1
|
Hu F, Zhao L, Wang J, Li X, Xue Z, Ma Y, Zheng M, Chen C, Tong M, Guo X, Li H, Jin H, Xie Q, Zhang X, Huang C, Huang H. TRIM40 interacts with ROCK1 directly and inhibits colorectal cancer cell proliferation through the c-Myc/p21 axis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119855. [PMID: 39357549 DOI: 10.1016/j.bbamcr.2024.119855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is the most common malignancy of the digestive tract, and to date, morbidity and mortality rates remain high. While existing therapeutic methods have achieved certain effective outcomes, there are still many problems in treating this disease. Therefore, it is still urgent to constantly find new therapeutic targets in CRC that could lead to new therapeutics. METHODS Immunohistochemistry, Real-time PCR and Western Blot were employed to measure mRNA and protein levels of the target protein, respectively. The proliferation ability of CRC cells was evaluated using ATP assay, Soft agar assay, and nude mouse subcutaneous tumorigenesis assay. Protein Degradation Assay was conducted to determine protein degradation rate, while Ubiquitination assay was used to assess the ubiquitination modification level of target proteins. Immunoprecipitation assay was used to study protein interactions, and pull-down assay was employed to investigate direct interactions between proteins. RESULTS TRIM40 was significantly down-regulated in CRC tissues, with its expression levels positively correlating with disease prognosis. Using both in vitro and in vivo approaches, it was demonstrated that TRIM40 could significantly inhibit the proliferation of CRC cells. Molecular mechanism studies showed that TRIM40 directly binds to and ubiquitinates ROCK1 protein, accelerating its degradation and subsequently reducing the stability of c-Myc protein. This cascade of events results in the release of transcriptional inhibition of p21 by c-Myc, leading to increased p21 expression and G0/G1 phase arrest in CRC cells. CONCLUSION This research suggests that TRIM40 could be a valuable therapeutic target for the treatment of CRC.
Collapse
Affiliation(s)
- Fangyu Hu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lingling Zhao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Junyu Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoying Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zixuan Xue
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yimeng Ma
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Minghui Zheng
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chenglin Chen
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Meiting Tong
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaohuan Guo
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hongyan Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qipeng Xie
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaodong Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuanshu Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325035, China.
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
2
|
Ghasemi N, Azizi H. Exploring Myc puzzle: Insights into cancer, stem cell biology, and PPI networks. Gene 2024; 916:148447. [PMID: 38583818 DOI: 10.1016/j.gene.2024.148447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/13/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
"The grand orchestrator," "Universal Amplifier," "double-edged sword," and "Undruggable" are just some of the Myc oncogene so-called names. It has been around 40 years since the discovery of the Myc, and it remains in the mainstream of cancer treatment drugs. Myc is part of basic helix-loop-helix leucine zipper (bHLH-LZ) superfamily proteins, and its dysregulation can be seen in many malignant human tumors. It dysregulates critical pathways in cells that are connected to each other, such as proliferation, growth, cell cycle, and cell adhesion, impacts miRNAs action, intercellular metabolism, DNA replication, differentiation, microenvironment regulation, angiogenesis, and metastasis. Myc, surprisingly, is used in stem cell research too. Its family includes three members, MYC, MYCN, and MYCL, and each dysfunction was observed in different cancer types. This review aims to introduce Myc and its function in the body. Besides, Myc deregulatory mechanisms in cancer cells, their intricate aspects will be discussed. We will look at promising drugs and Myc-based therapies. Finally, Myc and its role in stemness, Myc pathways based on PPI network analysis, and future insights will be explained.
Collapse
Affiliation(s)
- Nima Ghasemi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.
| |
Collapse
|
3
|
Hildebrandt ER, Hussain SA, Sieburg MA, Ravishankar R, Asad N, Gore S, Ito T, Hougland JL, Dore TM, Schmidt WK. Targeted genetic and small molecule disruption of N-Ras CaaX cleavage alters its localization and oncogenic potential. Bioorg Chem 2024; 147:107316. [PMID: 38583246 PMCID: PMC11098683 DOI: 10.1016/j.bioorg.2024.107316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/16/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Ras GTPases and other CaaX proteins undergo multiple post-translational modifications at their carboxyl-terminus. These events initiate with prenylation of a cysteine and are followed by endoproteolytic removal of the 'aaX' tripeptide and carboxylmethylation. Some CaaX proteins are only subject to prenylation, however, due to the presence of an uncleavable sequence. In this study, uncleavable sequences were used to stage Ras isoforms in a farnesylated and uncleaved state to address the impact of CaaX proteolysis on protein localization and function. This targeted strategy is more specific than those that chemically inhibit the Rce1 CaaX protease or delete the RCE1 gene because global abrogation of CaaX proteolysis impacts the entire CaaX protein proteome and effects cannot be attributed to any specific CaaX protein of the many concurrently affected. With this targeted strategy, clear mislocalization and reduced activity of farnesylated and uncleaved Ras isoforms was observed. In addition, new peptidomimetics based on cleavable Ras CaaX sequences and the uncleavable CAHQ sequence were synthesized and tested as Rce1 inhibitors using in vitro and cell-based assays. Consistently, these non-hydrolyzable peptidomimetic Rce1 inhibitors recapitulate Ras mislocalization effects when modeled on cleavable but not uncleavable CaaX sequences. These findings indicate that a prenylated and uncleavable CaaX sequence, which can be easily applied to a wide range of mammalian CaaX proteins, can be used to probe the specific impact of CaaX proteolysis on CaaX protein properties under conditions of an otherwise normally processed CaaX protein proteome.
Collapse
Affiliation(s)
- Emily R Hildebrandt
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Shaneela A Hussain
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, UAE
| | | | - Rajani Ravishankar
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Nadeem Asad
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, UAE
| | - Sangram Gore
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, UAE
| | - Takahiro Ito
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - James L Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY, USA; Department of Biology, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse, Syracuse University, Syracuse, NY, USA
| | - Timothy M Dore
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, UAE; Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Walter K Schmidt
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
4
|
Doha ZO, Sears RC. Unraveling MYC's Role in Orchestrating Tumor Intrinsic and Tumor Microenvironment Interactions Driving Tumorigenesis and Drug Resistance. PATHOPHYSIOLOGY 2023; 30:400-419. [PMID: 37755397 PMCID: PMC10537413 DOI: 10.3390/pathophysiology30030031] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
The transcription factor MYC plays a pivotal role in regulating various cellular processes and has been implicated in tumorigenesis across multiple cancer types. MYC has emerged as a master regulator governing tumor intrinsic and tumor microenvironment interactions, supporting tumor progression and driving drug resistance. This review paper aims to provide an overview and discussion of the intricate mechanisms through which MYC influences tumorigenesis and therapeutic resistance in cancer. We delve into the signaling pathways and molecular networks orchestrated by MYC in the context of tumor intrinsic characteristics, such as proliferation, replication stress and DNA repair. Furthermore, we explore the impact of MYC on the tumor microenvironment, including immune evasion, angiogenesis and cancer-associated fibroblast remodeling. Understanding MYC's multifaceted role in driving drug resistance and tumor progression is crucial for developing targeted therapies and combination treatments that may effectively combat this devastating disease. Through an analysis of the current literature, this review's goal is to shed light on the complexities of MYC-driven oncogenesis and its potential as a promising therapeutic target.
