1
|
Mühlenhoff U, Weiler BD, Nadler F, Millar R, Kothe I, Freibert SA, Altegoer F, Bange G, Lill R. The iron-sulfur cluster assembly (ISC) protein Iba57 executes a tetrahydrofolate-independent function in mitochondrial [4Fe-4S] protein maturation. J Biol Chem 2022; 298:102465. [PMID: 36075292 PMCID: PMC9551070 DOI: 10.1016/j.jbc.2022.102465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 10/25/2022] Open
Abstract
Mitochondria harbor the bacteria-inherited iron-sulfur cluster assembly (ISC) machinery to generate [2Fe-2S] and [4Fe-4S] proteins. In yeast, assembly of [4Fe-4S] proteins specifically involves the ISC proteins Isa1, Isa2, Iba57, Bol3, and Nfu1. Functional defects in their human equivalents cause the multiple mitochondrial dysfunction syndromes (MMDS), severe disorders with a broad clinical spectrum. The bacterial Iba57 ancestor YgfZ was described to require tetrahydrofolate (THF) for its function in the maturation of selected [4Fe-4S] proteins. Both YgfZ and Iba57 are structurally related to an enzyme family catalyzing THF-dependent one-carbon transfer reactions including GcvT of the glycine cleavage system. On this basis, a universally conserved folate requirement in ISC-dependent [4Fe-4S] protein biogenesis was proposed. To test this idea for mitochondrial Iba57, we performed genetic and biochemical studies in S. cerevisiae, and we solved the crystal structure of Iba57 from the thermophilic fungus Chaetomium thermophilum. We provide three lines of evidence for the THF independence of the Iba57-catalyzed [4Fe-4S] protein assembly pathway. First, yeast mutants lacking folate show no defect in mitochondrial [4Fe-4S] protein maturation. Second, the 3D structure of Iba57 lacks many of the side chain contacts to THF as defined in GcvT, and the THF binding pocket is constricted. Third, mutations in conserved Iba57 residues that are essential for THF-dependent catalysis in GcvT do not impair Iba57 function in vivo, in contrast to an exchange of the invariant, surface-exposed cysteine residue. We conclude that mitochondrial Iba57, despite structural similarities to both YgfZ and THF-binding proteins, does not utilize folate for its function.
Collapse
Affiliation(s)
- Ulrich Mühlenhoff
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany; Zentrum für Synthetische Mikrobiologie SynMikro, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany.
| | - Benjamin Dennis Weiler
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany
| | - Franziska Nadler
- Present address: University Medical Center Göttingen, Department of Cellular Biochemistry Humboldtallee 23, 37073 Göttingen, Germany
| | - Robert Millar
- Zentrum für Synthetische Mikrobiologie SynMikro, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany; Present address: Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Isabell Kothe
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany; Zentrum für Synthetische Mikrobiologie SynMikro, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany
| | - Sven-Andreas Freibert
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany; Zentrum für Synthetische Mikrobiologie SynMikro, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany
| | - Florian Altegoer
- Zentrum für Synthetische Mikrobiologie SynMikro, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany; Fachbereich Chemie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany; Present address: Heinrich-Heine Universität Du¨sseldorf, Institut für Mikrobiologie, Universitätsstraße 1, 40225 Du¨sseldorf, Germany
| | - Gert Bange
- Zentrum für Synthetische Mikrobiologie SynMikro, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany; Fachbereich Chemie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany; Zentrum für Synthetische Mikrobiologie SynMikro, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany.
| |
Collapse
|
2
|
Shaw DK, Sekar J, Ramalingam PV. Recent insights into oceanic dimethylsulfoniopropionate biosynthesis and catabolism. Environ Microbiol 2022; 24:2669-2700. [PMID: 35611751 DOI: 10.1111/1462-2920.16045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
Dimethylsulfoniopropionate (DMSP), a globally important organosulfur compound is produced in prodigious amounts (2.0 Pg sulfur) annually in the marine environment by phytoplankton, macroalgae, heterotrophic bacteria, some corals and certain higher plants. It is an important marine osmolyte and a major precursor molecule for the production of climate-active volatile gas dimethyl sulfide (DMS). DMSP synthesis take place via three pathways: a transamination 'pathway-' in some marine bacteria and algae, a Met-methylation 'pathway-' in angiosperms and bacteria and a decarboxylation 'pathway-' in the dinoflagellate, Crypthecodinium. The enzymes DSYB and TpMMT are involved in the DMSP biosynthesis in eukaryotes while marine heterotrophic bacteria engage key enzymes such as DsyB and MmtN. Several marine bacterial communities import DMSP and degrade it via cleavage or demethylation pathways or oxidation pathway, thereby generating DMS, methanethiol, and dimethylsulfoxonium propionate, respectively. DMSP is cleaved through diverse DMSP lyase enzymes in bacteria and via Alma1 enzyme in phytoplankton. The demethylation pathway involves four different enzymes, namely DmdA, DmdB, DmdC and DmdD/AcuH. However, enzymes involved in the oxidation pathway have not been yet identified. We reviewed the recent advances on the synthesis and catabolism of DMSP and enzymes that are involved in these processes.
Collapse
Affiliation(s)
- Deepak Kumar Shaw
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| | - Jegan Sekar
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| | - Prabavathy Vaiyapuri Ramalingam
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| |
Collapse
|
3
|
Bou-Nader C, Stull FW, Pecqueur L, Simon P, Guérineau V, Royant A, Fontecave M, Lombard M, Palfey BA, Hamdane D. An enzymatic activation of formaldehyde for nucleotide methylation. Nat Commun 2021; 12:4542. [PMID: 34315871 PMCID: PMC8316439 DOI: 10.1038/s41467-021-24756-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/05/2021] [Indexed: 11/09/2022] Open
Abstract
Folate enzyme cofactors and their derivatives have the unique ability to provide a single carbon unit at different oxidation levels for the de novo synthesis of amino-acids, purines, or thymidylate, an essential DNA nucleotide. How these cofactors mediate methylene transfer is not fully settled yet, particularly with regard to how the methylene is transferred to the methylene acceptor. Here, we uncovered that the bacterial thymidylate synthase ThyX, which relies on both folate and flavin for activity, can also use a formaldehyde-shunt to directly synthesize thymidylate. Combining biochemical, spectroscopic and anaerobic crystallographic analyses, we showed that formaldehyde reacts with the reduced flavin coenzyme to form a carbinolamine intermediate used by ThyX for dUMP methylation. The crystallographic structure of this intermediate reveals how ThyX activates formaldehyde and uses it, with the assistance of active site residues, to methylate dUMP. Our results reveal that carbinolamine species promote methylene transfer and suggest that the use of a CH2O-shunt may be relevant in several other important folate-dependent reactions.
