1
|
Shibata Y, Tanaka Y, Sasakura H, Morioka Y, Sassa T, Fujii S, Mitsuzumi K, Ikeno M, Kubota Y, Kimura K, Toyoda H, Takeuchi K, Nishiwaki K. Endogenous chondroitin extends the lifespan and healthspan in C. elegans. Sci Rep 2024; 14:4813. [PMID: 38413743 PMCID: PMC10899230 DOI: 10.1038/s41598-024-55417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/23/2024] [Indexed: 02/29/2024] Open
Abstract
Chondroitin, a class of glycosaminoglycan polysaccharides, is found as proteoglycans in the extracellular matrix, plays a crucial role in tissue morphogenesis during development and axonal regeneration. Ingestion of chondroitin prolongs the lifespan of C. elegans. However, the roles of endogenous chondroitin in regulating lifespan and healthspan mostly remain to be investigated. Here, we demonstrate that a gain-of-function mutation in MIG-22, the chondroitin polymerizing factor (ChPF), results in elevated chondroitin levels and a significant extension of both the lifespan and healthspan in C. elegans. Importantly, the remarkable longevity observed in mig-22(gf) mutants is dependent on SQV-5/chondroitin synthase (ChSy), highlighting the pivotal role of chondroitin in controlling both lifespan and healthspan. Additionally, the mig-22(gf) mutation effectively suppresses the reduced healthspan associated with the loss of MIG-17/ADAMTS metalloprotease, a crucial for factor in basement membrane (BM) remodeling. Our findings suggest that chondroitin functions in the control of healthspan downstream of MIG-17, while regulating lifespan through a pathway independent of MIG-17.
Collapse
Affiliation(s)
- Yukimasa Shibata
- Department of Biomedical Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan.
| | - Yuri Tanaka
- Department of Biomedical Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Hiroyuki Sasakura
- Department of Medical Cell Biology, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Yuki Morioka
- Department of Medical Cell Biology, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | | | - Shion Fujii
- Department of Biomedical Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Kaito Mitsuzumi
- Department of Biomedical Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Masashi Ikeno
- Department of Medical Cell Biology, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Yukihiko Kubota
- Department of Biomedical Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kenji Kimura
- Department of Biomedical Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Hidenao Toyoda
- Laboratory of Bio-Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kosei Takeuchi
- Department of Medical Cell Biology, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Kiyoji Nishiwaki
- Department of Biomedical Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| |
Collapse
|
2
|
Wu J, Yang OJ, Soderblom EJ, Yan D. Heat Shock Proteins Function as Signaling Molecules to Mediate Neuron-Glia Communication During Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576052. [PMID: 38293019 PMCID: PMC10827141 DOI: 10.1101/2024.01.18.576052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The nervous system is primarily composed of neurons and glia, and the communication between them plays profound roles in regulating the development and function of the brain. Neuron-glia signal transduction is known to be mediated by secreted or juxtacrine signals through ligand-receptor interactions on the cell membrane. Here, we report a novel mechanism for neuron-glia signal transduction, wherein neurons transmit proteins to glia through extracellular vesicles, activating glial signaling pathways. We find that in the amphid sensory organ of Caenorhabditis elegans, different sensory neurons exhibit varying aging rates. This discrepancy in aging is governed by the crosstalk between neurons and glia. We demonstrate that early-aged neurons can transmit heat shock proteins (HSP) to glia via extracellular vesicles. These neuronal HSPs activate the IRE1-XBP1 pathway, further increasing their expression in glia, forming a positive feedback loop. Ultimately, the activation of the IRE1-XBP-1 pathway leads to the transcriptional regulation of chondroitin synthases to protect glia-embedded neurons from aging-associated functional decline. Therefore, our studies unveil a novel mechanism for neuron-glia communication in the nervous system and provide new insights into our understanding of brain aging.
Collapse
Affiliation(s)
- Jieyu Wu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Olivia Jiaming Yang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- East Chapel Hill High School, Chapel Hill, NC 27514, USA
| | - Erik J. Soderblom
- Proteomics and Metabolomics Core Facility, Duke University Medical School, Durham, NC 27710, USA
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell biology, Department of Neurobiology, Regeneration next, and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
3
|
Davies KG, Mohan S, Phani V, Srivastava A. Exploring the mechanisms of host-specificity of a hyperparasitic bacterium ( Pasteuria spp.) with potential to control tropical root-knot nematodes ( Meloidogyne spp.): insights from Caenorhabditis elegans. Front Cell Infect Microbiol 2023; 13:1296293. [PMID: 38173791 PMCID: PMC10761439 DOI: 10.3389/fcimb.2023.1296293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Plant-parasitic nematodes are important economic pests of a range of tropical crops. Strategies for managing these pests have relied on a range of approaches, including crop rotation, the utilization of genetic resistance, cultural techniques, and since the 1950's the use of nematicides. Although nematicides have been hugely successful in controlling nematodes, their toxicity to humans, domestic animals, beneficial organisms, and the environment has raised concerns regarding their use. Alternatives are therefore being sought. The Pasteuria group of bacteria that form endospores has generated much interest among companies wanting to develop microbial biocontrol products. A major challenge in developing these bacteria as biocontrol agents is their host-specificity; one population of the bacterium can attach to and infect one population of plant-parasitic nematode but not another of the same species. Here we will review the mechanism by which infection is initiated with the adhesion of endospores to the nematode cuticle. To understand the genetics of the molecular processes between Pasteuria endospores and the nematode cuticle, the review focuses on the nature of the bacterial adhesins and how they interact with the nematode cuticle receptors by exploiting new insights gained from studies of bacterial infections of Carnorhabditis elegans. A new Velcro-like multiple adhesin model is proposed in which the cuticle surface coat, which has an important role in endospore adhesion, is a complex extracellular matrix containing glycans originating in seam cells. The genes associated with these seam cells appear to have a dual role by retaining some characteristics of stem cells.
Collapse
Affiliation(s)
- Keith G. Davies
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Sharad Mohan
- Division of Nematology, Indian Agricultural Research Institute, New Delhi, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Dakshin Dinajpur, West Bengal, India
| | - Arohi Srivastava
- Dr. D. Y Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| |
Collapse
|
4
|
Pan QF, Ouyang WW, Zhang MQ, He S, Yang SY, Zhang J. Chondroitin polymerizing factor predicts a poor prognosis and promotes breast cancer progression via the upstream TGF-β1/SMAD3 and JNK axis activation. J Cell Commun Signal 2023; 17:89-102. [PMID: 36042157 PMCID: PMC10030767 DOI: 10.1007/s12079-022-00684-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
Aberrant composition of glycans in the tumor microenvironment (TME) contributes to tumor progression and metastasis. Chondroitin polymerizing factor (CHPF) is a glycosyltransferase that catalyzes the biosynthesis of chondroitin sulfate (CS). It is also correlated to transforming growth factor-β1 (TGF-β1) expression, a crucial mediator in the interaction of cancer cells with TME. In this study, we investigated the association of CHPF expression with the clinicopathological features of breast cancer (BRCA), as well the oncogenic effect and the underling mechanisms of CHPF upon BRCA cells. We found that CHPF expression is significantly increased in human BRCA tissues, and it is positively associated with TGF-β expression (r = 0.7125). The high-expression of CHPF predicts a poor prognosis and is positively correlated with tumor mass, lymph node metastasis, clinical staging and HER-2 negative-expression. The mechanistic study revealed that it promotes BRCA cell proliferation, migration and invasion through TGF-β1-induced SMAD3 and JNK activation in vitro, JNK (SP600125) or SMAD3 (SIS3) inhibitor can remove the promotion of CHPF upon cell proliferation, migration and invasion in MDA-MB-231 cells, which is derived from triple-negative breast cancer (TNBC). Collectively, our finding suggested CHPF may function as an oncogene and is highly expressed in human BRCA tissues. Pharmacological blockade of the upstream of JNK or SMAD3 signaling may provide a novel therapeutic target for refractory TNBC patients with CHPF abnormal high-expression.
Collapse
Affiliation(s)
- Qiang-Feng Pan
- Department of Pathology, Guizhou Medical University, Guiyang, 550004, China
| | - Wei-Wei Ouyang
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Meng-Qi Zhang
- Department of Pathology, Guizhou Medical University, Guiyang, 550004, China
| | - Shuo He
- Department of Pathology, Guizhou Medical University, Guiyang, 550004, China
| | - Si-Yun Yang
- Department of Pathology, Guizhou Medical University, Guiyang, 550004, China
| | - Jun Zhang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
- Department of Pathology, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
5
|
Zhao M, Qin Y, Fan Y, Wang X, Yi H, Cui X, Li F, Wang W. Structural Characterization and Glycosaminoglycan Impurities Analysis of Chondroitin Sulfate from Chinese Sturgeon. Polymers (Basel) 2022; 14:polym14235311. [PMID: 36501703 PMCID: PMC9736423 DOI: 10.3390/polym14235311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Chinese sturgeon was an endangered cartilaginous fish. The success of artificial breeding has promoted it to a food fish and it is now beginning to provide a new source of cartilage for the extraction of chondroitin sulfate (CS). However, the structural characteristics of sturgeon CS from different tissues remain to be determined in more detail. In this study, CSs from the head, backbone, and fin cartilage of Chinese sturgeon were individually purified and characterized for the first time. The molecular weights, disaccharide compositions, and oligosaccharide sulfation patterns of these CSs are significantly different. Fin CS (SFCS), rich in GlcUAα1-3GalNAc(4S), has the biggest molecular weight (26.5 kDa). In contrast, head CS (SHCS) has a molecular weight of 21.0 kDa and is rich in GlcUAα1-3GalNAc(6S). Most features of backbone CS (SBCS) are between the former two. Other glycosaminoglycan impurities in these three sturgeon-derived CSs were lower than those in other common commercial CSs. All three CSs have no effect on the activity of thrombin or Factor Xa in the presence of antithrombin III. Hence, Chinese sturgeon cartilage is a potential source for the preparation of CSs with different features for food and pharmaceutical applications.