Collapse
Affiliation(s)
- Zinab O. Doha
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA;
- Department of Medical Laboratories Technology, Taibah University, Al-Madinah 42353, Saudi Arabia
| | - Rosalie C. Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA;
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
5
|
Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 2021; 14:121. [PMID: 34372899 PMCID: PMC8351444 DOI: 10.1186/s13045-021-01111-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
MYC oncogene is a transcription factor with a wide array of functions affecting cellular activities such as cell cycle, apoptosis, DNA damage response, and hematopoiesis. Due to the multi-functionality of MYC, its expression is regulated at multiple levels. Deregulation of this oncogene can give rise to a variety of cancers. In this review, MYC regulation and the mechanisms by which MYC adjusts cellular functions and its implication in hematologic malignancies are summarized. Further, we also discuss potential inhibitors of MYC that could be beneficial for treating hematologic malignancies.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Zhang YF, Zhang ZH, Li MY, Wang JY, Xing Y, Ri M, Jin CH, Xu GH, Piao LX, Zuo HX, Jin HL, Ma J, Jin X. Britannin stabilizes T cell activity and inhibits proliferation and angiogenesis by targeting PD-L1 via abrogation of the crosstalk between Myc and HIF-1α in cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153425. [PMID: 33310309 DOI: 10.1016/j.phymed.2020.153425] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Programmed cell death-ligand 1 (PD-L1) is overexpressed in tumor cells, which causes tumor cells to escape T cell killing, and promotes tumor cell survival, cell proliferation, migration, invasion, and angiogenesis. Britannin is a natural product with anticancer pharmacological effects. PURPOSE In this work, we studied the anticancer potential of britannin and explored whether britannin mediated its effect by inhibiting the expression of PD-L1 in tumor cells. METHODS In vitro, the mechanisms underlying the inhibition of PD-L1 expression by britannin were investigated by MTT assay, homology modeling and molecular docking, RT-PCR, western blotting, co-immunoprecipitation, and immunofluorescence. The changes in tumor killing activity, cell proliferation, cell cycle, migration, invasion, and angiogenesis were analyzed by T cell killing assays, EdU labeling, colony formation, flow cytometry, wound healing, matrigel transwell invasion, and tube formation, respectively. In vivo, the antitumor activity of britannin was evaluated in the HCT116 cell xenograft model. RESULTS Britannin reduced the expression of PD-L1 in tumor cells by inhibiting the synthesis of the PD-L1 protein but did not affect the degradation of the PD-L1 protein. Britannin also inhibited HIF-1α expression through the mTOR/P70S6K/4EBP1 pathway and Myc activation through the Ras/RAF/MEK/ERK pathway. Mechanistically, britannin inhibited the expression of PD-L1 by blocking the interaction between HIF-1α and Myc. In addition, britannin could enhance the activity of cytotoxic T lymphocytes and inhibit tumor cell proliferation and angiogenesis by inhibiting PD-L1. Finally, in vivo observations were confirmed by demonstrating the antitumor activity of britannin in a murine xenograft model. CONCLUSION Britannin inhibits the expression of PD-L1 by blocking the interaction between HIF-1α and Myc. Moreover, britannin stabilizes T cell activity and inhibits proliferation and angiogenesis by inhibiting PD-L1 in cancer. The current work highlights the anti-tumor effect of britannin, providing insights into the development of cancer therapeutics via PD-L1 inhibition.
Collapse
Affiliation(s)
- Yu Fan Zhang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Zhi Hong Zhang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ming Yue Li
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Jing Ying Wang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yue Xing
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - MyongHak Ri
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Cheng Hua Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Guang Hua Xu
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Lian Xun Piao
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Xiang Zuo
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Lan Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Juan Ma
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Xuejun Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
7
|
Spiniello M, Steinbrink MI, Cesnik AJ, Miller RM, Scalf M, Shortreed MR, Smith LM. Comprehensive in vivo identification of the c-Myc mRNA protein interactome using HyPR-MS. RNA (NEW YORK, N.Y.) 2019; 25:1337-1352. [PMID: 31296583 PMCID: PMC6800478 DOI: 10.1261/rna.072157.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/27/2019] [Indexed: 05/10/2023]
Abstract
Proteins bind mRNA through their entire life cycle from transcription to degradation. We analyzed c-Myc mRNA protein interactors in vivo using the HyPR-MS method to capture the crosslinked mRNA by hybridization and then analyzed the bound proteins using mass spectrometry proteomics. Using HyPR-MS, 229 c-Myc mRNA-binding proteins were identified, confirming previously proposed interactors, suggesting new interactors, and providing information related to the roles and pathways known to involve c-Myc. We performed structural and functional analysis of these proteins and validated our findings with a combination of RIP-qPCR experiments, in vitro results released in past studies, publicly available RIP- and eCLIP-seq data, and results from software tools for predicting RNA-protein interactions.
Collapse
Affiliation(s)
- Michele Spiniello
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Medicine of Precision, University of Studi della Campania Luigi Vanvitelli, Naples 80138, Italy
- Division of Immuno-Hematology and Transfusion Medicine, Cardarelli Hospital, Naples 80131, Italy
| | - Maisie I Steinbrink
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Anthony J Cesnik
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Rachel M Miller
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
8
|
Ross J, Rashkovan M, Fraszczak J, Joly-Beauparlant C, Vadnais C, Winkler R, Droit A, Kosan C, Möröy T. Deletion of the Miz-1 POZ Domain Increases Efficacy of Cytarabine Treatment in T- and B-ALL/Lymphoma Mouse Models. Cancer Res 2019; 79:4184-4195. [DOI: 10.1158/0008-5472.can-18-3038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/03/2019] [Accepted: 06/24/2019] [Indexed: 11/16/2022]
|
9
|
García-Gutiérrez L, Delgado MD, León J. MYC Oncogene Contributions to Release of Cell Cycle Brakes. Genes (Basel) 2019; 10:E244. [PMID: 30909496 PMCID: PMC6470592 DOI: 10.3390/genes10030244] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Promotion of the cell cycle is a major oncogenic mechanism of the oncogene c-MYC (MYC). MYC promotes the cell cycle by not only activating or inducing cyclins and CDKs but also through the downregulation or the impairment of the activity of a set of proteins that act as cell-cycle brakes. This review is focused on the role of MYC as a cell-cycle brake releaser i.e., how MYC stimulates the cell cycle mainly through the functional inactivation of cell cycle inhibitors. MYC antagonizes the activities and/or the expression levels of p15, ARF, p21, and p27. The mechanism involved differs for each protein. p15 (encoded by CDKN2B) and p21 (CDKN1A) are repressed by MYC at the transcriptional level. In contrast, MYC activates ARF, which contributes to the apoptosis induced by high MYC levels. At least in some cells types, MYC inhibits the transcription of the p27 gene (CDKN1B) but also enhances p27's degradation through the upregulation of components of ubiquitin ligases complexes. The effect of MYC on cell-cycle brakes also opens the possibility of antitumoral therapies based on synthetic lethal interactions involving MYC and CDKs, for which a series of inhibitors are being developed and tested in clinical trials.