Collapse
Affiliation(s)
- Charles Bou-Nader
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, Paris, France.,Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Frederick W Stull
- Programs in Chemical Biology and the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, Paris, France
| | - Philippe Simon
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, Paris, France
| | - Vincent Guérineau
- CNRS, Institut de Chimie des Substances Naturelles UPR 2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Antoine Royant
- CEA, CNRS, Institut de Biologie Structurale (IBS), Université Grenoble Alpes, Grenoble, France.,European Synchrotron Radiation Facility, Grenoble, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, Paris, France
| | - Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, Paris, France
| | - Bruce A Palfey
- Programs in Chemical Biology and the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, Paris, France.
| |
Collapse
|
4
|
Wittmiß M, Mikkat S, Hagemann M, Bauwe H. Stoichiometry of two plant glycine decarboxylase complexes and comparison with a cyanobacterial glycine cleavage system. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:801-813. [PMID: 32311173 DOI: 10.1111/tpj.14773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
The multienzyme glycine cleavage system (GCS) converts glycine and tetrahydrofolate to the one-carbon compound 5,10-methylenetetrahydrofolate, which is of vital importance for most if not all organisms. Photorespiring plant mitochondria contain very high levels of GCS proteins organised as a fragile glycine decarboxylase complex (GDC). The aim of this study is to provide mass spectrometry-based stoichiometric data for the plant leaf GDC and examine whether complex formation could be a general property of the GCS in photosynthesizing organisms. The molar ratios of the leaf GDC component proteins are 1L2 -4P2 -8T-26H and 1L2 -4P2 -8T-20H for pea and Arabidopsis, respectively, as determined by mass spectrometry. The minimum mass of the plant leaf GDC ranges from 1550 to 1650 kDa, which is larger than previously assumed. The Arabidopsis GDC contains four times more of the isoforms GCS-P1 and GCS-L1 in comparison with GCS-P2 and GCS-L2, respectively, whereas the H-isoproteins GCS-H1 and GCS-H3 are fully redundant as indicated by their about equal amounts. Isoform GCS-H2 is not present in leaf mitochondria. In the cyanobacterium Synechocystis sp. PCC 6803, GCS proteins concentrations are low but above the complex formation threshold reported for pea leaf GDC. Indeed, formation of a cyanobacterial GDC from the individual recombinant GCS proteins in vitro could be demonstrated. Presence and metabolic significance of a Synechocystis GDC in vivo remain to be examined but could involve multimers of the GCS H-protein that dynamically crosslink the three GCS enzyme proteins, facilitating glycine metabolism by the formation of multienzyme metabolic complexes. Data are available via ProteomeXchange with identifier PXD018211.
Collapse
Affiliation(s)
- Maria Wittmiß
- Department of Plant Physiology, University of Rostock, Albert-Einstein-Straße 3, D-18059, Rostock, Germany
| | - Stefan Mikkat
- Core Facility Proteome Analysis, Rostock University Medical Center, Schilling-Allee 69, D-18057, Rostock, Germany
| | - Martin Hagemann
- Department of Plant Physiology, University of Rostock, Albert-Einstein-Straße 3, D-18059, Rostock, Germany
| | - Hermann Bauwe
- Department of Plant Physiology, University of Rostock, Albert-Einstein-Straße 3, D-18059, Rostock, Germany
| |
Collapse
|
5
|
Khoza S, Ngqaneka T, Magwebu ZE, Chauke CG. Nonketotic hyperglycinemia in captive-bred Vervet monkeys (Chlorocebus aethiops) with cataracts. J Med Primatol 2019; 48:161-165. [PMID: 30724368 DOI: 10.1111/jmp.12400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/30/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Nonketotic hyperglycinemia (NKH) is a rare metabolic disorder that is characterized by high levels of glycine in plasma and cerebrospinal fluid in humans. In this study, total congenital cataract captive-bred Vervet monkeys (Chlorocebus aethiops) that are hyperglycinemic were screened to identify mutations in Bola type 3 (BOLA3), glutaredoxin 5 (GLRX5), and lipoate synthase (LIAS) genes. METHODS Twenty-four Vervet monkeys (12 hyperglycinemic and 12 healthy controls) were selected for mutation analysis using polymerase chain reaction (PCR), Sanger sequencing, and reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS Novel sequence variants were identified in BOLA3 (R23H and Q38R) and LIAS (R369I and A371A), and gene expression in the control group was significantly lower compared to the hyperglycinemic group (P < 0.05). CONCLUSION The data obtained from this study will contribute to generation of new knowledge regarding the involvement of these genes in NKH development.