Collapse
Affiliation(s)
- Mei Zhao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Yong Qin
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Ying Fan
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao 266071, China
| | - Xu Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Haixin Yi
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Xiaoyu Cui
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Correspondence: (F.L.); (W.W.); Tel.: +86-532-58631406 (F.L. & W.W.); Fax: +86-532-58631405 (F.L. & W.W.)
| | - Wenshuang Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
- Correspondence: (F.L.); (W.W.); Tel.: +86-532-58631406 (F.L. & W.W.); Fax: +86-532-58631405 (F.L. & W.W.)
| |
Collapse
|
6
|
Mizumoto S, Yamada S. An Overview of in vivo Functions of Chondroitin Sulfate and Dermatan Sulfate Revealed by Their Deficient Mice. Front Cell Dev Biol 2021; 9:764781. [PMID: 34901009 PMCID: PMC8652114 DOI: 10.3389/fcell.2021.764781] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Chondroitin sulfate (CS), dermatan sulfate (DS) and heparan sulfate (HS) are covalently attached to specific core proteins to form proteoglycans in their biosynthetic pathways. They are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases as well as sulfotransferases. Structural diversities of CS/DS and HS are essential for their various biological activities including cell signaling, cell proliferation, tissue morphogenesis, and interactions with a variety of growth factors as well as cytokines. Studies using mice deficient in enzymes responsible for the biosynthesis of the CS/DS and HS chains of proteoglycans have demonstrated their essential functions. Chondroitin synthase 1-deficient mice are viable, but exhibit chondrodysplasia, progression of the bifurcation of digits, delayed endochondral ossification, and reduced bone density. DS-epimerase 1-deficient mice show thicker collagen fibrils in the dermis and hypodermis, and spina bifida. These observations suggest that CS/DS are essential for skeletal development as well as the assembly of collagen fibrils in the skin, and that their respective knockout mice can be utilized as models for human genetic disorders with mutations in chondroitin synthase 1 and DS-epimerase 1. This review provides a comprehensive overview of mice deficient in CS/DS biosyntheses.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|
7
|
Ren XC, Liu QH. LvCPG2 facilitated WSSV infection by interaction with VP26 and VP28. FISH & SHELLFISH IMMUNOLOGY 2021; 118:313-320. [PMID: 34562580 DOI: 10.1016/j.fsi.2021.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/29/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Chondroitin sulfate proteoglycans (CSP), widely distributed in extracellular matrices, have several important functions in vertebrates. In certain viruses, CSP acts as a receptor to promote infection. However, chondroitin proteoglycans lack sulfate are poorly understood in invertebrates. In this study, chondroitin proteoglycan 2 of Litopenaeus vannamei (LvCPG2) was cloned. The open reading frame of LvCPG2 cDNA is 2133 bp, which encodes a protein of 710 amino acids. LvCPG2 contained eight Chitin-binding domain type 2 (ChtBD2). LvCPG2 had the highest expression in lymphoid and significantly increased after WSSV challenge. The relative expression of IE1 and VP28, as well as the viral copy numbers were decreased significantly in LvCPG2-silenced shrimp. The far-western blotting result showed that LvCPG2 interacted with VP26 and VP28. Molecular docking complexes showed that N-terminal of LvCPG2 interacted with C-terminal VP26, while C-terminal of LvCPG2 combined with N-terminal of VP28. Flow cytometry analysis indicated that LvCPG2 could facilitate WSSV adhesion and penetration of shrimp hemocytes. Collectively, these findings suggested that LvCPG2 was involved in WSSV infection by interaction with VP26 and VP28.
Collapse
Affiliation(s)
- Xing-Chao Ren
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Qing-Hui Liu
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, China.
| |
Collapse
|
8
|
Amin M, Barzegari E, Pourshohod A, Zeinali M, Jamalan M. 3D structure prediction, dynamic investigation and rational construction of an epitope-masked thermostable bovine hyaluronidase. Int J Biol Macromol 2021; 187:544-553. [PMID: 34298049 DOI: 10.1016/j.ijbiomac.2021.07.098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 01/11/2023]
Abstract
Hyaluronidase (HAase) from bovine testes (BTH) has long been used in broad pharmaceutical areas, while it is associated with drawbacks in aspects of solubility, immunogenicity and pharmacokinetics. These issues can be addressed by gaining structural insights and designing rational modifications to the enzyme structure, as proposed in this study. A 3D structural model was built for HAase and underwent 40 ns of molecular dynamic simulation to examine its thermostability under normal, melting, and extreme conditions. The enzyme activity of BTH was measured against temperature and pH by kinetic assays. The interaction of bovine HAase with HA and chondroitin was defined by molecular docking. Furthermore, immunogenic properties of the enzyme were explored by immunoinformatics. Thermal effects on bovine HAase structural model and the HAase interactions with its substrates were described. We identified some B- and T-cell epitopes and showed that the protein could be recognized by human immune receptor molecules. Epitope masking by adding polyethylene glycol (PEG) to amine groups of residues presenting on the surface of the protein structure was adopted as a surface modification to enhance pharmacological properties of BTH. Assays showed that PEGylated BTH had higher thermostability and similar activity compared to the native enzyme.
Collapse
Affiliation(s)
- Mansour Amin
- Department of Microbiology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Ebrahim Barzegari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aminollah Pourshohod
- Department of Biochemistry, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Science, Medical School, Ahvaz, Iran
| | - Majid Zeinali
- Biotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| | - Mostafa Jamalan
- Department of Biochemistry, Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
9
|
Investigation of action pattern of a novel chondroitin sulfate/dermatan sulfate 4-O-endosulfatase. Biochem J 2021; 478:281-298. [PMID: 33351063 DOI: 10.1042/bcj20200657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 11/17/2022]
Abstract
Recently, a novel CS/DS 4-O-endosulfatase was identified from a marine bacterium and its catalytic mechanism was investigated further (Wang, W., et. al (2015) J. Biol. Chem.290, 7823-7832; Wang, S., et. al (2019) Front. Microbiol.10, 1309). In the study herein, we provide new insight about the structural characteristics of the substrate which determine the activity of this enzyme. The substrate specificities of the 4-O-endosulfatase were probed by using libraries of structure-defined CS/DS oligosaccharides issued from synthetic and enzymatic sources. We found that this 4-O-endosulfatase effectively remove the 4-O-sulfate of disaccharide sequences GlcUAβ1-3GalNAc(4S) or GlcUAβ1-3GalNAc(4S,6S) in all tested hexasaccharides. The sulfated GalNac residue is resistant to the enzyme when adjacent uronic residues are sulfated as shown by the lack of enzymatic desulfation of GlcUAβ1-3GalNAc(4S) connected to a disaccharide GlcUA(2S)β1-3GalNAc(6S) in an octasaccharide. The 3-O-sulfation of GlcUA was also shown to hinder the action of this enzyme. The 4-O-endosulfatase exhibited an oriented action from the reducing to the non-reducing whatever the saturation or not of the non-reducing end. Finally, the activity of the 4-O-endosulfatase decreases with the increase in substrate size. With the deeper understanding of this novel 4-O-endosulfatase, such chondroitin sulfate (CS)/dermatan sulfate (DS) sulfatase is a useful tool for exploring the structure-function relationship of CS/DS.
Collapse
|
10
|
Wang W, Shi L, Qin Y, Li F. Research and Application of Chondroitin Sulfate/Dermatan Sulfate-Degrading Enzymes. Front Cell Dev Biol 2021; 8:560442. [PMID: 33425887 PMCID: PMC7793863 DOI: 10.3389/fcell.2020.560442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/05/2020] [Indexed: 01/11/2023] Open
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) are widely distributed on the cell surface and in the extracellular matrix in the form of proteoglycan, where they participate in various biological processes. The diverse functions of CS/DS can be mainly attributed to their high structural variability. However, their structural complexity creates a big challenge for structural and functional studies of CS/DS. CS/DS-degrading enzymes with different specific activities are irreplaceable tools that could be used to solve this problem. Depending on the site of action, CS/DS-degrading enzymes can be classified as glycosidic bond-cleaving enzymes and sulfatases from animals and microorganisms. As discussed in this review, a few of the identified enzymes, particularly those from bacteria, have wildly applied to the basic studies and applications of CS/DS, such as disaccharide composition analysis, the preparation of bioactive oligosaccharides, oligosaccharide sequencing, and potential medical application, but these do not fulfill all of the needs in terms of the structural complexity of CS/DS.
Collapse
Affiliation(s)
- Wenshuang Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Liran Shi
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Yong Qin
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| |
Collapse
|
11
|
Song G, Sun J, Zhao M, Wang Z, Gong Q, Yu W. Cloning and characterization of two chondroitin sulfate ABC lyases from Edwardsiella tarda LMG2793. Enzyme Microb Technol 2020; 143:109701. [PMID: 33375969 DOI: 10.1016/j.enzmictec.2020.109701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/16/2020] [Accepted: 11/03/2020] [Indexed: 11/29/2022]
Abstract
Chondroitinase ABC can be used to prepare chondroitin sulfate (CS) oligosaccharides efficiently and environmentally. It also promotes nerve recovery through enzymatic degradation of glycosaminoglycan chains in damaged nerve tissue. In this study, two new chondroitin sulfate ABC lyases were expressed and characterized from Edwardsiella tarda LMG2793, with molecular weight of 116.8 kDa and 115.9 kDa, respectively. Two lyases ChABC I and ChABC II belonged to the polysaccharide lyase (PL) family 8. ChABC I and ChABC II showed enzyme activity towards chondroitin sulfate A (CS-A), CS-B, CS-C and CS-D, but had no activity towards hyaluronan (HA). The optimal temperature for ChABC I to exhibit the highest activity against CS-A was 40 °C and the optimal pH was 7.0. ChABC II showed the highest activity to CS-A at optimal temperature of 40 °C and pH of 9.0. ChABC I and ChABC II were stable at 37 °C and remained about 90 % of activity after incubation at 37 °C for 3 h. Many metal ions had no effect on the activity of ChABC I and ChABC II. These properties were beneficial to their further basic research and application. ChABC I was an endo-type enzyme while ChABC II was an exo-type enzyme. A group of amino acids were selected for further study by evaluating the sequence homology with other CS degradation lyases. Mutagenesis studies speculated that the catalytic residues in ChABC I were His522, Tyr529 and Arg581. The catalytic residues of ChABC II were His498, Tyr505 and Arg558. This work will contribute to the structural and functional characterization of biomedically relevant CS and promote the application of CS lyase in further basic research and therapeutics.
Collapse
Affiliation(s)
- Guanrui Song
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Junhao Sun
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Mingliu Zhao
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Zheng Wang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Qianhong Gong
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China.