Collapse
Affiliation(s)
- Lucía García-Gutiérrez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) CSIC-Universidad de Cantabria and Department of Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain.
- Current address: Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| | - María Dolores Delgado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) CSIC-Universidad de Cantabria and Department of Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain.
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) CSIC-Universidad de Cantabria and Department of Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain.
| |
Collapse
|
10
|
Kortlever RM, Sodir NM, Wilson CH, Burkhart DL, Pellegrinet L, Brown Swigart L, Littlewood TD, Evan GI. Myc Cooperates with Ras by Programming Inflammation and Immune Suppression. Cell 2017; 171:1301-1315.e14. [PMID: 29195074 PMCID: PMC5720393 DOI: 10.1016/j.cell.2017.11.013] [Citation(s) in RCA: 355] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 09/19/2017] [Accepted: 11/07/2017] [Indexed: 11/23/2022]
Abstract
The two oncogenes KRas and Myc cooperate to drive tumorigenesis, but the mechanism underlying this remains unclear. In a mouse lung model of KRasG12D-driven adenomas, we find that co-activation of Myc drives the immediate transition to highly proliferative and invasive adenocarcinomas marked by highly inflammatory, angiogenic, and immune-suppressed stroma. We identify epithelial-derived signaling molecules CCL9 and IL-23 as the principal instructing signals for stromal reprogramming. CCL9 mediates recruitment of macrophages, angiogenesis, and PD-L1-dependent expulsion of T and B cells. IL-23 orchestrates exclusion of adaptive T and B cells and innate immune NK cells. Co-blockade of both CCL9 and IL-23 abrogates Myc-induced tumor progression. Subsequent deactivation of Myc in established adenocarcinomas triggers immediate reversal of all stromal changes and tumor regression, which are independent of CD4+CD8+ T cells but substantially dependent on returning NK cells. We show that Myc extensively programs an immune suppressive stroma that is obligatory for tumor progression.
Collapse
Affiliation(s)
- Roderik M Kortlever
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nicole M Sodir
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Catherine H Wilson
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Deborah L Burkhart
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Luca Pellegrinet
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Lamorna Brown Swigart
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Trevor D Littlewood
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Gerard I Evan
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
11
|
Wu F, Tian F, Zeng W, Liu X, Fan J, Lin Y, Zhang Y. Role of peroxiredoxin2 downregulation in recurrent miscarriage through regulation of trophoblast proliferation and apoptosis. Cell Death Dis 2017; 8:e2908. [PMID: 28661480 PMCID: PMC5520946 DOI: 10.1038/cddis.2017.301] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 01/02/2023]
Abstract
Peroxiredoxin (Prdx) 2 is an antioxidant protein that utilizes its redox-sensitive cysteine groups to reduce hydrogen peroxide molecules and protect cells against oxidative damage from reactive oxygen species (ROS). However, its function in trophoblasts at the maternal-fetal interface has not been clarified yet. In this study, significantly lower Prdx2 expression was found in the first-trimester villous cytotrophoblasts of patients with recurrent miscarriage (RM) than in cytotrophoblasts from healthy controls. Further, Prdx2 knockdown inhibited proliferation and increased apoptosis of trophoblast cells. The reason for this may be an increase in the level of cellular ROS after knockdown of Prdx2, which may subsequently lead to an increase in the expression of phosphorylated p53 (p-p53) and p38-MAPK/p21. Prdx2 knockdown also impaired the fusion of BeWo cells induced by forskolin. Bioinformatics analysis identified a c-Myc-binding site in the Prdx2 promoter region, and chromatin immunoprecipitation verified that c-Myc directly bound to a site in this locus. Suppression and overexpression of c-Myc resulted in reduction and increase of Prdx2 expression respectively. Furthermore, we demonstrated that c-Myc was downregulated in the first-trimester cytotrophoblasts of patients with RM, and its downregulation is also related with inhibited cell proliferation, increased apoptosis, as well as upregulated p21 expression and p-p53/p53 ratio. Our findings indicate that Prdx2 might have an important role in the regulation of trophoblast proliferation and apoptosis during early pregnancy, and that its expression is mediated by c-Myc. Thus, these two proteins may be involved in the pathogenesis of RM and may represent potential therapeutic targets.
Collapse
Affiliation(s)
- Fan Wu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuju Tian
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weihong Zeng
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaorui Liu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxia Fan
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Lin
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Alaiya AA, Aljurf M, Shinwari Z, Almohareb F, Malhan H, Alzahrani H, Owaidah T, Fox J, Alsharif F, Mohamed SY, Rasheed W, Aldawsari G, Hanbali A, Ahmed SO, Chaudhri N. Protein signatures as potential surrogate biomarkers for stratification and prediction of treatment response in chronic myeloid leukemia patients. Int J Oncol 2016; 49:913-33. [PMID: 27573699 PMCID: PMC4948960 DOI: 10.3892/ijo.2016.3618] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/04/2016] [Indexed: 12/11/2022] Open
Abstract
There is unmet need for prediction of treatment response for chronic myeloid leukemia (CML) patients. The present study aims to identify disease-specific/disease-associated protein biomarkers detectable in bone marrow and peripheral blood for objective prediction of individual’s best treatment options and prognostic monitoring of CML patients. Bone marrow plasma (BMP) and peripheral blood plasma (PBP) samples from newly-diagnosed chronic-phase CML patients were subjected to expression-proteomics using quantitative two-dimensional gel electrophoresis (2-DE) and label-free liquid chromatography tandem mass spectrometry (LC-MS/MS). Analysis of 2-DE protein fingerprints preceding therapy commencement accurately predicts 13 individuals that achieved major molecular response (MMR) at 6 months from 12 subjects without MMR (No-MMR). Results were independently validated using LC-MS/MS analysis of BMP and PBP from patients that have more than 24 months followed-up. One hundred and sixty-four and 138 proteins with significant differential expression profiles were identified from PBP and BMP, respectively and only 54 proteins overlap between the two datasets. The protein panels also discriminates accurately patients that stay on imatinib treatment from patients ultimately needing alternative treatment. Among the identified proteins are TYRO3, a member of TAM family of receptor tyrosine kinases (RTKs), the S100A8, and MYC and all of which have been implicated in CML. Our findings indicate analyses of a panel of protein signatures is capable of objective prediction of molecular response and therapy choice for CML patients at diagnosis as ‘personalized-medicine-model’.
