PMID: 17037537 PMCID: PMC7123876 DOI: 10.1007/978-0-387-33012-9_41] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
35
|
Kraal G, Mebius R. New insights into the cell biology of the marginal zone of the spleen. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 250:175-215. [PMID: 16861066 PMCID: PMC7112368 DOI: 10.1016/s0074-7696(06)50005-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the marginal zone of the spleen the bloodstream passes through an open system of reticular cells and fibers in which various myeloid and lymphoid cells are located. Macrophages in this region are well equipped to recognize pathogens and filter the blood by virtue of unique combinations of pattern recognition receptors. They interact with a specific set of B cells that can be found only in the marginal zone and that are able to react rapidly to bacterial antigens in particular. This combination of strategically located cells is an important factor in our defense against blood-borne pathogens. New data on the development of the marginal zone itself and the marginal zone B cells are reviewed and discussed in light of the function of the spleen in host defense.
Collapse
Affiliation(s)
- Georg Kraal
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
36
|
Yuita H, Tsuiji M, Tajika Y, Matsumoto Y, Hirano K, Suzuki N, Irimura T. Retardation of removal of radiation-induced apoptotic cells in developing neural tubes in macrophage galactose-type C-type lectin-1-deficient mouse embryos. Glycobiology 2005; 15:1368-75. [PMID: 16096344 DOI: 10.1093/glycob/cwj028] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
MGL1/CD301a is a C-type lectin that recognizes galactose and N-acetylgalactosamine as monosaccharides and is expressed on limited populations of macrophages and dendritic cells at least in adult mice. In this study, pregnant mice with Mgl1+/- genotype were mated with Mgl1+/- or Mgl1-/- genotype males, and the embryos were used to assess a hypothesis that this molecule plays an important role in the clearance of apoptotic cells. After X-ray irradiation at 1 Gy of developing embryos at 10.5 days post coitus (d.p.c.), the number of Mgl1-/- pups was significantly reduced as compared with Mgl1+/+ pups. Distributions of MGL1-positive cells, MGL2-positive cells, and apoptotic cells were histologically examined in irradiated Mgl1+/+ embryos. MGL1-positive cells were detected in the neural tube in which many cells undergo apoptosis, whereas MGL2-positive cells were not observed. Biotinylated recombinant MGL1 bound a significant portion of the apoptotic cells. When Mgl1+/+ and Mgl1-/- embryos were examined for the presence of apoptotic cells, similar numbers of apoptotic cells gave rise, but the clearance of these cells was slower in Mgl1-/- embryos than in Mgl1+/+ embryos. These results strongly suggest that MGL1/CD301a is involved in the clearance of apoptotic cells. This process should be essential in the repair and normal development of X-ray-irradiated embryos.
Collapse
Affiliation(s)
- Hiroshi Yuita
- Department of Radiation Oncology, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Animal glycan-recognizing proteins can be broadly classified into two groups-lectins (which typically contain an evolutionarily conserved carbohydrate-recognition domain [CRD]) and sulfated glycosaminoglycan (SGAG)-binding proteins (which appear to have evolved by convergent evolution). Proteins other than antibodies and T-cell receptors that mediate glycan recognition via immunoglobulin (Ig)-like domains are called "I-type lectins." The major homologous subfamily of I-type lectins with sialic acid (Sia)-binding properties and characteristic amino-terminal structural features are called the "Siglecs" (Sia-recognizing Ig-superfamily lectins). The Siglecs can be divided into two groups: an evolutionarily conserved subgroup (Siglecs-1, -2, and -4) and a CD33/Siglec-3-related subgroup (Siglecs-3 and -5-13 in primates), which appear to be rapidly evolving. This article provides an overview of historical and current information about the Siglecs.
Collapse
Affiliation(s)
- Ajit Varki
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan.
| | | |
Collapse
|
38
|
Sato K, Imai Y, Higashi N, Kumamoto Y, Onami TM, Hedrick SM, Irimura T. Lack of antigen-specific tissue remodeling in mice deficient in the macrophage galactose-type calcium-type lectin 1/CD301a. Blood 2005; 106:207-15. [PMID: 15784728 DOI: 10.1182/blood-2004-12-4943] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Macrophage galactose-type C-type lectins (MGLs), which were recently named CD301, have 2 homologues in mice: MGL1 and MGL2. MGLs are expressed on macrophages and immature dendritic cells. The persistent presence of granulation tissue induced by a protein antigen was observed in wild-type mice but not in mice lacking an endogenous, macrophage-specific, galactose-type calcium-type lectin 1 (MGL1) in an air pouch model. The anti-MGL1 antibody suppressed the granulation tissue formation in wild-type mice. A large number of cells, present only in the pouch of MGL1-deficient mice, were not myeloid or lymphoid lineage cells and the number significantly declined after administration of interleukin 1 alpha (IL-1alpha) into the pouch of MGL1-deficient mice. Furthermore, granulation tissue was restored by this treatment and the cells obtained from the pouch of MGL1-deficient mice were incorporated into the granulation tissue when injected with IL-1alpha. Taken together, MGL1 expressed on a specific subpopulation of macrophages that secrete IL-1alpha was proposed to regulate specific cellular interactions crucial to granulation tissue formation.
Collapse
Affiliation(s)
- Kayoko Sato
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Sato K, Higashi N, Kumamoto Y, Irimura T. Distribution of MGL1 Binding Sites and MGL1/2-positive Cells in Lymph Nodes during the Sensitization Phase of Contact Hypersensitivity. Acta Histochem Cytochem 2005. [DOI: 10.1267/ahc.38.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Koji Sato
- Department of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Nobuaki Higashi
- Department of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Yosuke Kumamoto
- Department of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Tatsuro Irimura
- Department of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|