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China.
| |
Collapse
|
12
|
Cohen JD, Sparacio AP, Belfi AC, Forman-Rubinsky R, Hall DH, Maul-Newby H, Frand AR, Sundaram MV. A multi-layered and dynamic apical extracellular matrix shapes the vulva lumen in Caenorhabditis elegans. eLife 2020; 9:e57874. [PMID: 32975517 PMCID: PMC7544507 DOI: 10.7554/elife.57874] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Biological tubes must develop and maintain their proper diameter to transport materials efficiently. These tubes are molded and protected in part by apical extracellular matrices (aECMs) that line their lumens. Despite their importance, aECMs are difficult to image in vivo and therefore poorly understood. The Caenorhabditis elegans vulva has been a paradigm for understanding many aspects of organogenesis. Here we describe the vulva luminal matrix, which contains chondroitin proteoglycans, Zona Pellucida (ZP) domain proteins, and other glycoproteins and lipid transporters related to those in mammals. Confocal and transmission electron microscopy revealed, with unprecedented detail, a complex and dynamic aECM. Different matrix factors assemble on the apical surfaces of each vulva cell type, with clear distinctions seen between Ras-dependent (1°) and Notch-dependent (2°) cell types. Genetic perturbations suggest that chondroitin and other aECM factors together generate a structured scaffold that both expands and constricts lumen shape.
Collapse
Affiliation(s)
- Jennifer D Cohen
- Department of Genetics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Alessandro P Sparacio
- Department of Genetics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Alexandra C Belfi
- Department of Genetics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Rachel Forman-Rubinsky
- Department of Genetics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Hannah Maul-Newby
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Alison R Frand
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| |
Collapse
|
13
|
Woolley SA, Hayes SE, Shariflou MR, Nicholas FW, Willet CE, O'Rourke BA, Tammen I. Molecular basis of a new ovine model for human 3M syndrome-2. BMC Genet 2020; 21:106. [PMID: 32933480 PMCID: PMC7493961 DOI: 10.1186/s12863-020-00913-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/30/2020] [Indexed: 12/30/2022] Open
Abstract
Background Brachygnathia, cardiomegaly and renal hypoplasia syndrome (BCRHS, OMIA 001595–9940) is a previously reported recessively inherited disorder in Australian Poll Merino/Merino sheep. Affected lambs are stillborn with various congenital defects as reflected in the name of the disease, as well as short stature, a short and broad cranium, a small thoracic cavity, thin ribs and brachysternum. The BCRHS phenotype shows similarity to certain human short stature syndromes, in particular the human 3M syndrome-2. Here we report the identification of a likely disease-causing variant and propose an ovine model for human 3M syndrome-2. Results Eight positional candidate genes were identified among the 39 genes in the approximately 1 Mb interval to which the disease was mapped previously. Obscurin like cytoskeletal adaptor 1 (OBSL1) was selected as a strong positional candidate gene based on gene function and the resulting phenotypes observed in humans with mutations in this gene. Whole genome sequencing of an affected lamb (BCRHS3) identified a likely causal variant ENSOARG00000020239:g.220472248delC within OBSL1. Sanger sequencing of seven affected, six obligate carrier, two phenotypically unaffected animals from the original flock and one unrelated control animal validated the variant. A genotyping assay was developed to genotype 583 animals from the original flock, giving an estimated allele frequency of 5%. Conclusions The identification of a likely disease-causing variant resulting in a frameshift (p.(Val573Trpfs*119)) in the OBSL1 protein has enabled improved breeding management of the implicated flock. The opportunity for an ovine model for human 3M syndrome and ensuing therapeutic research is promising given the availability of carrier ram semen for BCRHS.
Collapse
Affiliation(s)
- S A Woolley
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, 2570, Australia
| | - S E Hayes
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, 2570, Australia
| | - M R Shariflou
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, 2570, Australia
| | - F W Nicholas
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, 2570, Australia
| | - C E Willet
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW, 2006, Australia
| | - B A O'Rourke
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, 2568, Australia
| | - I Tammen
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, 2570, Australia.
| |
Collapse
|
14
|
Characterization of C. elegans Chondroitin Proteoglycans and Their Large Functional and Structural Heterogeneity; Evolutionary Aspects on Structural Differences Between Humans and the Nematode. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 21:155-170. [PMID: 32185697 DOI: 10.1007/5584_2020_485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteoglycans regulate important cellular pathways in essentially all metazoan organisms. While considerable effort has been devoted to study structural and functional aspects of proteoglycans in vertebrates, the knowledge of the core proteins and proteoglycan-related functions in invertebrates is relatively scarce, even for C.elegans. This nematode produces a large amount of non-sulfated chondroitin in addition to small amount of low-sulfated chondroitin chains (Chn and CS chains, respectively). Until recently, 9 chondroitin core proteins (CPGs) had been identified in C.elegans, none of which showed any homology to vertebrate counterparts or to other invertebrate core proteins. By using a glycoproteomic approach, we recently characterized the chondroitin glycoproteome of C.elegans, resulting in the identification of 15 novel CPG core proteins in addition to the 9 previously established. Three of the novel core proteins displayed homology to human proteins, indicating that CPG and CSPG core proteins may be more conserved throughout evolution than previously perceived. Bioinformatic analysis of the primary amino acid sequences revealed that the core proteins contained a broad range of functional domains, indicating that specialization of proteoglycan-mediated functions may have evolved early in metazoan evolution. This review specifically discusses our recent data in relation to previous knowledge of core proteins and GAG-attachment sites in Chn and CS proteoglycans of C.elegans and humans, and point out both converging and diverging aspects of proteoglycan evolution.
Collapse
|
15
|
Peng C, Wang Q, Wang S, Wang W, Jiao R, Han W, Li F. A chondroitin sulfate and hyaluronic acid lyase with poor activity to glucuronyl 4,6- O-disulfated N-acetylgalactosamine (E-type)-containing structures. J Biol Chem 2018; 293:4230-4243. [PMID: 29414785 DOI: 10.1074/jbc.ra117.001238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/16/2018] [Indexed: 11/06/2022] Open
Abstract
GlcUAβ1-3GalNAc(4S,6S) (E unit)-rich domains have been shown to play key roles in various biological functions of chondroitin sulfate (CS). However, an enzyme that can specifically isolate such domains through the selective digestion of other domains in polysaccharides has not yet been reported. Here, we identified a glycosaminoglycan lyase from a marine bacterium Vibrio sp. FC509. This enzyme efficiently degraded hyaluronic acid (HA) and CS variants, but not E unit-rich CS-E, into unsaturated disaccharides; therefore, we designated this enzyme a CS-E-resisted HA/CS lyase (HCLase Er). We isolated a series of resistant oligosaccharides from the final product of a low-sulfated CS-E exhaustively digested by HCLase Er and found that the E units were dramatically accumulate in these resistant oligosaccharides. By determining the structures of several resistant tetrasaccharides, we observed that all of them possessed a Δ4,5HexUAα1-3GalNAc(4S,6S) at their non-reducing ends, indicating that the disulfation of GalNAc abrogates HCLase Er activity on the β1-4 linkage between the E unit and the following disaccharide. Δ4,5HexUAα1-3GalNAc(4S,6S)β1-4GlcUAβ1-3GalNAc(4S,6S) was most strongly resistant to HCLase Er. To our knowledge, this study is the first reporting a glycosaminoglycan lyase specifically inhibited by both 4-O- and 6-O-sulfation of GalNAc. Site-directed and truncation mutagenesis experiments indicated that HCLase Er may use a general acid-base catalysis mechanism and that an extra domain (Gly739-Gln796) is critical for its activity. This enzyme will be a useful tool for structural analyses and for preparing bioactive oligosaccharides of HA and CS variants, particularly from E unit-rich CS chains.
Collapse
Affiliation(s)
- Chune Peng
- From the National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, 27 South Shanda Road, Jinan 250100, China
| | - Qingbin Wang
- From the National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, 27 South Shanda Road, Jinan 250100, China
| | - Shumin Wang
- From the National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, 27 South Shanda Road, Jinan 250100, China
| | - Wenshuang Wang
- From the National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, 27 South Shanda Road, Jinan 250100, China
| | - Runmiao Jiao
- From the National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, 27 South Shanda Road, Jinan 250100, China
| | - Wenjun Han
- From the National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, 27 South Shanda Road, Jinan 250100, China
| | - Fuchuan Li
- From the National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, 27 South Shanda Road, Jinan 250100, China
| |
Collapse
|
16
|
Shimbo M, Suzuki R, Fuseya S, Sato T, Kiyohara K, Hagiwara K, Okada R, Wakui H, Tsunakawa Y, Watanabe H, Kimata K, Narimatsu H, Kudo T, Takahashi S. Postnatal lethality and chondrodysplasia in mice lacking both chondroitin sulfate N-acetylgalactosaminyltransferase-1 and -2. PLoS One 2017; 12:e0190333. [PMID: 29287114 PMCID: PMC5747463 DOI: 10.1371/journal.pone.0190333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/12/2017] [Indexed: 02/04/2023] Open
Abstract
Chondroitin sulfate (CS) is a sulfated glycosaminoglycan (GAG) chain. In cartilage, CS plays important roles as the main component of the extracellular matrix (ECM), existing as side chains of the major cartilage proteoglycan, aggrecan. Six glycosyltransferases are known to coordinately synthesize the backbone structure of CS; however, their in vivo synthetic mechanism remains unknown. Previous studies have suggested that two glycosyltransferases, Csgalnact1 (t1) and Csgalnact2 (t2), are critical for initiation of CS synthesis in vitro. Indeed, t1 single knockout mice (t1 KO) exhibit slight dwarfism and a reduction in CS content in cartilage compared with wild-type (WT) mice. To reveal the synergetic roles of t1 and t2 in CS synthesis in vivo, we generated systemic single and double knockout (DKO) mice and cartilage-specific t1 and t2 double knockout (Col2-DKO) mice. DKO mice exhibited postnatal lethality, whereas t2 KO mice showed normal size and skeletal development. Col2-DKO mice survived to adulthood and showed severe dwarfism compared with t1 KO mice. Histological analysis of epiphyseal cartilage from Col2-DKO mice revealed disrupted endochondral ossification, characterized by drastic GAG reduction in the ECM. Moreover, DKO cartilage had reduced chondrocyte proliferation and an increased number of apoptotic chondrocytes compared with WT cartilage. Conversely, primary chondrocyte cultures from Col2-DKO knee cartilage had the same proliferation rate as WT chondrocytes and low GAG expression levels, indicating that the chondrocytes themselves had an intact proliferative ability. Quantitative RT-PCR analysis of E18.5 cartilage showed that the expression levels of Col2a1 and Ptch1 transcripts tended to decrease in DKO compared with those in WT mice. The CS content in DKO cartilage was decreased compared with that in t1 KO cartilage but was not completely absent. These results suggest that aberrant ECM caused by CS reduction disrupted endochondral ossification. Overall, we propose that both t1 and t2 are necessary for CS synthesis and normal chondrocyte differentiation but are not sufficient for all CS synthesis in cartilage.