Collapse
Affiliation(s)
- Ayodele A Alaiya
- Proteomics Unit, Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, (KFSH&RC), Riyadh, 11211 Saudi Arabia
| | - Mahmoud Aljurf
- Adult Hematology/HSCT Section, Oncology Center, King Faisal Specialist Hospital and Research Centre, (KFSH&RC), Riyadh, 11211 Saudi Arabia
| | - Zakia Shinwari
- Proteomics Unit, Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, (KFSH&RC), Riyadh, 11211 Saudi Arabia
| | - Fahad Almohareb
- Adult Hematology/HSCT Section, Oncology Center, King Faisal Specialist Hospital and Research Centre, (KFSH&RC), Riyadh, 11211 Saudi Arabia
| | - Hafiz Malhan
- Adult Hematology/HSCT Section, Oncology Center, King Faisal Specialist Hospital and Research Centre, (KFSH&RC), Riyadh, 11211 Saudi Arabia
| | - Hazzaa Alzahrani
- Adult Hematology/HSCT Section, Oncology Center, King Faisal Specialist Hospital and Research Centre, (KFSH&RC), Riyadh, 11211 Saudi Arabia
| | - Tarek Owaidah
- Hematopathology Section, Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, (KFSH&RC), Riyadh, 11211 Saudi Arabia
| | - Jonathan Fox
- Waters U.K. Limited, Atlas Park, Simonsway, Manchester, M22 5PP, UK
| | - Fahad Alsharif
- Adult Hematology/HSCT Section, Oncology Center, King Faisal Specialist Hospital and Research Centre, (KFSH&RC), Riyadh, 11211 Saudi Arabia
| | - Said Y Mohamed
- Adult Hematology/HSCT Section, Oncology Center, King Faisal Specialist Hospital and Research Centre, (KFSH&RC), Riyadh, 11211 Saudi Arabia
| | - Walid Rasheed
- Adult Hematology/HSCT Section, Oncology Center, King Faisal Specialist Hospital and Research Centre, (KFSH&RC), Riyadh, 11211 Saudi Arabia
| | - Ghuzayel Aldawsari
- Adult Hematology/HSCT Section, Oncology Center, King Faisal Specialist Hospital and Research Centre, (KFSH&RC), Riyadh, 11211 Saudi Arabia
| | - Amr Hanbali
- Adult Hematology/HSCT Section, Oncology Center, King Faisal Specialist Hospital and Research Centre, (KFSH&RC), Riyadh, 11211 Saudi Arabia
| | - Syed Osman Ahmed
- Adult Hematology/HSCT Section, Oncology Center, King Faisal Specialist Hospital and Research Centre, (KFSH&RC), Riyadh, 11211 Saudi Arabia
| | - Naeem Chaudhri
- Adult Hematology/HSCT Section, Oncology Center, King Faisal Specialist Hospital and Research Centre, (KFSH&RC), Riyadh, 11211 Saudi Arabia
| |
Collapse
|
13
|
Chen Y, Lin C, Liu Y, Jiang Y. HMGB1 promotes HCC progression partly by downregulating p21 via ERK/c-Myc pathway and upregulating MMP-2. Tumour Biol 2016; 37:4399-408. [PMID: 26499944 PMCID: PMC4844642 DOI: 10.1007/s13277-015-4049-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
High-mobility group box 1 (HMGB1) was found to be over-expressed in many kinds of human cancer, which binds with several receptors and activates RAGE-Ras-MAPK, Toll-like receptors, NF-κB, and Src family kinase signaling pathways and plays a crucial role in tumorigenesis and cancer progression. However, the function and mechanism of HMGB1 in hepatocellular carcinoma (HCC) remain unclear. The aim of this study was to investigate the effect of HMGB1 on HCC progression and explore new molecular mechanism. HMGB1 transient knockdown, stable knockdown, and re-expression were performed by transfection with specific siRNA, shRNA, or expression vector in HCCLM3 cells. Results showed that transient knockdown HMGB1 prevented cell proliferation, promoted apoptosis, induced S phase arrest, and inhibited migration and invasion in vitro, and stable knockdown HMGB1 inhibited xenograft growth in Balb/c athymic mice in vivo. Molecular mechanism investigation revealed that knockdown HMGB1 significantly reduced the activation of MAPKs, including ERK1/2, p38, SAPK/JNK, as well as MAPKKs (MEK1/2, SEK1) and its substrates (c-Jun, c-Myc); downregulated NF-κB/p65 expression and phosphorylation level; decreased MMP-2 expression and activity; and upregulated p21 expression. Interestingly, c-Myc was firstly found to be involved in the promoting function of HMGB1 on HCC progression, which provided a novel clue for the inhibitory effect of HMGB1 on p21 expression by a p53-independent pathway. Collectively, these findings indicated that HMGB1 promoted HCC progression partly by enhancing the ERK1/2 and NF-κB pathways, upregulating MMP-2, and downregulating p21 via an ERK/c-Myc pathway.
Collapse
Affiliation(s)
- Yanmei Chen
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Yixueyuan Rd 138, Shanghai, 200032, China
| | - Chengzhao Lin
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Yixueyuan Rd 138, Shanghai, 200032, China
| | - Yang Liu
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Yixueyuan Rd 138, Shanghai, 200032, China
| | - Yan Jiang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Yixueyuan Rd 138, Shanghai, 200032, China.
- Department of Chemistry, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Guégan JP, Ezan F, Gailhouste L, Langouët S, Baffet G. MEK1/2 overactivation can promote growth arrest by mediating ERK1/2-dependent phosphorylation of p70S6K. J Cell Physiol 2014; 229:903-15. [PMID: 24501087 DOI: 10.1002/jcp.24521] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 11/22/2013] [Indexed: 12/22/2022]
Abstract
The extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein (MAP) kinase pathway has been involved in the positive and negative regulation of cell proliferation. Upon mitogen stimulation, ERK1/ERK2 activation is necessary for G1- to S-phase progression whereas when hyperactived, this pathway could elicit cell cycle arrest. The mechanisms involved are not fully elucidated but a kinase-independent function of ERK1/2 has been evidenced in the MAPK-induced growth arrest. Here, we show that p70S6K, a central regulator of protein biosynthesis, is essential for the cell cycle arrest induced by overactivation of ERK1/2. Indeed, whereas MEK1 silencing inhibits cell cycle progression, we demonstrate that active mutant form of MEK1 or MEK2 triggers a G1 phase arrest by stimulating an activation of p70S6K by ERK1/2 kinases. Silencing of ERK1/2 activity by shRNA efficiently suppresses p70S6K phosphorylation on Thr421/Ser424 and S6 phosphorylation on Ser240/244 as well as p21 expression, but these effects can be partially reversed by the expression of kinase-dead mutant form of ERK1 or ERK2. In addition, we demonstrate that the kinase p70S6K modulates neither the p21 gene transcription nor the stability of the protein but enhances the translation of the p21 mRNA. In conclusion, our data emphasizes the importance of the translational regulation of p21 by the MEK1/2-ERK1/2-p70S6K pathway to negatively control the cell cycle progression.