Collapse
Affiliation(s)
- Sanele Khoza
- Primate Unit and Delft Animal Centre (PUDAC), South African Medical Research Council, Cape Town, South Africa
| | - Thobile Ngqaneka
- Primate Unit and Delft Animal Centre (PUDAC), South African Medical Research Council, Cape Town, South Africa
| | - Zandisiwe Emilia Magwebu
- Primate Unit and Delft Animal Centre (PUDAC), South African Medical Research Council, Cape Town, South Africa
| | - Chesa Gift Chauke
- Primate Unit and Delft Animal Centre (PUDAC), South African Medical Research Council, Cape Town, South Africa
| |
Collapse
|
6
|
Gourdoupis S, Nasta V, Calderone V, Ciofi-Baffoni S, Banci L. IBA57 Recruits ISCA2 to Form a [2Fe-2S] Cluster-Mediated Complex. J Am Chem Soc 2018; 140:14401-14412. [DOI: 10.1021/jacs.8b09061] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Spyridon Gourdoupis
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Veronica Nasta
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Vito Calderone
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
7
|
Bullock HA, Luo H, Whitman WB. Evolution of Dimethylsulfoniopropionate Metabolism in Marine Phytoplankton and Bacteria. Front Microbiol 2017; 8:637. [PMID: 28469605 PMCID: PMC5395565 DOI: 10.3389/fmicb.2017.00637] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/28/2017] [Indexed: 11/13/2022] Open
Abstract
The elucidation of the pathways for dimethylsulfoniopropionate (DMSP) synthesis and metabolism and the ecological impact of DMSP have been studied for nearly 70 years. Much of this interest stems from the fact that DMSP metabolism produces the climatically active gas dimethyl sulfide (DMS), the primary natural source of sulfur to the atmosphere. DMSP plays many important roles for marine life, including use as an osmolyte, antioxidant, predator deterrent, and cryoprotectant for phytoplankton and as a reduced carbon and sulfur source for marine bacteria. DMSP is hypothesized to have become abundant in oceans approximately 250 million years ago with the diversification of the strong DMSP producers, the dinoflagellates. This event coincides with the first genome expansion of the Roseobacter clade, known DMSP degraders. Structural and mechanistic studies of the enzymes of the bacterial DMSP demethylation and cleavage pathways suggest that exposure to DMSP led to the recruitment of enzymes from preexisting metabolic pathways. In some cases, such as DmdA, DmdD, and DddP, these enzymes appear to have evolved to become more specific for DMSP metabolism. By contrast, many of the other enzymes, DmdB, DmdC, and the acrylate utilization hydratase AcuH, have maintained broad functionality and substrate specificities, allowing them to carry out a range of reactions within the cell. This review will cover the experimental evidence supporting the hypothesis that, as DMSP became more readily available in the marine environment, marine bacteria adapted enzymes already encoded in their genomes to utilize this new compound.
Collapse
Affiliation(s)
- Hannah A Bullock
- Department of Microbiology, University of Georgia, AthensGA, USA
| | - Haiwei Luo
- School of Life Sciences, The Chinese University of Hong KongHong Kong, Hong Kong
| | | |
Collapse
|
8
|
Structure of aryl O-demethylase offers molecular insight into a catalytic tyrosine-dependent mechanism. Proc Natl Acad Sci U S A 2017; 114:E3205-E3214. [PMID: 28373573 DOI: 10.1073/pnas.1619263114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Some strains of soil and marine bacteria have evolved intricate metabolic pathways for using environmentally derived aromatics as a carbon source. Many of these metabolic pathways go through intermediates such as vanillate, 3-O-methylgallate, and syringate. Demethylation of these compounds is essential for downstream aryl modification, ring opening, and subsequent assimilation of these compounds into the tricarboxylic acid (TCA) cycle, and, correspondingly, there are a variety of associated aryl demethylase systems that vary in complexity. Intriguingly, only a basic understanding of the least complex system, the tetrahydrofolate-dependent aryl demethylase LigM from Sphingomonas paucimobilis, a bacterial strain that metabolizes lignin-derived aromatics, was previously available. LigM-catalyzed demethylation enables further modification and ring opening of the single-ring aromatics vanillate and 3-O-methylgallate, which are common byproducts of biofuel production. Here, we characterize aryl O-demethylation by LigM and report its 1.81-Å crystal structure, revealing a unique demethylase fold and a canonical folate-binding domain. Structural homology and geometry optimization calculations enabled the identification of LigM's tetrahydrofolate-binding site and protein-folate interactions. Computationally guided mutagenesis and kinetic analyses allowed the identification of the enzyme's aryl-binding site location and determination of its unique, catalytic tyrosine-dependent reaction mechanism. This work defines LigM as a distinct demethylase, both structurally and functionally, and provides insight into demethylation and its reaction requirements. These results afford the mechanistic details required for efficient utilization of LigM as a tool for aryl O-demethylation and as a component of synthetic biology efforts to valorize previously underused aromatic compounds.
Collapse
|
9
|
Bravo-Alonso I, Navarrete R, Arribas-Carreira L, Perona A, Abia D, Couce ML, García-Cazorla A, Morais A, Domingo R, Ramos MA, Swanson MA, Van Hove JLK, Ugarte M, Pérez B, Pérez-Cerdá C, Rodríguez-Pombo P. Nonketotic hyperglycinemia: Functional assessment of missense variants in GLDC to understand phenotypes of the disease. Hum Mutat 2017; 38:678-691. [PMID: 28244183 DOI: 10.1002/humu.23208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 11/08/2022]
Abstract
The rapid analysis of genomic data is providing effective mutational confirmation in patients with clinical and biochemical hallmarks of a specific disease. This is the case for nonketotic hyperglycinemia (NKH), a Mendelian disorder causing seizures in neonates and early-infants, primarily due to mutations in the GLDC gene. However, understanding the impact of missense variants identified in this gene is a major challenge for the application of genomics into clinical practice. Herein, a comprehensive functional and structural analysis of 19 GLDC missense variants identified in a cohort of 26 NKH patients was performed. Mutant cDNA constructs were expressed in COS7 cells followed by enzymatic assays and Western blot analysis of the GCS P-protein to assess the residual activity and mutant protein stability. Structural analysis, based on molecular modeling of the 3D structure of GCS P-protein, was also performed. We identify hypomorphic variants that produce attenuated phenotypes with improved prognosis of the disease. Structural analysis allows us to interpret the effects of mutations on protein stability and catalytic activity, providing molecular evidence for clinical outcome and disease severity. Moreover, we identify an important number of mutants whose loss-of-functionality is associated with instability and, thus, are potential targets for rescue using folding therapeutic approaches.