Collapse
Affiliation(s)
- Miki Shimbo
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Riku Suzuki
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Sayaka Fuseya
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takashi Sato
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Katsue Kiyohara
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Kozue Hagiwara
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Risa Okada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiromasa Wakui
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuki Tsunakawa
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | - Koji Kimata
- Multidisciplinary Pain Center, Aichi Medical University, Aichi, Japan
| | - Hisashi Narimatsu
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Takashi Kudo
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Laboratory Animal Resource Center (LARC), University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail: (TK); (ST)
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Laboratory Animal Resource Center (LARC), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail: (TK); (ST)
| |
Collapse
|
17
|
Sequencing of chondroitin sulfate oligosaccharides using a novel exolyase from a marine bacterium that degrades hyaluronan and chondroitin sulfate/dermatan sulfate. Biochem J 2017; 474:3831-3848. [PMID: 28963345 DOI: 10.1042/bcj20170591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/28/2022]
Abstract
Glycosaminoglycans (GAGs) are a family of chemically heterogeneous polysaccharides that play important roles in physiological and pathological processes. Owing to the structural complexity of GAGs, their sophisticated chemical structures and biological functions have not been extensively studied. Lyases that cleave GAGs are important tools for structural analysis. Although various GAG lyases have been identified, exolytic lyases with unique enzymatic property are urgently needed for GAG sequencing. In the present study, a putative exolytic GAG lyase from a marine bacterium was recombinantly expressed and characterized in detail. Since it showed exolytic lyase activity toward hyaluronan (HA), chondroitin sulfate (CS), and dermatan sulfate (DS), it was designated as HCDLase. This novel exolyase exhibited the highest activity in Tris-HCl buffer (pH 7.0) at 30°C. Especially, it showed a specific activity that released 2-aminobenzamide (2-AB)-labeled disaccharides from the reducing end of 2-AB-labeled CS oligosaccharides, which suggest that HCDLase is not only a novel exolytic lyase that can split disaccharide residues from the reducing termini of sugar chains but also a useful tool for the sequencing of CS chains. Notably, HCDLase could not digest 2-AB-labeled oligosaccharides from HA, DS, or unsulfated chondroitin, which indicated that sulfates and bond types affect the catalytic activity of HCDLase. Finally, this enzyme combined with CSase ABC was successfully applied for the sequencing of several CS hexa- and octasaccharides with complex structures. The identification of HCDLase provides a useful tool for CS-related research and applications.
Collapse
|
18
|
Molecular characterization and transcriptional analysis of the female-enriched chondroitin proteoglycan 2 of Toxocara canis. J Helminthol 2017; 92:154-160. [PMID: 28434412 DOI: 10.1017/s0022149x17000359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Toxocara canis is an important but neglected zoonotic parasite, and is the causative agent of human toxocariasis. Chondroitin proteoglycans are biological macromolecules, widely distributed in extracellular matrices, with a great diversity of functions in mammals. However, there is limited information regarding chondroitin proteoglycans in nematode parasites. In the present study, a female-enriched chondroitin proteoglycan 2 gene of T. canis (Tc-cpg-2) was cloned and characterized. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to measure the transcription levels of Tc-cpg-2 among tissues of male and female adult worms. A 485-amino-acid (aa) polypeptide was predicted from a continuous 1458-nuleotide open reading frame and designated as TcCPG2, which contains a 21-aa signal peptide. Conserved domain searching indicated three chitin-binding peritrophin-A (CBM_14) domains in the amino acid sequence of TcCPG2. Multiple alignment with the inferred amino acid sequences of Caenorhabditis elegans and Ascaris suum showed that CBM_14 domains were well conserved among these species. Phylogenetic analysis suggested that TcCPG2 was closely related to the sequence of chondroitin proteoglycan 2 of A. suum. Interestingly, a high level of Tc-cpg-2 was detected in female germline tissues, particularly in the oviduct, suggesting potential roles of this gene in reproduction (e.g. oogenesis and embryogenesis) of adult T. canis. The functional roles of Tc-cpg-2 in reproduction and development in this parasite and related parasitic nematodes warrant further functional studies.
Collapse
|
19
|
Hyaluronidase and Chondroitinase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 925:75-87. [DOI: 10.1007/5584_2016_54] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
20
|
Izumikawa T, Dejima K, Watamoto Y, Nomura KH, Kanaki N, Rikitake M, Tou M, Murata D, Yanagita E, Kano A, Mitani S, Nomura K, Kitagawa H. Chondroitin 4-O-Sulfotransferase Is Indispensable for Sulfation of Chondroitin and Plays an Important Role in Maintaining Normal Life Span and Oxidative Stress Responses in Nematodes. J Biol Chem 2016; 291:23294-23304. [PMID: 27645998 DOI: 10.1074/jbc.m116.757328] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Indexed: 11/06/2022] Open
Abstract
Chondroitin sulfate (CS)/chondroitin (Chn) chains are indispensable for embryonic cell division and cytokinesis in the early developmental stages in Caenorhabditis elegans and mice, whereas heparan sulfate (HS) is essential for axon guidance during nervous system development. These data indicate that the fundamental functions of CS and HS are conserved from worms to mammals and that the function of CS/Chn differs from that of HS. Although previous studies have shown that C. elegans produces HS and non-sulfated Chn, whether the organism produces CS remains unclear. Here, we demonstrate that C. elegans produces a small amount of 4-O-sulfated Chn and report the identification of C41C4.1, an orthologue of the human chondroitin 4-O-sulfotransferase gene. Loss of C41C4.1 in C. elegans resulted in a decline in 4-O-sulfation of CS and an increase in the number of sulfated units in HS. C41C4.1 deletion mutants exhibited reduced survival rates after synchronization with sodium hypochlorite. Collectively, these results show for the first time that CS glycans are present in C. elegans and that the Chn 4-O-sulfotransferase responsible for the sulfation plays an important role in protecting nematodes from oxidative stress.
Collapse
Affiliation(s)
- Tomomi Izumikawa
- From the Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Katsufumi Dejima
- the Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Yukiko Watamoto
- From the Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Kazuko H Nomura
- the Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Nanako Kanaki
- the Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Marika Rikitake
- the Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Mai Tou
- the Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Daisuke Murata
- the Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Eri Yanagita
- the Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Ai Kano
- the Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Shohei Mitani
- the Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan, and
| | - Kazuya Nomura
- the Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiroshi Kitagawa
- From the Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan,
| |
Collapse
|
21
|
Lowry J, Yochem J, Chuang CH, Sugioka K, Connolly AA, Bowerman B. High-Throughput Cloning of Temperature-Sensitive Caenorhabditis elegans Mutants with Adult Syncytial Germline Membrane Architecture Defects. G3 (BETHESDA, MD.) 2015; 5:2241-55. [PMID: 26311651 PMCID: PMC4632044 DOI: 10.1534/g3.115.021451] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
The adult Caenorhabditis elegans hermaphrodite gonad consists of two mirror-symmetric U-shaped arms, with germline nuclei located peripherally in the distal regions of each arm. The nuclei are housed within membrane cubicles that are open to the center, forming a syncytium with a shared cytoplasmic core called the rachis. As the distal germline nuclei progress through meiotic prophase, they move proximally and eventually cellularize as their compartments grow in size. The development and maintenance of this complex and dynamic germline membrane architecture are relatively unexplored, and we have used a forward genetic screen to identify 20 temperature-sensitive mutations in 19 essential genes that cause defects in the germline membrane architecture. Using a combined genome-wide SNP mapping and whole genome sequencing strategy, we have identified the causal mutations in 10 of these mutants. Four of the genes we have identified are conserved, with orthologs known to be involved in membrane biology, and are required for proper development or maintenance of the adult germline membrane architecture. This work provides a starting point for further investigation of the mechanisms that control the dynamics of syncytial membrane architecture during adult oogenesis.
Collapse
Affiliation(s)
- Josh Lowry
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - John Yochem
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Chien-Hui Chuang
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Kenji Sugioka
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Amy A Connolly
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
22
|
Canning DR, Brelsford NR, Lovett NW. Chondroitin sulfate effects on neural stem cell differentiation. In Vitro Cell Dev Biol Anim 2015; 52:35-44. [PMID: 26288008 DOI: 10.1007/s11626-015-9941-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/10/2015] [Indexed: 11/25/2022]
Abstract
We have investigated the role chondroitin sulfate has on cell interactions during neural plate formation in the early chick embryo. Using tissue culture isolates from the prospective neural plate, we have measured neural gene expression profiles associated with neural stem cell differentiation. Removal of chondroitin sulfate from stage 4 neural plate tissue leads to altered associations of N-cadherin-positive neural progenitors and causes changes in the normal sequence of neural marker gene expression. Absence of chondroitin sulfate in the neural plate leads to reduced Sox2 expression and is accompanied by an increase in the expression of anterior markers of neural regionalization. Results obtained in this study suggest that the presence of chondroitin sulfate in the anterior chick embryo is instrumental in maintaining cells in the neural precursor state.