Collapse
|
15
|
Bretones G, Delgado MD, León J. Myc and cell cycle control. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:506-16. [PMID: 24704206 DOI: 10.1016/j.bbagrm.2014.03.013] [Citation(s) in RCA: 483] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/18/2014] [Accepted: 03/23/2014] [Indexed: 12/12/2022]
Abstract
Soon after the discovery of the Myc gene (c-Myc), it became clear that Myc expression levels tightly correlate to cell proliferation. The entry in cell cycle of quiescent cells upon Myc enforced expression has been described in many models. Also, the downregulation or inactivation of Myc results in the impairment of cell cycle progression. Given the frequent deregulation of Myc oncogene in human cancer it is important to dissect out the mechanisms underlying the role of Myc on cell cycle control. Several parallel mechanisms account for Myc-mediated stimulation of the cell cycle. First, most of the critical positive cell cycle regulators are encoded by genes induced by Myc. These Myc target genes include Cdks, cyclins and E2F transcription factors. Apart from its direct effects on the transcription, Myc is able to hyperactivate cyclin/Cdk complexes through the induction of Cdk activating kinase (CAK) and Cdc25 phosphatases. Moreover, Myc antagonizes the activity of cell cycle inhibitors as p21 and p27 through different mechanisms. Thus, Myc is able to block p21 transcription or to induce Skp2, a protein involved in p27 degradation. Finally, Myc induces DNA replication by binding to replication origins and by upregulating genes encoding proteins required for replication initiation. Myc also regulates genes involved in the mitotic control. A promising approach to treat tumors with deregulated Myc is the synthetic lethality based on the inhibition of Cdks. Thus, the knowledge of the Myc-dependent cell cycle regulatory mechanisms will help to discover new therapeutic approaches directed against malignancies with deregulated Myc. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
Affiliation(s)
- Gabriel Bretones
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN and Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - M Dolores Delgado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN and Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN and Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
16
|
Park YH, Kim SU, Lee BK, Kim HS, Song IS, Shin HJ, Han YH, Chang KT, Kim JM, Lee DS, Kim YH, Choi CM, Kim BY, Yu DY. Prx I suppresses K-ras-driven lung tumorigenesis by opposing redox-sensitive ERK/cyclin D1 pathway. Antioxid Redox Signal 2013; 19. [PMID: 23186333 PMCID: PMC3704122 DOI: 10.1089/ars.2011.4421] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AIMS Coupled responses of mutated K-ras and oxidative stress are often an important etiological factor in non-small-cell lung cancer (NSCLC). However, relatively few studies have examined the control mechanism of oxidative stress in oncogenic K-ras-driven NSCLC progression. Here, we studied whether the redox signaling pathway governed by peroxiredoxin I (Prx I) is involved in K-ras(G12D)-mediated lung adenocarcinogenesis. RESULTS Using human-lung adenocarcinoma tissues and lung-specific K-ras(G12D)-transgenic mice, we found that Prx I was significantly up-regulated in the tumor regions via activation of nuclear erythroid 2-related factor 2 (Nrf2) transcription. Interestingly, the increased reactive oxygen species (ROS) by null mutation of Prx I greatly promoted K-ras(G12D)-driven lung tumorigenesis in number and size, which appeared to require the activation of the ROS-dependent extracellular signal-regulated kinase (ERK)/cyclin D1 pathway. INNOVATION Taken together, these results suggest that Prx I functions as an Nrf2-dependently inducible tumor suppressant in K-ras-driven lung adenocarcinogenesis by opposing ROS/ERK/cyclin D1 pathway activation. CONCLUSION These findings provide a better understanding of oxidative stress-mediated lung tumorigenesis.
Collapse
Affiliation(s)
- Young-Ho Park
- Disease Model Research Laboratory, Aging Research Center , Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hatano K, Yamaguchi S, Nimura K, Murakami K, Nagahara A, Fujita K, Uemura M, Nakai Y, Tsuchiya M, Nakayama M, Nonomura N, Kaneda Y. Residual prostate cancer cells after docetaxel therapy increase the tumorigenic potential via constitutive signaling of CXCR4, ERK1/2 and c-Myc. Mol Cancer Res 2013; 11:1088-100. [PMID: 23788635 DOI: 10.1158/1541-7786.mcr-13-0029-t] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
UNLABELLED Despite an increasing prevalence of patients with docetaxel-refractory prostate cancer, little is known about the tumor biology of the docetaxel-resistant residual tumor cells compared with primary tumor cells. In this study, tumorigenic potential was increased in the docetaxel-resistant residual prostate cancer cell lines (DRD, 1G7 and PC3DR) compared with parental cells (DU145 or PC3). Enhanced tumorigenic potential was conferred by oncogenic c-Myc, which was stabilized by constitutively activated ERK1/2 in DRD, 1G7, and PC3DR cells. Constitutively activated ERK1/2 was maintained by CXCR4, which was upregulated in DRD, 1G7, and PC3DR cells. In docetaxel-treated DU145 cells, transiently activated ERK1/2 induced CXCR4 expression by stabilizing c-Myc. Furthermore, constitutive activation of CXCR4, ERK1/2, and c-Myc signaling was evident in clinical tissue samples from human patients with docetaxel-resistant prostate cancer. In DTX-resistant residual prostate cancer cells, the enhanced tumorigenic potential was reduced by ERK1/2 inhibition, or by AMD3100, a CXCR4 antagonist. Thus, docetaxel treatment constitutively activated the CXCR4, ERK1/2, and c-Myc signaling loop in docetaxel-resistant residual prostate cancer cells. IMPLICATIONS Constitutive signaling pathways are viable therapeutic targets for residual prostate tumor cells following acquisition of docetaxel resistance.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Benzylamines
- Carcinogenesis
- Cell Line, Tumor
- Cyclams
- Disease Models, Animal
- Docetaxel
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Neoplastic
- Heterocyclic Compounds/pharmacology
- Humans
- MAP Kinase Signaling System
- Male
- Mice, Nude
- Mice, SCID
- Neoplasm, Residual/metabolism
- Neoplasm, Residual/pathology
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Signal Transduction
- Taxoids/therapeutic use
Collapse
Affiliation(s)
- Koji Hatano
- Department of Urology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang YL, Luo YL, Chen C, Li NL, She YL, Zhang L. The influence of the total flavonoids of Hedysarum polybotry on the proliferation, cell cycle, and expressions of p21Ras and proliferating cell nuclear antigen gene in erythroleukemia cell line K562. Chin J Integr Med 2012; 18:385-90. [DOI: 10.1007/s11655-011-0952-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Indexed: 12/21/2022]
|
19
|
Bouquet C, Melchers F. Pim1 and Myc reversibly transform murine precursor B lymphocytes but not mature B lymphocytes. Eur J Immunol 2011; 42:522-32. [DOI: 10.1002/eji.201141987] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/23/2011] [Accepted: 11/02/2011] [Indexed: 11/12/2022]
|
20
|
|
21
|
Acute overexpression of Myc in intestinal epithelium recapitulates some but not all the changes elicited by Wnt/beta-catenin pathway activation. Mol Cell Biol 2009; 29:5306-15. [PMID: 19635809 DOI: 10.1128/mcb.01745-08] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Myc transcription factor is a potent inducer of proliferation and is required for Wnt/beta-catenin signaling in intestinal epithelium. Since deregulation of the Wnt/beta-catenin pathway is a prerequisite for nonhereditary intestinal tumorigenesis, we asked whether activation of Myc recapitulates the tumorigenic changes that are driven by constitutive Wnt/beta-catenin pathway signaling following adenomatous polyposis coli (APC) inactivation. Using mice in which expression of MycER(TAM), a reversibly switchable form of Myc, is expressed transgenically in intestinal epithelium, we define the acute changes that follow Myc activation as well as subsequent deactivation. Myc activation reversibly recapitulates many, but not all, aspects of APC inactivation, including increased proliferation and apoptosis and loss of goblet cells. However, whereas APC inactivation induces redistribution of Paneth cells, direct Myc activation triggers their rapid attrition. Moreover, direct Myc activation engages the ARF/p53/p21(cip1) tumor suppressor pathway, whereas deregulation of Wnt/beta-catenin signaling does not. These observations illustrate key differences in oncogenic impact in intestinal epithelium of direct Myc activation and indirect Myc activation via the Wnt/beta-catenin pathway. Furthermore, the in situ dedifferentiation of mature goblet cells that Myc induces indicates a novel cross talk between the Wnt/beta-catenin and Notch signaling pathways.