Collapse
Affiliation(s)
- Irene Bravo-Alonso
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, CBM-CSIC, Departamento de Biología Molecular, Universidad Autónoma Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IDIPAZ, Madrid, Spain
| | - Rosa Navarrete
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, CBM-CSIC, Departamento de Biología Molecular, Universidad Autónoma Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IDIPAZ, Madrid, Spain
| | - Laura Arribas-Carreira
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, CBM-CSIC, Departamento de Biología Molecular, Universidad Autónoma Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IDIPAZ, Madrid, Spain
| | | | - David Abia
- Servicio de Bioinformática, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - María Luz Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Service of Neonatology, Department of Pediatrics, Hospital Clínico Universitario de Santiago, CIBERER, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Angels García-Cazorla
- Institut de Recerca Pediàtrica-Hospital Sant Joan de Déu (IRP-HSJD), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Ana Morais
- Unidad de Nutrición Infantil y Enfermedades Metabólicas, Hospital Universitario Infantil La Paz, Madrid, Spain
| | - Rosario Domingo
- Servicio de Pediatría, Hospital Virgen de la Arrixaca, Murcia, Spain
| | - María Antonia Ramos
- Servicio de Genética, Hospital B del Complejo Hospitalario de Navarra, Pamplona, Navarra, Spain
| | - Michael A Swanson
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, Colorado
| | - Johan L K Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, Colorado
| | - Magdalena Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, CBM-CSIC, Departamento de Biología Molecular, Universidad Autónoma Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IDIPAZ, Madrid, Spain
| | - Belén Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, CBM-CSIC, Departamento de Biología Molecular, Universidad Autónoma Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IDIPAZ, Madrid, Spain
| | - Celia Pérez-Cerdá
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, CBM-CSIC, Departamento de Biología Molecular, Universidad Autónoma Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IDIPAZ, Madrid, Spain
| | - Pilar Rodríguez-Pombo
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, CBM-CSIC, Departamento de Biología Molecular, Universidad Autónoma Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IDIPAZ, Madrid, Spain
| |
Collapse
|
10
|
Vigorito A, Calabrese C, Paltanin E, Melandri S, Maris A. Regarding the torsional flexibility of the dihydrolipoic acid's pharmacophore: 1,3-propanedithiol. Phys Chem Chem Phys 2017; 19:496-502. [PMID: 27905582 DOI: 10.1039/c6cp05606g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The great flexibility of 1,3-propanedithiol is probed using freejet absorption microwave spectroscopy and quantum chemistry calculations.
Collapse
Affiliation(s)
- Annalisa Vigorito
- Dipartimento di Chimica G. Ciamician
- Università degli Studi di Bologna
- 40126 Bologna
- Italy
| | - Camilla Calabrese
- Dipartimento di Chimica G. Ciamician
- Università degli Studi di Bologna
- 40126 Bologna
- Italy
| | - Ettore Paltanin
- Dipartimento di Chimica G. Ciamician
- Università degli Studi di Bologna
- 40126 Bologna
- Italy
| | - Sonia Melandri
- Dipartimento di Chimica G. Ciamician
- Università degli Studi di Bologna
- 40126 Bologna
- Italy
| | - Assimo Maris
- Dipartimento di Chimica G. Ciamician
- Università degli Studi di Bologna
- 40126 Bologna
- Italy
| |
Collapse
|
11
|
Abstract
Sesamin is one of the major lignans found in sesame oil. Although some microbial metabolites of sesamin have been identified, sesamin-metabolic pathways remain uncharacterized at both the enzyme and gene levels. Here, we isolated microorganisms growing on sesamin as a sole-carbon source. One microorganism showing significant sesamin-degrading activity was identified as Sinomonas sp. no. 22. A sesamin-metabolizing enzyme named SesA was purified from this strain and characterized. SesA catalyzed methylene group transfer from sesamin or sesamin monocatechol to tetrahydrofolate (THF) with ring cleavage, yielding sesamin mono- or di-catechol and 5,10-methylenetetrahydrofolate. The kinetic parameters of SesA were determined to be as follows: Km for sesamin = 0.032 ± 0.005 mM, Vmax = 9.3 ± 0.4 (μmol⋅min(-1)⋅mg(-1)), and kcat = 7.9 ± 0.3 s(-1) Next, we investigated the substrate specificity. SesA also showed enzymatic activity toward (+)-episesamin, (-)-asarinin, sesaminol, (+)-sesamolin, and piperine. Growth studies with strain no. 22, and Western blot analysis revealed that SesA formation is inducible by sesamin. The deduced amino acid sequence of sesA exhibited weak overall sequence similarity to that of the protein family of glycine cleavage T-proteins (GcvTs), which catalyze glycine degradation in most bacteria, archaea, and all eukaryotes. Only SesA catalyzes C1 transfer to THF with ring cleavage reaction among GcvT family proteins. Moreover, SesA homolog genes are found in both Gram-positive and Gram-negative bacteria. Our findings provide new insights into microbial sesamin metabolism and the function of GcvT family proteins.
Collapse
|
12
|
Plasmodium berghei glycine cleavage system T-protein is non-essential for parasite survival in vertebrate and invertebrate hosts. Mol Biochem Parasitol 2014; 197:50-5. [PMID: 25454081 DOI: 10.1016/j.molbiopara.2014.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 11/21/2022]
Abstract
T-protein, an aminomethyltransferase, represents one of the four components of glycine cleavage system (GCS) and catalyzes the transfer of methylene group from H-protein intermediate to tetrahydrofolate (THF) forming N(5), N(10)-methylene THF (CH2-THF) with the release of ammonia. The malaria parasite genome encodes T-, H- and L-proteins, but not P-protein which is a glycine decarboxylase generating the aminomethylene group. A putative GCS has been considered to be functional in the parasite mitochondrion despite the absence of a detectable P-protein homologue. In the present study, the mitochondrial localization of T-protein in the malaria parasite was confirmed by immunofluorescence and its essentiality in the entire parasite life cycle was studied by targeting the T-protein locus in Plasmodium berghei (Pb). PbT knock out parasites did not show any growth defect in asexual, sexual and liver stages indicating that the T-protein is dispensable for parasite survival in vertebrate and invertebrate hosts. The absence of P-protein homologue and the non-essentiality of T protein suggest the possible redundancy of GCS activity in the malaria parasite. Nevertheless, the H- and L-proteins of GCS could be essential for malaria parasite because of their involvement in α-ketoacid dehydrogenase reactions.