Collapse
Affiliation(s)
- David R Canning
- Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA.
| | - Natalie R Brelsford
- Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA
| | - Neil W Lovett
- Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA
| |
Collapse
|
23
|
Wang W, Han W, Cai X, Zheng X, Sugahara K, Li F. Cloning and characterization of a novel chondroitin sulfate/dermatan sulfate 4-O-endosulfatase from a marine bacterium. J Biol Chem 2015; 290:7823-32. [PMID: 25648894 DOI: 10.1074/jbc.m114.629154] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Sulfatases are potentially useful tools for structure-function studies of glycosaminoglycans (GAGs). To date, various GAG exosulfatases have been identified in eukaryotes and prokaryotes. However, endosulfatases that act on GAGs have rarely been reported. Recently, a novel HA and CS lyase (HCLase) was identified for the first time from a marine bacterium (Han, W., Wang, W., Zhao, M., Sugahara, K., and Li, F. (2014) J. Biol. Chem. 289, 27886-27898). In this study, a putative sulfatase gene, closely linked to the hclase gene in the genome, was recombinantly expressed and characterized in detail. The recombinant protein showed a specific N-acetylgalactosamine-4-O-sulfatase activity that removes 4-O-sulfate from both disaccharides and polysaccharides of chondroitin sulfate (CS)/dermatan sulfate (DS), suggesting that this sulfatase represents a novel endosulfatase. The novel endosulfatase exhibited maximal reaction rate in a phosphate buffer (pH 8.0) at 30 °C and effectively removed 17-65% of 4-O-sulfates from various CS and DS and thus significantly inhibited the interactions of CS and DS with a positively supercharged fluorescent protein. Moreover, this endosulfatase significantly promoted the digestion of CS by HCLase, suggesting that it enhances the digestion of CS/DS by the bacterium. Therefore, this endosulfatase is a potential tool for use in CS/DS-related studies and applications.
Collapse
Affiliation(s)
- Wenshuang Wang
- From the National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, 27 South Shanda Road, Jinan 250100, China and
| | - Wenjun Han
- From the National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, 27 South Shanda Road, Jinan 250100, China and
| | - Xingya Cai
- From the National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, 27 South Shanda Road, Jinan 250100, China and
| | - Xiaoyu Zheng
- From the National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, 27 South Shanda Road, Jinan 250100, China and
| | - Kazuyuki Sugahara
- the Proteoglycan Signaling and Therapeutics Research Group, Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science, Sapporo 001-0021, Japan
| | - Fuchuan Li
- From the National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, 27 South Shanda Road, Jinan 250100, China and
| |
Collapse
|
24
|
Akiyoshi S, Nomura KH, Dejima K, Murata D, Matsuda A, Kanaki N, Takaki T, Mihara H, Nagaishi T, Furukawa S, Ando KG, Yoshina S, Mitani S, Togayachi A, Suzuki Y, Shikanai T, Narimatsu H, Nomura K. RNAi screening of human glycogene orthologs in the nematode Caenorhabditis elegans and the construction of the C. elegans glycogene database. Glycobiology 2015; 25:8-20. [PMID: 25091817 PMCID: PMC4245905 DOI: 10.1093/glycob/cwu080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 07/16/2014] [Accepted: 07/30/2014] [Indexed: 12/16/2022] Open
Abstract
In this study, we selected 181 nematode glycogenes that are orthologous to human glycogenes and examined their RNAi phenotypes. The results are deposited in the Caenorhabditis elegans Glycogene Database (CGGDB) at AIST, Tsukuba, Japan. The most prominent RNAi phenotypes observed are disruptions of cell cycle progression in germline mitosis/meiosis and in early embryonic cell mitosis. Along with the previously reported roles of chondroitin proteoglycans, glycosphingolipids and GPI-anchored proteins in cell cycle progression, we show for the first time that the inhibition of the functions of N-glycan synthesis genes (cytoplasmic alg genes) resulted in abnormal germline formation, ER stress and small body size phenotypes. The results provide additional information on the roles of glycoconjugates in the cell cycle progression mechanisms of germline and embryonic cells.
Collapse
Affiliation(s)
| | - Kazuko H Nomura
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Katsufumi Dejima
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Daisuke Murata
- Graduate School of Systems Life Sciences, and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | | | - Nanako Kanaki
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Tetsuro Takaki
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Hiroyuki Mihara
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Takayuki Nagaishi
- Graduate School of Systems Life Sciences, and Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Shuhei Furukawa
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Keiko-Gengyo Ando
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Shohei Mitani
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Akira Togayachi
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Yoshinori Suzuki
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Toshihide Shikanai
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Hisashi Narimatsu
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Kazuya Nomura
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
25
|
Han W, Wang W, Zhao M, Sugahara K, Li F. A novel eliminase from a marine bacterium that degrades hyaluronan and chondroitin sulfate. J Biol Chem 2014; 289:27886-98. [PMID: 25122756 DOI: 10.1074/jbc.m114.590752] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lyases cleave glycosaminoglycans (GAGs) in an eliminative mechanism and are important tools for the structural analysis and oligosaccharide preparation of GAGs. Various GAG lyases have been identified from terrestrial but not marine organisms even though marine animals are rich in GAGs with unique structures and functions. Herein we isolated a novel GAG lyase for the first time from the marine bacterium Vibrio sp. FC509 and then recombinantly expressed and characterized it. It showed strong lyase activity toward hyaluronan (HA) and chondroitin sulfate (CS) and was designated as HA and CS lyase (HCLase). It exhibited the highest activities to both substrates at pH 8.0 and 0.5 m NaCl at 30 °C. Its activity toward HA was less sensitive to pH than its CS lyase activity. As with most other marine enzymes, HCLase is a halophilic enzyme and very stable at temperatures from 0 to 40 °C for up to 24 h, but its activity is independent of divalent metal ions. The specific activity of HCLase against HA and CS reached a markedly high level of hundreds of thousands units/mg of protein under optimum conditions. The HCLase-resistant tetrasaccharide Δ(4,5)HexUAα1-3GalNAc(6-O-sulfate)β1-4GlcUA(2-O-sulfate)β1-3GalNAc(6-O-sulfate) was isolated from CS-D, the structure of which indicated that HCLase could not cleave the galactosaminidic linkage bound to 2-O-sulfated d-glucuronic acid (GlcUA) in CS chains. Site-directed mutagenesis indicated that HCLase may work via a catalytic mechanism in which Tyr-His acts as the Brønsted base and acid. Thus, the identification of HCLase provides a useful tool for HA- and CS-related research and applications.
Collapse
Affiliation(s)
- Wenjun Han
- From the National Glycoengineering Research Center, and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China and
| | - Wenshuang Wang
- From the National Glycoengineering Research Center, and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China and
| | - Mei Zhao
- From the National Glycoengineering Research Center, and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China and
| | - Kazuyuki Sugahara
- Proteoglycan Signaling and Therapeutics Research Group, Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science, Sapporo 001-0021, Japan
| | - Fuchuan Li
- From the National Glycoengineering Research Center, and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China and
| |
Collapse
|
26
|
Chondroitin sulphate N-acetylgalactosaminyl-transferase-1 inhibits recovery from neural injury. Nat Commun 2014; 4:2740. [PMID: 24220492 PMCID: PMC3831297 DOI: 10.1038/ncomms3740] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 10/10/2013] [Indexed: 12/20/2022] Open
Abstract
Extracellular factors that inhibit axon growth and intrinsic factors that promote it affect neural regeneration. Therapies targeting any single gene have not yet simultaneously optimized both types of factors. Chondroitin sulphate (CS), a glycosaminoglycan, is the most abundant extracellular inhibitor of axon growth. Here we show that mice carrying a gene knockout for CS N-acetylgalactosaminyltransferase-1 (T1), a key enzyme in CS biosynthesis, recover more completely from spinal cord injury than wild-type mice and even chondroitinase ABC-treated mice. Notably, synthesis of heparan sulphate (HS), a glycosaminoglycan promoting axonal growth, is also upregulated in TI knockout mice because HS-synthesis enzymes are induced in the mutant neurons. Moreover, chondroitinase ABC treatment never induces HS upregulation. Taken together, our results indicate that regulation of a single gene, T1, mediates excellent recovery from spinal cord injury by optimizing counteracting effectors of axon regeneration—an extracellular inhibitor of CS and intrinsic promoters, namely, HS-synthesis enzymes. The glycosaminoglycan chondroitin sulphate inhibits axon growth. Here the authors show that mice deficient in chondroitin sulphate biosynthesis have increased levels of heparan sulphate, which is more efficient than chondroitinase in supporting recovery from spinal cord injury.
Collapse
|
27
|
|
28
|
Mikami T, Kitagawa H. Biosynthesis and function of chondroitin sulfate. Biochim Biophys Acta Gen Subj 2013; 1830:4719-33. [DOI: 10.1016/j.bbagen.2013.06.006] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/03/2013] [Accepted: 06/06/2013] [Indexed: 10/26/2022]
|
29
|
Tsuyama T, Kishikawa JI, Han YW, Harada Y, Tsubouchi A, Noji H, Kakizuka A, Yokoyama K, Uemura T, Imamura H. In vivo fluorescent adenosine 5'-triphosphate (ATP) imaging of Drosophila melanogaster and Caenorhabditis elegans by using a genetically encoded fluorescent ATP biosensor optimized for low temperatures. Anal Chem 2013; 85:7889-96. [PMID: 23875533 DOI: 10.1021/ac4015325] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenosine 5'-triphosphate (ATP) is the major energy currency of all living organisms. Despite its important functions, the spatiotemporal dynamics of ATP levels inside living multicellular organisms is unclear. In this study, we modified the genetically encoded Förster resonance energy transfer (FRET)-based ATP biosensor ATeam to optimize its affinity at low temperatures. This new biosensor, AT1.03NL, detected ATP changes inside Drosophila S2 cells more sensitively than the original biosensor did, at 25 °C. By expressing AT1.03NL in Drosophila melanogaster and Caenorhabditis elegans, we succeeded in imaging the in vivo ATP dynamics of these model animals at single-cell resolution.
Collapse
Affiliation(s)
- Taiichi Tsuyama
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Filipek-Górniok B, Holmborn K, Haitina T, Habicher J, Oliveira MB, Hellgren C, Eriksson I, Kjellén L, Kreuger J, Ledin J. Expression of chondroitin/dermatan sulfate glycosyltransferases during early zebrafish development. Dev Dyn 2013; 242:964-75. [PMID: 23703795 DOI: 10.1002/dvdy.23981] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 03/08/2013] [Accepted: 04/08/2013] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Chondroitin/dermatan sulfate (CS/DS) proteoglycans present in the extracellular matrix have important structural and regulatory functions. RESULTS Six human genes have previously been shown to catalyze CS/DS polymerization. Here we show that one of these genes, chpf, is represented by two copies in the zebrafish genome, chpfa and chpfb, while the other five human CS/DS glycosyltransferases csgalnact1, csgalnact2, chpf2, chsy1, and chsy3 all have single zebrafish orthologues. The putative zebrafish CS/DS glycosyltransferases are spatially and temporally expressed. Interestingly, overlapping expression of multiple glycosyltransferases coincides with high CS/DS deposition. Finally, whereas the relative levels of the related polysaccharide HS reach steady-state at around 2 days post fertilization, there is a continued relative increase of the CS amounts per larvae during the first 6 days of development, matching the increased cartilage formation. CONCLUSIONS There are 7 CS/DS glycosyltransferases in zebrafish, which, based on homology, can be divided into the CSGALNACT, CHSY, and CHPF families. The overlap between intense CS/DS production and the expression of multiple CS/DS glycosyltransferases suggests that efficient CS/DS biosynthesis requires a combination of several glycosyltransferases.