Collapse
|
22
|
Thaler S, Hähnel PS, Schad A, Dammann R, Schuler M. RASSF1A Mediates p21Cip1/Waf1-Dependent Cell Cycle Arrest and Senescence through Modulation of the Raf-MEK-ERK Pathway and Inhibition of Akt. Cancer Res 2009; 69:1748-57. [DOI: 10.1158/0008-5472.can-08-1377] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Promoter hypermethylation preventing expression of the RAS association domain family 1 isoform A (RASSF1A) gene product is among the most abundant epigenetic deregulations in human cancer. Restoration of RASSF1A inhibits tumor cell growth in vitro and in murine xenograft models. Rassf1a-deficient mice feature increased spontaneous and carcinogen-induced tumor formation. Mechanistically, RASSF1A affects several cellular functions, such as microtubule dynamics, migration, proliferation, and apoptosis; however, its tumor-suppressive mechanism is incompletely understood. To study the functional consequences of RASSF1A expression in human cancer cells, we made use of a doxycycline-inducible expression system and a RASSF1A-deficient lung cancer cell line. We observed that RASSF1A induces cell cycle arrest in G1 phase and senescence in vitro and in tumors established in immunodeficient mice. RASSF1A-mediated growth inhibition was accompanied by the up-regulation of the cyclin-dependent kinase inhibitor p21Cip1/Waf1 and proceeded independently of p53, p14Arf, and p16Ink4a. Loss of p21Cip1/Waf1 or coexpression of the human papilloma virus 16 oncoprotein E7 was found to override RASSF1A-induced cell cycle arrest and senescence. Conditional RASSF1A affected mitogen-activated protein kinase and protein kinase B/Akt signaling to up-regulate p21Cip1/Waf1 and to facilitate its nuclear localization. In summary, RASSF1A can mediate cell cycle arrest and senescence in human cancer cells by p53-independent regulation of p21Cip1/Waf1. [Cancer Res 2009;69(5):1748–57]
Collapse
Affiliation(s)
- Sonja Thaler
- 1Center for Biomedicine and Medical Technology, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Patricia S. Hähnel
- 2Department of Medicine (Cancer Research), West German Cancer Center, University Duisburg-Essen, Essen, Germany
| | - Arno Schad
- 3Department of Pathology, Johannes Gutenberg University, Mainz, Germany; and
| | - Reinhard Dammann
- 4Institute for Genetics, Justus Liebig University, Giessen, Germany
| | - Martin Schuler
- 2Department of Medicine (Cancer Research), West German Cancer Center, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
23
|
Myc inhibits p27-induced erythroid differentiation of leukemia cells by repressing erythroid master genes without reversing p27-mediated cell cycle arrest. Mol Cell Biol 2008; 28:7286-95. [PMID: 18838534 DOI: 10.1128/mcb.00752-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Inhibition of differentiation has been proposed as an important mechanism for Myc-induced tumorigenesis, but the mechanisms involved are unclear. We have established a genetically defined differentiation model in human leukemia K562 cells by conditional expression of the cyclin-dependent kinase (Cdk) inhibitor p27 (inducible by Zn(2+)) and Myc (activatable by 4-hydroxy-tamoxifen). Induction of p27 resulted in erythroid differentiation, accompanied by Cdk inhibition and G(1) arrest. Interestingly, activation of Myc inhibited p27-mediated erythroid differentiation without affecting p27-mediated proliferation arrest. Microarray-based gene expression indicated that, in the presence of p27, Myc blocked the upregulation of several erythroid-cell-specific genes, including NFE2, JUNB, and GATA1 (transcription factors with a pivotal role in erythropoiesis). Moreover, Myc also blocked the upregulation of Mad1, a transcriptional antagonist of Myc that is able to induce erythroid differentiation. Cotransfection experiments demonstrated that Myc-mediated inhibition of differentiation is partly dependent on the repression of Mad1 and GATA1. In conclusion, this model demonstrates that Myc-mediated inhibition of differentiation depends on the regulation of a specific gene program, whereas it is independent of p27-mediated cell cycle arrest. Our results support the hypothesis that differentiation inhibition is an important Myc tumorigenic mechanism that is independent of cell proliferation.
Collapse
|
24
|
Vaqué JP, Fernández-García B, García-Sanz P, Ferrandiz N, Bretones G, Calvo F, Crespo P, Marín MC, León J. c-Myc Inhibits Ras-Mediated Differentiation of Pheochromocytoma Cells by Blocking c-Jun Up-Regulation. Mol Cancer Res 2008; 6:325-39. [DOI: 10.1158/1541-7786.mcr-07-0180] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Patel JH, McMahon SB. BCL2 is a downstream effector of MIZ-1 essential for blocking c-MYC-induced apoptosis. J Biol Chem 2006; 282:5-13. [PMID: 17082179 DOI: 10.1074/jbc.m609138200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The c-MYC oncoprotein is among the most potent transforming agents in human cells. Ironically, c-MYC is also capable of inducing massive apoptosis under certain conditions. A clear understanding of the distinct pathways activated by c-MYC during apoptosis induction and transformation is crucial to the design of therapeutic strategies aimed at selectively reactivating the apoptotic potential of c-MYC in cancer cells. We recently demonstrated that apoptosis induction in primary human cells strictly requires that c-MYC bind and inactivate the transcription factor MIZ-1. This presumably blocked the ability of MIZ-1 to activate the transcription of an unidentified pro-survival gene. Here we report that MIZ-1 activates the transcription of BCL2. More importantly, inhibition of the MIZ-1/BCL2 signal is an essential event during the apoptotic response. Furthermore, targeting BCL2 with short hairpin RNA or small molecule inhibitors restores the apoptotic potential of a c-MYC mutant that is defective for MIZ-1 inhibition. These observations suggest that repression of BCL2 transcription is the single essential consequence of targeting the MIZ-1 pathway during apoptosis induction. These data define a genetic pathway that helps to explain historical observations documenting cooperation between c-MYC and BCL2 overexpression in human cancer.
Collapse
Affiliation(s)
- Jagruti H Patel
- Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
26
|
Oskarsson T, Essers MAG, Dubois N, Offner S, Dubey C, Roger C, Metzger D, Chambon P, Hummler E, Beard P, Trumpp A. Skin epidermis lacking the c-Myc gene is resistant to Ras-driven tumorigenesis but can reacquire sensitivity upon additional loss of the p21Cip1 gene. Genes Dev 2006; 20:2024-9. [PMID: 16882980 PMCID: PMC1536054 DOI: 10.1101/gad.381206] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The target gene(s) required for Myc-mediated tumorigenesis are still elusive. Here we show that while endogenous c-Myc is surprisingly dispensable for skin homeostasis and TPA-induced hyperplasia, c-Myc-deficient epidermis is resistant to Ras-mediated DMBA/TPAinduced tumorigenesis. This is mechanistically linked to p21(Cip1), which is induced in tumors by the activated Ras-ERK pathway but repressed by c-Myc. Acute elimination of c-Myc in established tumors leads to the up-regulation of p21(Cip1), and epidermis lacking both p21(Cip1) and c-Myc reacquires normal sensitivity to DMBA/TPA-induced tumorigenesis. This identifies c-Myc-mediated repression of p21(Cip1) as a key step for Ras-driven epidermal tumorigenesis.