Collapse
|
13
|
Hasse D, Andersson E, Carlsson G, Masloboy A, Hagemann M, Bauwe H, Andersson I. Structure of the homodimeric glycine decarboxylase P-protein from Synechocystis sp. PCC 6803 suggests a mechanism for redox regulation. J Biol Chem 2013; 288:35333-45. [PMID: 24121504 DOI: 10.1074/jbc.m113.509976] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glycine decarboxylase, or P-protein, is a pyridoxal 5'-phosphate (PLP)-dependent enzyme in one-carbon metabolism of all organisms, in the glycine and serine catabolism of vertebrates, and in the photorespiratory pathway of oxygenic phototrophs. P-protein from the cyanobacterium Synechocystis sp. PCC 6803 is an α2 homodimer with high homology to eukaryotic P-proteins. The crystal structure of the apoenzyme shows the C terminus locked in a closed conformation by a disulfide bond between Cys(972) in the C terminus and Cys(353) located in the active site. The presence of the disulfide bridge isolates the active site from solvent and hinders the binding of PLP and glycine in the active site. Variants produced by substitution of Cys(972) and Cys(353) by Ser using site-directed mutagenesis have distinctly lower specific activities, supporting the crucial role of these highly conserved redox-sensitive amino acid residues for P-protein activity. Reduction of the 353-972 disulfide releases the C terminus and allows access to the active site. PLP and the substrate glycine bind in the active site of this reduced enzyme and appear to cause further conformational changes involving a flexible surface loop. The observation of the disulfide bond that acts to stabilize the closed form suggests a molecular mechanism for the redox-dependent activation of glycine decarboxylase observed earlier.
Collapse
Affiliation(s)
- Dirk Hasse
- From the Department of Cell and Molecular Biology, Uppsala University, S-751 24 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
14
|
Schuller DJ, Reisch CR, Moran MA, Whitman WB, Lanzilotta WN. Structures of dimethylsulfoniopropionate-dependent demethylase from the marine organism Pelagabacter ubique. Protein Sci 2012; 21:289-98. [PMID: 22162093 PMCID: PMC3324773 DOI: 10.1002/pro.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/29/2011] [Indexed: 02/01/2023]
Abstract
Dimethylsulfoniopropionate (DMSP) is a ubiquitous algal metabolite and common carbon and sulfur source for marine bacteria. DMSP is a precursor for the climatically active gas dimethylsulfide that is readily oxidized to sulfate, sulfur dioxide, methanesulfonic acid, and other products that act as cloud condensation nuclei. Although the environmental importance of DMSP metabolism has been known for some time, the enzyme responsible for DMSP demethylation by marine bacterioplankton, dimethylsufoniopropionate-dependent demethylase A (DmdA, EC 2.1.1.B5), has only recently been identified and biochemically characterized. In this work, we report the structure for the apoenzyme DmdA from Pelagibacter ubique (2.1 Å), as well as for DmdA co-crystals soaked with substrate DMSP (1.6 Å) or the cofactor tetrahydrofolate (THF) (1.6 Å). Surprisingly, the overall fold of the DmdA is not similar to other enzymes that typically utilize the reduced form of THF and in fact is a triple domain structure similar to what has been observed for the glycine cleavage T protein or sarcosine oxidase. Specifically, while the THF binding fold appears conserved, previous biochemical studies have shown that all enzymes with a similar fold produce 5,10-methylene-THF, while DmdA catalyzes a redox-neutral methyl transfer reaction to produce 5-methyl-THF. On the basis of the findings presented herein and the available biochemical data, we outline a mechanism for a redox-neutral methyl transfer reaction that is novel to this conserved THF binding domain.
Collapse
Affiliation(s)
- David J Schuller
- Cornell High Energy Synchrotron Source, Cornell UniversityIthaca, New York 14853
| | - Chris R Reisch
- Department of Microbiology, University of GeorgiaAthens, Georgia 30602
| | - Mary Ann Moran
- Department of Marine Sciences, University of GeorgiaAthens, Georgia 30602
| | - William B Whitman
- Department of Microbiology, University of GeorgiaAthens, Georgia 30602
| | - William N Lanzilotta
- Department of Biochemistry and Molecular Biology and The Center for Metalloenzyme Studies, University of GeorgiaAthens, Georgia 30602
| |
Collapse
|
15
|
Jeanguenin L, Lara-Núñez A, Pribat A, Mageroy MH, Gregory JF, Rice KC, de Crécy-Lagard V, Hanson AD. Moonlighting glutamate formiminotransferases can functionally replace 5-formyltetrahydrofolate cycloligase. J Biol Chem 2010; 285:41557-66. [PMID: 20952389 DOI: 10.1074/jbc.m110.190504] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
5-Formyltetrahydrofolate (5-CHO-THF) is formed by a side reaction of serine hydroxymethyltransferase. Unlike other folates, it is not a one-carbon donor but a potent inhibitor of folate enzymes and must therefore be metabolized. Only 5-CHO-THF cycloligase (5-FCL) is generally considered to do this. However, comparative genomic analysis indicated (i) that certain prokaryotes lack 5-FCL, implying that they have an alternative 5-CHO-THF-metabolizing enzyme, and (ii) that the histidine breakdown enzyme glutamate formiminotransferase (FT) might moonlight in this role. A functional complementation assay for 5-CHO-THF metabolism was developed in Escherichia coli, based on deleting the gene encoding 5-FCL (ygfA). The deletion mutant accumulated 5-CHO-THF and, with glycine as sole nitrogen source, showed a growth defect; both phenotypes were complemented by bacterial or archaeal genes encoding FT. Furthermore, utilization of supplied 5-CHO-THF by Streptococcus pyogenes was shown to require expression of the native FT. Recombinant bacterial and archaeal FTs catalyzed formyl transfer from 5-CHO-THF to glutamate, with k(cat) values of 0.1-1.2 min(-1) and K(m) values for 5-CHO-THF and glutamate of 0.4-5 μM and 0.03-1 mM, respectively. Although the formyltransferase activities of these proteins were far lower than their formiminotransferase activities, the K(m) values for both substrates relative to their intracellular levels in prokaryotes are consistent with significant in vivo flux through the formyltransferase reaction. Collectively, these data indicate that FTs functionally replace 5-FCL in certain prokaryotes.