Collapse
Affiliation(s)
- Beata Filipek-Górniok
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wilson DG, Phamluong K, Lin WY, Barck K, Carano RAD, Diehl L, Peterson AS, Martin F, Solloway MJ. Chondroitin sulfate synthase 1 (Chsy1) is required for bone development and digit patterning. Dev Biol 2012; 363:413-25. [PMID: 22280990 DOI: 10.1016/j.ydbio.2012.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/12/2011] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
Abstract
Joint and skeletal development is highly regulated by extracellular matrix (ECM) proteoglycans, of which chondroitin sulfate proteoglycans (CSPGs) are a major class. Despite the requirement of joint CSPGs for skeletal flexibility and structure, relatively little is understood regarding their role in establishing joint positioning or in modulating signaling and cell behavior during joint formation. Chondroitin sulfate synthase 1 (Chsy1) is one of a family of enzymes that catalyze the extension of chondroitin and dermatan sulfate glycosaminoglycans. Recently, human syndromic brachydactylies have been described to have loss-of-function mutations at the CHSY1 locus. In concordance with these observations, we demonstrate that mice lacking Chsy1, though viable, display chondrodysplasia and decreased bone density. Notably, Chsy1(-/-) mice show a profound limb patterning defect in which orthogonally shifted ectopic joints form in the distal digits. Associated with the digit-patterning defect is a shift in cell orientation and an imbalance in chondroitin sulfation. Our results place Chsy1 as an essential regulator of joint patterning and provide a mouse model of human brachydactylies caused by mutations in CHSY1.
Collapse
|
32
|
Yuksel-Apak M, Bögershausen N, Pawlik B, Li Y, Apak S, Uyguner O, Milz E, Nürnberg G, Karaman B, Gülgören A, Grzeschik KH, Nürnberg P, Kayserili H, Wollnik B. A large duplication involving the IHH locus mimics acrocallosal syndrome. Eur J Hum Genet 2012; 20:639-44. [PMID: 22234151 DOI: 10.1038/ejhg.2011.250] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Indian hedgehog (Ihh) signaling is a major determinant of various processes during embryonic development and has a pivotal role in embryonic skeletal development. A specific spatial and temporal expression of Ihh within the developing limb buds is essential for accurate digit outgrowth and correct digit number. Although missense mutations in IHH cause brachydactyly type A1, small tandem duplications involving the IHH locus have recently been described in patients with mild syndactyly and craniosynostosis. In contrast, a ∼600-kb deletion 5' of IHH in the doublefoot mouse mutant (Dbf) leads to severe polydactyly without craniosynostosis, but with craniofacial dysmorphism. We now present a patient resembling acrocallosal syndrome (ACS) with extensive polysyndactyly of the hands and feet, craniofacial abnormalities including macrocephaly, agenesis of the corpus callosum, dysplastic and low-set ears, severe hypertelorism and profound psychomotor delay. Single-nucleotide polymorphism (SNP) array copy number analysis identified a ∼900-kb duplication of the IHH locus, which was confirmed by an independent quantitative method. A fetus from a second pregnancy of the mother by a different spouse showed similar craniofacial and limb malformations and the same duplication of the IHH-locus. We defined the exact breakpoints and showed that the duplications are identical tandem duplications in both sibs. No copy number changes were observed in the healthy mother. To our knowledge, this is the first report of a human phenotype similar to the Dbf mutant and strikingly overlapping with ACS that is caused by a copy number variation involving the IHH locus on chromosome 2q35.
Collapse
Affiliation(s)
- Memnune Yuksel-Apak
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yamada S, Sugahara K, Ozbek S. Evolution of glycosaminoglycans: Comparative biochemical study. Commun Integr Biol 2011; 4:150-8. [PMID: 21655428 DOI: 10.4161/cib.4.2.14547] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 12/20/2010] [Indexed: 01/25/2023] Open
Abstract
Glycosaminoglycans, a major component of the extracellular matrix molecules in animal tissues, play important roles in various physiological events. Glycosaminoglycans are found in not only vertebrates but also many invertebrates, implying a conserved function in the animal kingdom. Here, we discuss the analysis of glycosaminoglycans in 11 invertebrate phyla focusing on structure as well as physiological functions elucidated in model organisms. Various sulfated structures of heparan sulfate are widely distributed from very primitive organisms to humans, indicating an involvement in fundamental biological processes. By contrast, chondroitin/dermatan sulfate from lower organisms is limited in its structural complexity and often associated with a particular function. The presence of hyaluronic acid outside of vertebrates has been reported only in a mollusk.
Collapse
Affiliation(s)
- Shuhei Yamada
- Laboratory of Proteoglycan Signaling and Therapeutics; Faculty of Advanced Life Science; Graduate School of Life Science; Hokkaido University; Sapporo, Japan
| | | | | |
Collapse
|
34
|
Chondroitin 4-O-sulfotransferase-1 regulates the chain length of chondroitin sulfate in co-operation with chondroitin N-acetylgalactosaminyltransferase-2. Biochem J 2011; 434:321-31. [PMID: 21138417 DOI: 10.1042/bj20101456] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Previously, we demonstrated that sog9 cells, a murine L cell mutant, are deficient in the expression of C4ST (chondroitin 4-O-sulfotransferase)-1 and that they synthesize fewer and shorter CS (chondroitin sulfate) chains. These results suggested that C4ST-1 regulates not only 4-O-sulfation of CS, but also the length and amount of CS chains; however, the mechanism remains unclear. In the present study, we have demonstrated that C4ST-1 regulates the chain length and amount of CS in co-operation with ChGn-2 (chondroitin N-acetylgalactosaminyltransferase 2). Overexpression of ChGn-2 increased the length and amount of CS chains in L cells, but not in sog9 mutant cells. Knockdown of ChGn-2 resulted in a decrease in the amount of CS in L cells in a manner proportional to ChGn-2 expression levels, whereas the introduction of mutated C4ST-1 or ChGn-2 lacking enzyme activity failed to increase the amount of CS. Furthermore, the non-reducing terminal 4-O-sulfation of N-acetylgalactosamine residues facilitated the elongation of CS chains by chondroitin polymerase consisting of chondroitin synthase-1 and chondroitin-polymerizing factor. Overall, these results suggest that the chain length of CS is regulated by C4ST-1 and ChGn-2 and that the enzymatic activities of these proteins play a critical role in CS elongation.
Collapse
|
35
|
Nomura KH, Murata D, Hayashi Y, Dejima K, Mizuguchi S, Kage-Nakadai E, Gengyo-Ando K, Mitani S, Hirabayashi Y, Ito M, Nomura K. Ceramide glucosyltransferase of the nematode Caenorhabditis elegans is involved in oocyte formation and in early embryonic cell division. Glycobiology 2011; 21:834-48. [PMID: 21325339 DOI: 10.1093/glycob/cwr019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ceramide glucosyltransferase (Ugcg) [uridine diphosphate (UDP)-glucose:N-acylsphingosine D-glucosyltransferase or UDP-glucose ceramide glucosyltransferase (GlcT): EC 2.4.1.80] catalyzes formation of glucosylceramide (GlcCer) from ceramide and UDP-glucose. There is only one Ugcg gene in the mouse genome, which is essential in embryogenesis and brain development. The nematode Caenorhabditis elegans has three Ugcg genes (cgt-1, cgt-2 and cgt-3), and double RNAi of the cgt-1 and cgt-3 genes results in lethality at the L1 larval stage. In this study, we isolated knockout worms for the three genes and characterized the gene functions. Each gene product showed active enzymatic activity when expressed in GM95 cells deficient in glycosphingolipids (GSLs). When each gene function was disrupted, the brood size of the animal markedly decreased, and abnormal oocytes and multinucleated embryos were formed. The CGT-3 protein had the highest Ugcg activity, and knockout of its gene resulted in the severest phenotype. When cgt-3 RNAi was performed on rrf-1 worms lacking somatic RNAi machinery but with intact germline RNAi machinery, a number of abnormal oocytes and multinucleated eggs were observed, although the somatic phenotype, i.e., L1 lethal effects of cgt-1/cgt-3 RNAi, was completely suppressed. Cell surface expression of GSLs and sphingomyelin, which are important components of membrane domains, was affected in the RNAi-treated embryos. In the embryos, an abnormality in cytokinesis was also observed. From these results, we concluded that the Ugcg gene is indispensable in the germline and that an ample supply of GlcCer is needed for oocytes and fertilized eggs to maintain normal membranes and to proceed through the normal cell cycle.
Collapse
Affiliation(s)
- Kazuko H Nomura
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dejima K, Murata D, Mizuguchi S, Nomura KH, Izumikawa T, Kitagawa H, Gengyo-Ando K, Yoshina S, Ichimiya T, Nishihara S, Mitani S, Nomura K. Two Golgi-resident 3'-Phosphoadenosine 5'-phosphosulfate transporters play distinct roles in heparan sulfate modifications and embryonic and larval development in Caenorhabditis elegans. J Biol Chem 2010; 285:24717-28. [PMID: 20529843 PMCID: PMC2915708 DOI: 10.1074/jbc.m109.088229] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 04/23/2010] [Indexed: 11/06/2022] Open
Abstract
Synthesis of extracellular sulfated molecules requires active 3'-phosphoadenosine 5'-phosphosulfate (PAPS). For sulfation to occur, PAPS must pass through the Golgi membrane, which is facilitated by Golgi-resident PAPS transporters. Caenorhabditis elegans PAPS transporters are encoded by two genes, pst-1 and pst-2. Using the yeast heterologous expression system, we characterized PST-1 and PST-2 as PAPS transporters. We created deletion mutants to study the importance of PAPS transporter activity. The pst-1 deletion mutant exhibited defects in cuticle formation, post-embryonic seam cell development, vulval morphogenesis, cell migration, and embryogenesis. The pst-2 mutant exhibited a wild-type phenotype. The defects observed in the pst-1 mutant could be rescued by transgenic expression of pst-1 and hPAPST1 but not pst-2 or hPAPST2. Moreover, the phenotype of a pst-1;pst-2 double mutant were similar to those of the pst-1 single mutant, except that larval cuticle formation was more severely defected. Disaccharide analysis revealed that heparan sulfate from these mutants was undersulfated. Gene expression reporter analysis revealed that these PAPS transporters exhibited different tissue distributions and subcellular localizations. These data suggest that pst-1 and pst-2 play different physiological roles in heparan sulfate modification and development.