Collapse
Affiliation(s)
- Thordur Oskarsson
- Genetics and Stem Cell Laboratory, Swiss Institute for Experimental Cancer Research (ISREC) Ch. des Boveresses 155, Epalinges, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu L, Guo X, Rao J, Zou T, Marasa B, Chen J, Greenspon J, Casero R, Wang JY. Polyamine-modulated c-Myc expression in normal intestinal epithelial cells regulates p21Cip1 transcription through a proximal promoter region. Biochem J 2006; 398:257-67. [PMID: 16706751 PMCID: PMC1550304 DOI: 10.1042/bj20060217] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Maintenance of intestinal mucosal epithelial integrity requires cellular polyamines that regulate expression of various genes involved in cell proliferation, growth arrest and apoptosis. Our previous studies have shown that polyamines are essential for expression of the c-myc gene and that polyamine-induced c-Myc plays a critical role in stimulation of normal IEC (intestinal epithelial cell) proliferation, but the exact downstream targets of induced c-Myc are still unclear. The p21Cip1 protein is a major player in cell cycle control, which is primarily regulated at the transcriptional level. The current study was designed to determine whether induced c-Myc stimulates normal IEC proliferation by repressing p21Cip1 transcription following up-regulation of polyamines. Overexpression of the ODC (ornithine decarboxylase) gene increased levels of cellular polyamines, induced c-Myc expression and inhibited p21Cip1 transcription, as indicated by repression of p21Cip1 promoter activity and a decrease in p21Cip1 protein levels. In contrast, depletion of cellular polyamines by inhibiting ODC enzyme activity with alpha-difluoromethylornithine decreased c-Myc, but increased p21Cip1 transcription. Ectopic expression of wild-type c-myc not only inhibited basal levels of p21Cip1 transcription in control cells, but also prevented increased p21Cip1 in polyamine-deficient cells. Experiments using different p21Cip1 promoter mutants showed that transcriptional repression of p21Cip1 by c-Myc was mediated through Miz-1- and Sp1-binding sites within the proximal region of the p21Cip1 promoter in normal IECs. These findings confirm that p21Cip1 is one of the direct mediators of induced c-Myc following increased polyamines and that p21Cip1 repression by c-Myc is implicated in stimulation of normal IEC proliferation.
Collapse
Affiliation(s)
- Lan Liu
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- †Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Xin Guo
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- †Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Jaladanki N. Rao
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- †Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Tongtong Zou
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- †Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Bernard S. Marasa
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- ‡Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
| | - Jie Chen
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- †Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Jose Greenspon
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
| | - Robert A. Casero
- §Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, U.S.A
| | - Jian-Ying Wang
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- †Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
- ‡Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
28
|
Camarero N, Mascaró C, Mayordomo C, Vilardell F, Haro D, Marrero PF. KetogenicHMGCS2Is a c-Myc Target Gene Expressed in Differentiated Cells of Human Colonic Epithelium and Down-Regulated in Colon Cancer. Mol Cancer Res 2006; 4:645-53. [PMID: 16940161 DOI: 10.1158/1541-7786.mcr-05-0267] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
HMGCS2, the gene that regulates ketone body production, is expressed in liver and several extrahepatic tissues, such as the colon. In CaCo-2 colonic epithelial cells, the expression of this gene increases with cell differentiation. Accordingly, immunohistochemistry with specific antibodies shows that HMGCS2 is expressed mainly in differentiated cells of human colonic epithelium. Here, we used a chromatin immunoprecipitation assay to study the molecular mechanism responsible for this expression pattern. The assay revealed that HMGCS2 is a direct target of c-Myc, which represses HMGCS2 transcriptional activity. c-Myc transrepression is mediated by blockade of the transactivating activity of Miz-1, which occurs mainly through a Sp1-binding site in the proximal promoter of the gene. Accordingly, the expression of human HMGCS2 is down-regulated in 90% of Myc-dependent colon and rectum tumors. HMGCS2 protein expression is down-regulated preferentially in moderately and poorly differentiated carcinomas. In addition, it is also down-regulated in 80% of small intestine Myc-independent tumors. Based on these findings, we propose that ketogenesis is an undesirable metabolic characteristic of the proliferating cell, which is down-regulated through c-Myc-mediated repression of the key metabolic gene HMGCS2.
Collapse
Affiliation(s)
- Nuria Camarero
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, E-08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- A L Gartel
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
30
|
Chen C, Chang YC, Liu CL, Chang KJ, Guo IC. Leptin-induced growth of human ZR-75-1 breast cancer cells is associated with up-regulation of cyclin D1 and c-Myc and down-regulation of tumor suppressor p53 and p21WAF1/CIP1. Breast Cancer Res Treat 2006; 98:121-32. [PMID: 16752079 DOI: 10.1007/s10549-005-9139-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 12/11/2005] [Indexed: 12/18/2022]
Abstract
Obesity has been recognized as a risk factor for breast cancer. Adipocyte-derived leptin may play as a paracrine regulator on the growth of breast cancer cells. Expression of both leptin and its OB-Rb receptor was detected in human breast cancer ZR-75-1 cells and further induced by leptin, suggesting that both expression and message mediation of leptin were autoregulated by itself. With cell counting and MTT assay, we had observed leptin stimulated ZR-75-1 growth in dose- and time-dependent manners. To study what steps of cell cycle progression leptin may involve in, we analyzed cell-cycle profile with flow cytometric analysis, mRNA and protein expressions of four cell-cycle regulators with RT-PCR and Western blotting analysis. Under the treatment of leptin, the G1 arrest of cells was reduced accompanied with up-regulation of G1 phase-specific cyclin D1 and proto-oncogene c-Myc, but down-regulation of cyclin-dependent kinase inhibitor p21(WAF1/CIP1) and tumor suppressor p53. Furthermore, JAK2 inhibitor AG490, PI3K/Akt inhibitor Wortmannin, and MEK/ERK1/2 inhibitor PD98059 were efficiently prevented leptin-promoted cell growth. Effect of cooperation between leptin and estrogen on ZR-75-1 growth had been observed. Collectively, the results showed that the proliferative effect of leptin on ZR-75-1 was associated with the up-regulation of cyclin D1 and c-Myc and down-regulation of tumor suppressor p53 and p21(WAF1/CIP1) plausibly through a hypothesized JAK2-PI3K/Akt-MEK/ERK pathway. The leptin- and OB-Rb-expressing capability of ZR-75-1 created a possible autocrine control of leptin, in which signal could be effectively amplified by itself, on cell growth.