Collapse
Affiliation(s)
- Linda Jeanguenin
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Okamura-Ikeda K, Hosaka H, Maita N, Fujiwara K, Yoshizawa AC, Nakagawa A, Taniguchi H. Crystal structure of aminomethyltransferase in complex with dihydrolipoyl-H-protein of the glycine cleavage system: implications for recognition of lipoyl protein substrate, disease-related mutations, and reaction mechanism. J Biol Chem 2010; 285:18684-92. [PMID: 20375021 DOI: 10.1074/jbc.m110.110718] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminomethyltransferase, a component of the glycine cleavage system termed T-protein, reversibly catalyzes the degradation of the aminomethyl moiety of glycine attached to the lipoate cofactor of H-protein, resulting in the production of ammonia, 5,10-methylenetetrahydrofolate, and dihydrolipoate-bearing H-protein in the presence of tetrahydrofolate. Several mutations in the human T-protein gene are known to cause nonketotic hyperglycinemia. Here, we report the crystal structure of Escherichia coli T-protein in complex with dihydrolipoate-bearing H-protein and 5-methyltetrahydrofolate, a complex mimicking the ternary complex in the reverse reaction. The structure of the complex shows a highly interacting intermolecular interface limited to a small area and the protein-bound dihydrolipoyllysine arm inserted into the active site cavity of the T-protein. Invariant Arg(292) of the T-protein is essential for complex assembly. The structure also provides novel insights in understanding the disease-causing mutations, in addition to the disease-related impairment in the cofactor-enzyme interactions reported previously. Furthermore, structural and mutational analyses suggest that the reversible transfer of the methylene group between the lipoate and tetrahydrofolate should proceed through the electron relay-assisted iminium intermediate formation.
Collapse
Affiliation(s)
- Kazuko Okamura-Ikeda
- Institute for Enzyme Research, the University of Tokushima, Tokushima 770-8503, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Nakai T, Kuramitsu S, Kamiya N. Structural bases for the specific interactions between the E2 and E3 components of the Thermus thermophilus 2-oxo acid dehydrogenase complexes. J Biochem 2008; 143:747-58. [PMID: 18316329 DOI: 10.1093/jb/mvn033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pyruvate dehydrogenase (PDH), branched-chain 2-oxo acid dehydrogenase (BCDH) and 2-oxoglutarate dehydrogenase (OGDH) are multienzyme complexes that play crucial roles in several common metabolic pathways. These enzymes belong to a family of 2-oxo acid dehydrogenase complexes that contain multiple copies of three different components (E1, E2 and E3). For the Thermus thermophilus enzymes, depending on its substrate specificity (pyruvate, branched-chain 2-oxo acid or 2-oxoglutarate), each complex has distinctive E1 (E1p, E1b or E1o) and E2 (E2p, E2b or E2o) components and one of the two possible E3 components (E3b and E3o). (The suffixes, p, b and o identify their respective enzymes, PDH, BCDH and OGDH.) Our biochemical characterization demonstrates that only three specific E3*E2 complexes can form (E3b*E2p, E3b*E2b and E3o*E2o). X-ray analyses of complexes formed between the E3 components and the peripheral subunit-binding domains (PSBDs), derived from the corresponding E2-binding partners, reveal that E3b interacts with E2p and E2b in essentially the same manner as observed for Geobacillus stearothermophilus E3*E2p, whereas E3o interacts with E2o in a novel fashion. The buried intermolecular surfaces of the E3b*PSBDp/b and E3o*PSBDo complexes differ in size, shape and charge distribution and thus, these differences presumably confer the binding specificities for the complexes.
Collapse
Affiliation(s)
- Tadashi Nakai
- RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan.
| | | | | |
Collapse
|
18
|
Fusari CM, Lia VV, Hopp HE, Heinz RA, Paniego NB. Identification of single nucleotide polymorphisms and analysis of linkage disequilibrium in sunflower elite inbred lines using the candidate gene approach. BMC PLANT BIOLOGY 2008; 8:7. [PMID: 18215288 PMCID: PMC2266750 DOI: 10.1186/1471-2229-8-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 01/23/2008] [Indexed: 05/04/2023]
Abstract
BACKGROUND Association analysis is a powerful tool to identify gene loci that may contribute to phenotypic variation. This includes the estimation of nucleotide diversity, the assessment of linkage disequilibrium structure (LD) and the evaluation of selection processes. Trait mapping by allele association requires a high-density map, which could be obtained by the addition of Single Nucleotide Polymorphisms (SNPs) and short insertion and/or deletions (indels) to SSR and AFLP genetic maps. Nucleotide diversity analysis of randomly selected candidate regions is a promising approach for the success of association analysis and fine mapping in the sunflower genome. Moreover, knowledge of the distance over which LD persists, in agronomically meaningful sunflower accessions, is important to establish the density of markers and the experimental design for association analysis. RESULTS A set of 28 candidate genes related to biotic and abiotic stresses were studied in 19 sunflower inbred lines. A total of 14,348 bp of sequence alignment was analyzed per individual. In average, 1 SNP was found per 69 nucleotides and 38 indels were identified in the complete data set. The mean nucleotide polymorphism was moderate (theta = 0.0056), as expected for inbred materials. The number of haplotypes per region ranged from 1 to 9 (mean = 3.54 +/- 1.88). Model-based population structure analysis allowed detection of admixed individuals within the set of accessions examined. Two putative gene pools were identified (G1 and G2), with a large proportion of the inbred lines being assigned to one of them (G1). Consistent with the absence of population sub-structuring, LD for G1 decayed more rapidly (r2 = 0.48 at 643 bp; trend line, pooled data) than the LD trend line for the entire set of 19 individuals (r2 = 0.64 for the same distance). CONCLUSION Knowledge about the patterns of diversity and the genetic relationships between breeding materials could be an invaluable aid in crop improvement strategies. The relatively high frequency of SNPs within the elite inbred lines studied here, along with the predicted extent of LD over distances of 100 kbp (r2 approximately 0.1) suggest that high resolution association mapping in sunflower could be achieved with marker densities lower than those usually reported in the literature.