Collapse
Affiliation(s)
- Katsufumi Dejima
- From the Department of Biology, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Daisuke Murata
- From the Department of Biology, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Souhei Mizuguchi
- From the Department of Biology, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Kazuko H. Nomura
- From the Department of Biology, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Tomomi Izumikawa
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
- the Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Hiroshi Kitagawa
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
- the Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Keiko Gengyo-Ando
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
- the Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan, and
| | - Sawako Yoshina
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
- the Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan, and
| | - Tomomi Ichimiya
- the Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Shoko Nishihara
- the Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Shohei Mitani
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
- the Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan, and
| | - Kazuya Nomura
- From the Department of Biology, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
- the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
37
|
Izumikawa T, Kanagawa N, Watamoto Y, Okada M, Saeki M, Sakano M, Sugahara K, Sugihara K, Asano M, Kitagawa H. Impairment of embryonic cell division and glycosaminoglycan biosynthesis in glucuronyltransferase-I-deficient mice. J Biol Chem 2010; 285:12190-6. [PMID: 20164174 DOI: 10.1074/jbc.m110.100941] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have revealed that in Caenorhabditis elegans, non-sulfated chondroitin is required for normal cell division and cytokinesis at an early developmental stage, whereas heparan sulfate is essential for embryonic morphogenesis in the later stages of development. To clarify the roles of chondroitin sulfate and heparan sulfate in early embryogenesis in mammals, we generated glucuronyltransferase-I (GlcAT-I) knock-out mice by gene targeting. GlcAT-I is an enzyme required for the synthesis of both chondroitin sulfate and heparan sulfate. Here we report that mice with a deletion of GlcAT-I showed remarkable reduction of the synthesis of chondroitin sulfate and heparan sulfate and embryonic lethality before the 8-cell stage because of failed cytokinesis. In addition, treatment of wild-type 2-cell embryos with chondroitinase ABC had marked effects on cell division, although many heparitinase-treated embryos normally developed to blastocysts. Taken together, these results suggest that chondroitin sulfate in mammals, as with non-sulfated chondroitin in C. elegans, is indispensable for embryonic cell division.
Collapse
Affiliation(s)
- Tomomi Izumikawa
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Izumikawa T, Kitagawa H. Mice Deficient in Glucuronyltransferase-I. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:19-34. [DOI: 10.1016/s1877-1173(10)93002-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Ideo H, Fukushima K, Gengyo-Ando K, Mitani S, Dejima K, Nomura K, Yamashita K. A Caenorhabditis elegans glycolipid-binding galectin functions in host defense against bacterial infection. J Biol Chem 2009; 284:26493-501. [PMID: 19635802 DOI: 10.1074/jbc.m109.038257] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Galectins are a family of beta-galactoside-binding proteins that are widely found among animal species and that regulate diverse biological phenomena. To study the biological function of glycolipid-binding galectins, we purified recombinant Caenorhabditis elegans galectins (LEC-1-11) and studied their binding to C. elegans glycolipids. We found that LEC-8 binds to glycolipids in C. elegans through carbohydrate recognition. It has been reported that Cry5B-producing Bacillus thuringiensis strains can infect C. elegans and that the C. elegans Cry5B receptor molecules are glycolipids. We found that Cry5B and LEC-8 bound to C. elegans glycolipid-coated plates in a dose-dependent manner and that Cry5B binding to glycolipids was inhibited by the addition of LEC-8. LEC-8 is usually expressed strongly in the pharyngeal-intestinal valve and intestinal-rectal valve and is expressed weakly in intestine. However, when C. elegans were fed Escherichia coli expressing Cry5B, intestinal LEC-8::EGFP protein levels increased markedly. In contrast, LEC-8::EGFP expression triggered by Cry5B was reduced in toxin-resistant C. elegans mutants, which had mutations in genes involved in biosynthesis of glycolipids. Moreover, the LEC-8-deficient mutant was more susceptible to Cry5B than wild-type worms. These results suggest that the glycolipid-binding lectin LEC-8 contributes to host defense against bacterial infection by competitive binding to target glycolipid molecules.
Collapse
Affiliation(s)
- Hiroko Ideo
- Innovative Research Initiatives, Tokyo Institute of Technology, Yokohama 226-8503, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Asada M, Shinomiya M, Suzuki M, Honda E, Sugimoto R, Ikekita M, Imamura T. Glycosaminoglycan affinity of the complete fibroblast growth factor family. Biochim Biophys Acta Gen Subj 2009; 1790:40-8. [DOI: 10.1016/j.bbagen.2008.09.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 09/01/2008] [Accepted: 09/04/2008] [Indexed: 11/17/2022]
|
41
|
Yamada S, Mizumoto S, Sugahara K. Chondroitin Hydrolase in Caenorhabditis elegans. TRENDS GLYCOSCI GLYC 2009. [DOI: 10.4052/tigg.21.149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Seko A, Yamashita K. Activation of beta1,3-N-acetylglucosaminyltransferase-2 (beta3Gn-T2) by beta3Gn-T8. Possible involvement of beta3Gn-T8 in increasing poly-N-acetyllactosamine chains in differentiated HL-60 cells. J Biol Chem 2008; 283:33094-100. [PMID: 18826941 DOI: 10.1074/jbc.m806933200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzymatic activities of some glycosyltransferases are markedly increased via complex formation with other transferases or cofactor proteins. We previously showed that beta1,3-N-acetylglucosaminyltransferase-2 (beta3Gn-T2) and beta3Gn-T8 can form a heterodimer in vitro and that the complex exhibits much higher enzymatic activity than either enzyme alone (Seko, A., and Yamashita, K. (2005) Glycobiology 15, 943-951). Here we examined this activation and the biological significance of complex formation in differentiated HL-60 cells. beta3Gn-T2 and -T8 were co-immunoprecipitated from the lysates of both-transfected COS-7 cells, indicating their association in vivo. We prepared inactive mutants of both enzymes by destroying the DXD motifs. The mixture of mutated beta3Gn-T2 and intact beta3Gn-T8 did not exhibit any activation, whereas the mixture of intact beta3Gn-T2 and mutated beta3Gn-T8 had increased activity, indicating the activation of beta3Gn-T2 via complex formation. Next, we compared expression levels of beta3Gn-T1-T8 in HL-60 cells and DMSO-treated differentiated HL-60 cells, which produce larger poly-N-acetyllactosamine chains. The expression level of beta3Gn-T8 in the differentiated cells was 2.6-fold higher than in the untreated cells. Overexpression of beta3Gn-T8, but not beta3Gn-T2, induced an increase in poly-N-acetyllactosamine chains in HL-60 cells. These results raise a possibility that up-regulation of beta3Gn-T8 in differentiated HL-60 cells increases poly-N-acetyllactosamine chains by activating intrinsic beta3Gn-T2.
Collapse
Affiliation(s)
- Akira Seko
- Innovative Research Initiatives, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | | |
Collapse
|
43
|
Furukawa K, Tsuchida A, Okajima T, Furukawa K. Glycoconjugate glycosyltransferases. Glycoconj J 2008; 26:987-98. [DOI: 10.1007/s10719-008-9156-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Revised: 05/29/2008] [Accepted: 05/30/2008] [Indexed: 11/29/2022]
|
44
|
Increased expression of non-sulfated chondroitin correlates with adverse clinicopathological parameters in prostate cancer. Mod Pathol 2008; 21:893-901. [PMID: 18487997 DOI: 10.1038/modpathol.2008.70] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chondroitin sulfate is a structurally diverse glycosaminoglycan, which contains a variable degree of sulfation that helps to determine its biological function. It is involved in the regulation of cellular activity and has been implicated in carcinogenesis. To determine if the non-sulfated chondroitin backbone has a functional role in prostate cancer, we analyzed its expression by immunohistochemistry using the 1B5 monoclonal antibody and a set of tissue microarrays constructed with 227 prostate specimen cores from 81 cases of benign prostate tissue and 77 cases of prostate cancer, of which 69 of these cases are matched. Non-sulfated chondroitin was found in the secretory epithelial cells and stromal regions of both prostatic adenocarcinoma and benign prostatic tissues, as well as in the basal cells of benign glands. A higher percentage of cancerous cells were stained positively for non-sulfated chondroitin as compared with benign secretory cells of the same patient. Cancerous cells stained more intensely for non-sulfated chondroitin. This increase in percentage of cells stained and increase in staining intensity were associated with higher pathological T stage and extraprostatic extension. Non-sulfated chondroitin expression (either staining intensity or percentage of cells stained) in adenocarcinoma and its peritumoral stroma correlated significantly with several clinicopathological parameters of unfavorable outcome, including higher pathological T stage and Gleason score, presence of tumor in both prostatic lobes, extraprostatic extension, seminal vesicle involvement and preoperative prostate-specific antigen levels. These data suggest that non-sulfated chondroitin is a potentially useful biomarker for prostate cancer, and may be involved in regulating prostate cancer behavior.