Collapse
Affiliation(s)
- Chiachen Chen
- Department of Veterinary Medicine, College of Bio-Resources and Agriculture, National Taiwan University, 10617, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
31
|
Uddin RK, Singh SM. Ethanol-responsive genes: identification of transcription factors and their role in metabolomics. THE PHARMACOGENOMICS JOURNAL 2006; 7:38-47. [PMID: 16652119 DOI: 10.1038/sj.tpj.6500394] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcription factors (TFs) and their combinatorial control on cis-regulatory elements play critical role in the co-expression of genes. This affects the interaction of genes in the transcriptome and thus may affect signals that cascade through cellular pathways. Using a combination of bioinformatic approaches, we sought to identify such common combinations of TFs in a set of ethanol-responsive (ER) genes and assess the role of ethanol in affecting multiple pathways through their co-regulation. Our results show that the metallothionein genes are regulated by TF motifs cAMP responsive element binding protein (CREB) and metal-activated transcription factor 1 and primarily involved in zinc ion homeostasis. We have also identified new target genes, Synaptojanin 1 and tryptophan hydroxylase 1, potentially regulated by this module. Altered arrangement of TF-binding sites in the module may direct the action of these and other target genes in intracellular signaling cascades, cell growth and/or maintenance. In addition to CREB, other key TFs identified are ecotropic viral integration site-1 and SP1. These modulate the contribution of the target ER genes in cell cycle regulation and apoptosis or programmed cell death. Multiple lines of evidence confirm the above findings and indicate that different groups of ER genes are involved in different biological processes and their co-regulation most likely results from different sets of regulatory modules. These findings associate the role of the ER genes studied and their potential TF modules with alcohol response pathways and phenotypes.
Collapse
Affiliation(s)
- R K Uddin
- Department of Biology and Division of Medical Genetics, The University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
32
|
Fernandez-Garcia B, Vaqué JP, Herreros-Villanueva M, Marques-Garcia F, Castrillo F, Fernandez-Medarde A, León J, Marín MC. p73 cooperates with Ras in the activation of MAP kinase signaling cascade. Cell Death Differ 2006; 14:254-65. [PMID: 16645632 DOI: 10.1038/sj.cdd.4401945] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The p73 gene is capable of inducing cell cycle arrest, apoptosis, senescence, differentiation and to cooperate with oncogenic Ras in cellular transformation. Ras can be considered as a branch point in signal transduction, where diverse extracellular stimuli converge. The intensity of the mitogen-activated protein kinase (MAPK) cascade activation influences the cellular response to Ras. Despite the fundamental role of p53 in Ras-induced growth arrest and senescence, it remains unclear how the Ras/MEK/ERK pathway induces growth arrest in the absence of p53. We report here that oncogenic Ras stabilizes p73 resulting in p73 accumulation and enhancement of its activity. p73, in turn, induces a sustained activation of the MAP kinase cascade synergizing with oncogenic Ras. We also found that inhibition of p73 function modifies the cellular outcome to Ras activation inhibiting Ras-dependent differentiation. Here, we show for the first time that there is a signaling loop between Ras-dependent MAPK cascade activation and p73 function.
Collapse
Affiliation(s)
- B Fernandez-Garcia
- Instituto de Biomedicina, Universidad de León, Campus de Vegazana, León 24071, Spain
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The c-Myc oncoprotein plays a central role in human cancer via its ability to either activate or repress the transcription of essential downstream targets. For many of the repressed target genes, down-regulation by c-Myc relies on its ability to bind and inactivate the transcription factor Miz-1. Although Miz-1 inactivation is suspected to be essential for at least some of the biological activities of c-Myc, it has been difficult to demonstrate this requirement experimentally. Using a combination of short hairpin RNA-mediated knockdown and a previously characterized mutant of c-Myc that is defective for Miz-1 inactivation, we examined whether this inactivation is critical for three of the most central biological functions of c-Myc, cell cycle progression, transformation, and apoptosis. The results of this analysis demonstrated that in the in vitro assays utilized here, Miz-1 inactivation is dispensable for c-Myc-induced cell cycle progression and transformation. In marked contrast, the ability of c-Myc to induce apoptosis in primary diploid human fibroblasts in response to growth factor withdrawal is entirely dependent on its ability to inactivate Miz-1. These data have a significant impact on our understanding of the biochemical mechanisms dictating how c-Myc mediates opposing biological functions, such as transformation and apoptosis, and demonstrate the first requirement for Miz-1 inactivation in any of the biological functions of c-Myc.
Collapse
|
34
|
Han J, Tsukada YI, Hara E, Kitamura N, Tanaka T. Hepatocyte Growth Factor Induces Redistribution of p21CIP1 and p27KIP1 through ERK-dependent p16INK4a Up-regulation, Leading to Cell Cycle Arrest at G1 in HepG2 Hepatoma Cells. J Biol Chem 2005; 280:31548-56. [PMID: 16014626 DOI: 10.1074/jbc.m503431200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte growth factor (HGF) has an anti-proliferative effect on many types of tumor cell lines and tumors in vivo. We found previously that inhibition of HGF-induced proliferation in HepG2 hepatoma cells is caused by cell cycle arrest at G1 through a high intensity ERK signal, which represses Cdk2 activity. To examine further the mechanisms of G1 arrest by HGF, we analyzed the Cdk inhibitor p16(INK4a), which has an anti-proliferative function through cell cycle arrest at G1. We found that HGF treatment drastically increased endogenous p16 levels. Knockdown of p16 with small interfering RNA reversed the arrest, indicating that the induction of p16 is required for G1 arrest by HGF. Analysis of the promoter of the human p16 gene identified the proximal Ets-binding site as a responsive element for HGF, and this responded to the high intensity ERK signal. HGF treatment of the cells led to a redistribution of p21(CIP1) and p27(KIP1) from Cdk4 to Cdk2. The redistribution was blocked by the knockdown of p16 with small interfering RNA, which restored the Cdk2 activity repressed by HGF, demonstrating the requirement of p16 induction for the redistribution and eventual repression of Cdk2 activity. Our results reveal a signaling pathway for G1 arrest induced by HGF.
Collapse
Affiliation(s)
- Junhong Han
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | |
Collapse
|
35
|
Abstract
The cyclin-dependent kinase inhibitor p21WAF1/CIP1 is a major player in cell cycle control and it is mainly regulated at the transcriptional level. Whereas induction of p21 predominantly leads to cell cycle arrest, repression of p21 may have a variety of outcomes depending on the context. In this review, we concentrate on transcriptional repression of p21 by cellular and viral factors, and delve in detail into its possible biological implications and its role in cancer. It seems that the major mode of p21 transcriptional repression by negative regulators is the interference with positive transcription factors without direct binding to the p21 promoter. Specifically, the negative factors may either inhibit binding of positive regulators to the promoter or hinder their transcriptional activity. The ability of p21 to inhibit proliferation may contribute to its tumor suppressor function. Because of this, it is not surprising that a number of oncogenes repress p21 to promote cell growth and tumorigenesis. However, p21 is also an inhibitor of apoptosis and p21 repression may also have an anticancer effect. For example, c-Myc and chemical p21 inhibitors, which repress p21, sensitize tumor cells to apoptosis by anticancer drugs. Further identification of factors that repress p21 is likely to contribute to the better understanding of its role in cancer.
Collapse
Affiliation(s)
- Andrei L Gartel
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | |
Collapse
|