Collapse
Affiliation(s)
- Corina M Fusari
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología (CNIA), CC 25, Castelar (B1712WAA), Buenos Aires, Argentina
| | - Verónica V Lia
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología (CNIA), CC 25, Castelar (B1712WAA), Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - H Esteban Hopp
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología (CNIA), CC 25, Castelar (B1712WAA), Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ruth A Heinz
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología (CNIA), CC 25, Castelar (B1712WAA), Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Norma B Paniego
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología (CNIA), CC 25, Castelar (B1712WAA), Buenos Aires, Argentina
| |
Collapse
|
19
|
Fusari CM, Lia VV, Hopp HE, Heinz RA, Paniego NB. Identification of single nucleotide polymorphisms and analysis of linkage disequilibrium in sunflower elite inbred lines using the candidate gene approach. BMC PLANT BIOLOGY 2008; 8:7. [PMID: 18215288 DOI: 10.1186/147-2229.8-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 01/23/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND Association analysis is a powerful tool to identify gene loci that may contribute to phenotypic variation. This includes the estimation of nucleotide diversity, the assessment of linkage disequilibrium structure (LD) and the evaluation of selection processes. Trait mapping by allele association requires a high-density map, which could be obtained by the addition of Single Nucleotide Polymorphisms (SNPs) and short insertion and/or deletions (indels) to SSR and AFLP genetic maps. Nucleotide diversity analysis of randomly selected candidate regions is a promising approach for the success of association analysis and fine mapping in the sunflower genome. Moreover, knowledge of the distance over which LD persists, in agronomically meaningful sunflower accessions, is important to establish the density of markers and the experimental design for association analysis. RESULTS A set of 28 candidate genes related to biotic and abiotic stresses were studied in 19 sunflower inbred lines. A total of 14,348 bp of sequence alignment was analyzed per individual. In average, 1 SNP was found per 69 nucleotides and 38 indels were identified in the complete data set. The mean nucleotide polymorphism was moderate (theta = 0.0056), as expected for inbred materials. The number of haplotypes per region ranged from 1 to 9 (mean = 3.54 +/- 1.88). Model-based population structure analysis allowed detection of admixed individuals within the set of accessions examined. Two putative gene pools were identified (G1 and G2), with a large proportion of the inbred lines being assigned to one of them (G1). Consistent with the absence of population sub-structuring, LD for G1 decayed more rapidly (r2 = 0.48 at 643 bp; trend line, pooled data) than the LD trend line for the entire set of 19 individuals (r2 = 0.64 for the same distance). CONCLUSION Knowledge about the patterns of diversity and the genetic relationships between breeding materials could be an invaluable aid in crop improvement strategies. The relatively high frequency of SNPs within the elite inbred lines studied here, along with the predicted extent of LD over distances of 100 kbp (r2 approximately 0.1) suggest that high resolution association mapping in sunflower could be achieved with marker densities lower than those usually reported in the literature.
Collapse
Affiliation(s)
- Corina M Fusari
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Biotecnología (CNIA), CC 25, Castelar (B1712WAA), Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
20
|
Kikuchi G, Motokawa Y, Yoshida T, Hiraga K. Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2008; 84:246-63. [PMID: 18941301 DOI: 10.2183/pjab.84.246] [Citation(s) in RCA: 245] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The glycine cleavage system catalyzes the following reversible reaction: Glycine + H(4)folate + NAD(+) <==> 5,10-methylene-H(4)folate + CO(2) + NH(3) + NADH + H(+)The glycine cleavage system is widely distributed in animals, plants and bacteria and consists of three intrinsic and one common components: those are i) P-protein, a pyridoxal phosphate-containing protein, ii) T-protein, a protein required for the tetrahydrofolate-dependent reaction, iii) H-protein, a protein that carries the aminomethyl intermediate and then hydrogen through the prosthetic lipoyl moiety, and iv) L-protein, a common lipoamide dehydrogenase. In animals and plants, the proteins form an enzyme complex loosely associating with the mitochondrial inner membrane. In the enzymatic reaction, H-protein converts P-protein, which is by itself a potential alpha-amino acid decarboxylase, to an active enzyme, and also forms a complex with T-protein. In both glycine cleavage and synthesis, aminomethyl moiety bound to lipoic acid of H-protein represents the intermediate that is degraded to or can be formed from N(5),N(10)-methylene-H(4)folate and ammonia by the action of T-protein. N(5),N(10)-Methylene-H(4)folate is used for the biosynthesis of various cellular substances such as purines, thymidylate and methionine that is the major methyl group donor through S-adenosyl-methionine. This accounts for the physiological importance of the glycine cleavage system as the most prominent pathway in serine and glycine catabolism in various vertebrates including humans. Nonketotic hyperglycinemia, a congenital metabolic disorder in human infants, results from defective glycine cleavage activity. The majority of patients with nonketotic hyperglycinemia had lesions in the P-protein gene, whereas some had mutant T-protein genes. The only patient classified into the degenerative type of nonketotic hyperglycinemia had an H-protein devoid of the prosthetic lipoyl residue. The crystallography of normal T-protein as well as biochemical characterization of recombinants of the normal and mutant T-proteins confirmed why the mutant T-proteins had lost enzyme activity. Putative mechanisms of cellular injuries including those in the central nervous system of patients with nonketotic hyperglycinemia are discussed.