Collapse
|
45
|
Kaneiwa T, Yamada S, Mizumoto S, Montaño AM, Mitani S, Sugahara K. Identification of a novel chondroitin hydrolase in Caenorhabditis elegans. J Biol Chem 2008; 283:14971-9. [PMID: 18390555 DOI: 10.1074/jbc.m709236200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hyaluronidases have been postulated to be the enzyme acting at the initial step of chondroitin sulfate (CS) catabolism in vivo. Since chondroitin (Chn) but not hyaluronic acid (HA) has been detected in Caenorhabditis elegans, the nematode is a good model for elucidating the mechanism of the degradation of CS/Chn in vivo. Here we cloned the homolog of human hyaluronidase in C. elegans, T22C8.2. The Chn-degrading activity in vitro was first demonstrated when it was expressed in COS-7 cells. The enzyme cleaved preferentially Chn. CS-A and CS-C were also depolymerized but to lesser extents, and HA was hardly degraded. In order of preference, the substrates ranked Chn >> CS-A > CS-C >> HA. The products of the degradation of Chn by the enzyme were characterized by anion-exchange high performance liquid chromatography and delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The structure of the major component in the digest was determined as GlcUAbeta1-3GalNAcbeta1-4GlcUAbeta1-3GalNAc, where GlcUA and GalNAc represent D-glucuronic acid and N-acetyl-D-galactosamine, respectively, indicating that this enzyme is a Chn hydrolase, an endo-beta-galactosaminidase specific for Chn. Investigation of the effects of pH on the activity revealed the optimum pH of Chn hydrolase to be 6.0. Since Chn in C. elegans has been demonstrated to play critical roles in cell division, Chn hydrolase possibly regulates the function of Chn in vivo. This is the first demonstration of a Chn hydrolase in an animal.
Collapse
Affiliation(s)
- Tomoyuki Kaneiwa
- Laboratory of Proteoglycan Signaling and Therapeutics, Hokkaido University Graduate School of Life Science, Nishi-11-choume, Kita 21-jo, Kita-ku, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Izumikawa T, Koike T, Shiozawa S, Sugahara K, Tamura JI, Kitagawa H. Identification of Chondroitin Sulfate Glucuronyltransferase as Chondroitin Synthase-3 Involved in Chondroitin Polymerization. J Biol Chem 2008; 283:11396-406. [DOI: 10.1074/jbc.m707549200] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
47
|
Izumikawa T, Uyama T, Okuura Y, Sugahara K, Kitagawa H. Involvement of chondroitin sulfate synthase-3 (chondroitin synthase-2) in chondroitin polymerization through its interaction with chondroitin synthase-1 or chondroitin-polymerizing factor. Biochem J 2007; 403:545-52. [PMID: 17253960 PMCID: PMC1876374 DOI: 10.1042/bj20061876] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 01/24/2007] [Accepted: 01/25/2007] [Indexed: 11/17/2022]
Abstract
Previously, we have demonstrated that co-expression of ChSy-1 (chondroitin synthase-1), with ChPF (chondroitin-polymerizing factor) resulted in a marked augmentation of glycosyltransferase activities and the expression of the chondroitin polymerase activity of ChSy-1. These results prompted us to evaluate the effects of co-expression of the recently cloned CSS3 (chondroitin sulfate synthase-3) with ChPF, because ChSy-1 and CSS3 have similar properties, i.e. they possess GalNAcT-II (N-acetylgalactosaminyltransferase-II) and GlcAT-II (glucuronyltransferase-II) activities responsible for the elongation of CS (chondroitin sulfate) chains but cannot polymerize chondroitin chains by themselves. Co-expressed CSS3 and ChPF showed not only substantial GalNAcT-II and GlcAT-II activities but also chondroitin polymerase activity. Interestingly, co-expressed ChSy-1 and CSS3 also exhibited polymerase activity. The chain length of chondroitin formed by the co-expressed proteins in various combinations was different. In addition, interactions between any two of ChSy-1, CSS3 and ChPF were demonstrated by pull-down assays. Moreover, overexpression of CSS3 increased the amount of CS in HeLa cells, while the RNA interference of CSS3 resulted in a reduction in the amount of CS in the cells. Altogether these results suggest that chondroitin polymerization is achieved by multiple combinations of ChSy-1, CSS3 and ChPF. Based on these characteristics, we have renamed CSS3 ChSy-2 (chondroitin synthase-2).
Collapse
Key Words
- chondroitin sulfate
- chondroitin polymerization
- glycosyltransferase
- glycosaminoglycan
- protein interaction
- proteoglycan
- chpf, chondroitin-polymerizing factor
- chsy, chondroitin synthase
- chgn, chondroitin β1,4-n-acetylgalactosaminyltransferase
- cs, chondroitin sulfate
- css3, chondroitin sulfate synthase-3
- gag, glycosaminoglycan
- galnact, β1,4-n-acetylgalactosaminyltransferase
- gapdh, glyceraldehyde-3-phosphate dehydrogenase
- glcat, β1,3-glucuronyltransferase
- has, hyaluronan synthase
- hs, heparan sulfate
- pg, proteoglycan
- rt, reverse transcriptase
- sirna, small interfering rna
- tm, thrombomodulin
Collapse
Affiliation(s)
- Tomomi Izumikawa
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Toru Uyama
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Yuka Okuura
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Kazuyuki Sugahara
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| |
Collapse
|
48
|
Sugiura N, Shimokata S, Watanabe H, Kimata K. MS analysis of chondroitin polymerization: effects of Mn2+ ions on the stability of UDP-sugars and chondroitin synthesis. Anal Biochem 2007; 365:62-73. [PMID: 17395146 DOI: 10.1016/j.ab.2007.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 02/12/2007] [Accepted: 02/19/2007] [Indexed: 12/01/2022]
Abstract
Chondroitin polymerase from Escherichia coli strain K4 (K4CP) synthesizes chondroitin (CH) polysaccharides by the alternate addition of N-acetyl-D-galactosamine (GalNAc) and D-glucuronic acid (GlcA) to acceptor CH oligosaccharides in the presence of Mn(2+) ions. In this study, we applied matrix-assisted laser desorption ionization and time-of-flight mass spectrometry (MALDI-TOF MS) for the further characterization of the products synthesized by K4CP from CH hexasaccharide as an initial acceptor and UDP-GalNAc and UDP-GlcA as donors. The analysis identified individual CH chains of various lengths and enabled the calculation of their average molecular weights. The ion peaks of the CH chains synthesized in the short-time reactions demonstrated not only the alternate addition of GlcA and GalNAc but also the more frequent transfer of GlcA and GalNAc, consistent with our previous kinetic data. In contrast, the MS spectra of the chains synthesized in the long-time reaction showed that CH chains containing GalNAc at the nonreducing ends were more abundant than those containing GlcA. We found that this inconsistency was due to the preferential decomposition of UDP-GlcA by Mn(2+) ions. We defined the optimal conditions to yield further elongation of the CH chains that have nearly equal numbers of GlcA and GalNAc residues at the nonreducing ends.
Collapse
Affiliation(s)
- Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, Yazako, Nagakute, Aichi 480-1195, Japan
| | | | | | | |
Collapse
|
49
|
Kitagawa H, Izumikawa T, Mizuguchi S, Dejima K, Nomura KH, Egusa N, Taniguchi F, Tamura JI, Gengyo-Ando K, Mitani S, Nomura K, Sugahara K. Expression of rib-1, a Caenorhabditis elegans homolog of the human tumor suppressor EXT genes, is indispensable for heparan sulfate synthesis and embryonic morphogenesis. J Biol Chem 2007; 282:8533-44. [PMID: 17237233 DOI: 10.1074/jbc.m611107200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteins encoded by all of the five cloned human EXT family genes (EXT1, EXT2, EXTL1, EXTL2, and EXTL3), members of the hereditary multiple exostoses gene family of tumor suppressors, are glycosyltransferases required for the biosynthesis of heparan sulfate. In the Caenorhabditis elegans genome, only two genes, rib-1 and rib-2, homologous to the mammalian EXT genes have been identified. Although rib-2 encodes an N-acetylglucosaminyltransferase involved in initiating the biosynthesis and elongation of heparan sulfate, the involvement of the protein encoded by rib-1 in the biosynthesis of heparan sulfate remains unclear. Here we report that RIB-1 is indispensable for the biosynthesis and for embryonic morphogenesis. Despite little individual glycosyltransferase activity by RIB-1, the polymerization of heparan sulfate chains was demonstrated when RIB-1 was coexpressed with RIB-2 in vitro. In addition, RIB-1 and RIB-2 were demonstrated to interact by pulldown assays. To investigate the functions of RIB-1 in vivo, we depleted the expression of rib-1 by deletion mutagenesis. The null mutant worms showed reduced synthesis of heparan sulfate and embryonic lethality. Notably, the null mutant embryos showed abnormality at the gastrulation cleft formation stage or later and arrested mainly at the 1-fold stage. Nearly 100% of the embryos died before L1 stage, although the differentiation of some of the neurons and muscle cells proceeded normally. Similar phenotypes have been observed in rib-2 null mutant embryos. Thus, RIB-1 in addition to RIB-2 is indispensable for the biosynthesis of heparan sulfate in C. elegans, and the two cooperate to synthesize heparan sulfate in vivo. These findings also show that heparan sulfate is essential for post-gastrulation morphogenic movement of embryonic cells and is indispensable for ensuring the normal spatial organization of differentiated tissues and organs.
Collapse
Affiliation(s)
- Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Suzuki N, Toyoda H, Sano M, Nishiwaki K. Chondroitin acts in the guidance of gonadal distal tip cells in C. elegans. Dev Biol 2006; 300:635-46. [PMID: 16982046 DOI: 10.1016/j.ydbio.2006.08.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 08/08/2006] [Accepted: 08/17/2006] [Indexed: 10/24/2022]
Abstract
In Caenorhabditis elegans hermaphrodites, the U-shaped gonad arms are formed by directed migration of the gonadal distal tip cells (DTCs). The stereotyped pattern of DTC migration is carefully controlled by extracellular and cell surface molecules during larval development. Here we report that two proteins, SQV-5 (chondroitin synthase) and its cofactor MIG-22 (chondroitin polymerizing factor), are required for chondroitin biosynthesis and are essential for the dorsally guided migration of DTCs. We found that MIG-22 is expressed in migrating DTCs, hypodermal seam cells, developing vulva and oocytes. The expression of SQV-5 or MIG-22 in both DTCs and hypodermis rescued the DTC migration defects of the relevant mutants more efficiently than when they were expressed in either single tissue. Furthermore, the expression of SQV-5 by the mig-22 promoter significantly rescued sqv-5 mutants, implying that these two proteins act in the same tissues and that chondroitin proteoglycans produced in both of these tissues are required for DTC migration. The DTC migration defects caused by sqv-5 or mig-22 mutations were partially suppressed in the anterior and enhanced in the posterior DTCs in unc-6, unc-5 or unc-40 mutant backgrounds, suggesting that chondroitin proteoglycans play roles in the UNC-6/netrin-dependent guidance of DTCs.
Collapse
Affiliation(s)
- Norio Suzuki
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | |
Collapse
|