Collapse
|
21
|
Conners SB, Mongodin EF, Johnson MR, Montero CI, Nelson KE, Kelly RM. Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species. FEMS Microbiol Rev 2006; 30:872-905. [PMID: 17064285 DOI: 10.1111/j.1574-6976.2006.00039.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
High-throughput sequencing of microbial genomes has allowed the application of functional genomics methods to species lacking well-developed genetic systems. For the model hyperthermophile Thermotoga maritima, microarrays have been used in comparative genomic hybridization studies to investigate diversity among Thermotoga species. Transcriptional data have assisted in prediction of pathways for carbohydrate utilization, iron-sulfur cluster synthesis and repair, expolysaccharide formation, and quorum sensing. Structural genomics efforts aimed at the T. maritima proteome have yielded hundreds of high-resolution datasets and predicted functions for uncharacterized proteins. The information gained from genomics studies will be particularly useful for developing new biotechnology applications for T. maritima enzymes.
Collapse
Affiliation(s)
- Shannon B Conners
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | | | | | | | | | | |
Collapse
|
22
|
Chen ZW, Hassan-Abdulah A, Zhao G, Jorns MS, Mathews FS. Heterotetrameric Sarcosine Oxidase: Structure of a Diflavin Metalloenzyme at 1.85 Å Resolution. J Mol Biol 2006; 360:1000-18. [PMID: 16820168 DOI: 10.1016/j.jmb.2006.05.067] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 05/18/2006] [Accepted: 05/30/2006] [Indexed: 11/22/2022]
Abstract
The crystal structure of heterotetrameric sarcosine oxidase (TSOX) from Pseudomonas maltophilia has been determined at 1.85 A resolution. TSOX contains three coenzymes (FAD, FMN and NAD+), four different subunits (alpha, 103 kDa; beta, 44 kDa; gamma, 21 kDa; delta, 11 kDa) and catalyzes the oxidation of sarcosine (N-methylglycine) to yield hydrogen peroxide, glycine and formaldehyde. In the presence of tetrahydrofolate, the oxidation of sarcosine is coupled to the formation of 5,10-methylenetetrahydrofolate. The NAD+ and putative folate binding sites are located in the alpha-subunit. The FAD binding site is in the beta-subunit. FMN is bound at the interface of the alpha and beta-subunits. The FAD and FMN rings are separated by a short segment of the beta-subunit with the closest atoms located 7.4 A apart. Sulfite, an inhibitor of oxygen reduction, is bound at the FMN site. 2-Furoate, a competitive inhibitor with respect to sarcosine, is bound at the FAD site. The sarcosine dehydrogenase and 5,10-methylenetetrahydrofolate synthase sites are 35 A apart but connected by a large internal cavity (approximately 10,000 A3). An unexpected zinc ion, coordinated by three cysteine and one histidine side-chains, is bound to the delta-subunit. The N-terminal half of the alpha subunit of TSOX (alphaA) is closely similar to the FAD-binding domain of glutathione reductase but with NAD+ replacing FAD. The C-terminal half of the alpha subunit of TSOX (alphaB) is similar to the C-terminal half of dimethylglycine oxidase and the T-protein of the glycine cleavage system, proteins that bind tetrahydrofolate. The beta-subunit of TSOX is very similar to monomeric sarcosine oxidase. The gamma-subunit is similar to the C-terminal sub-domain of alpha-TSOX. The delta-subunit shows little similarity with any PDB entry. The alphaA domain/beta-subunit sub-structure of TSOX closely resembles the alphabeta dimer of L-proline dehydrogenase, a heteroctameric protein (alphabeta)4 that shows highest overall similarity to TSOX.
Collapse
Affiliation(s)
- Zhi-wei Chen
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
23
|
Scrutton NS, Leys D. Crystal structure of DMGO provides a prototype for a new tetrahydrofolate-binding fold. Biochem Soc Trans 2005; 33:776-9. [PMID: 16042597 DOI: 10.1042/bst0330776] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The crystal structure of DMGO (dimethylglycine oxidase) from Arthrobacter globiformis in complex with folate compounds has revealed a novel THF (tetrahydrofolate)-binding fold [Leys, Basran and Scrutton (2003) EMBO J. 22, 4038-4048]. This fold is widespread among folate-binding proteins. The crystal structures of aminomethyltransferase (T-protein), YgfZ and TrmE all reveal similar THF-binding folds despite little similarity in sequence or function. The THF-binding site is highly specific for reduced folate compounds and most members of this fold family enhance the nucleophilic character of the THF N10 position.
Collapse
Affiliation(s)
- N S Scrutton
- Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7RH, UK
| | | |
Collapse
|
24
|
Okamura-Ikeda K, Hosaka H, Yoshimura M, Yamashita E, Toma S, Nakagawa A, Fujiwara K, Motokawa Y, Taniguchi H. Crystal structure of human T-protein of glycine cleavage system at 2.0 A resolution and its implication for understanding non-ketotic hyperglycinemia. J Mol Biol 2005; 351:1146-59. [PMID: 16051266 DOI: 10.1016/j.jmb.2005.06.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 06/18/2005] [Accepted: 06/24/2005] [Indexed: 11/24/2022]
Abstract
T-protein, a component of the glycine cleavage system, catalyzes the formation of ammonia and 5,10-methylenetetrahydrofolate from the aminomethyl moiety of glycine attached to the lipoate cofactor of H-protein. Several mutations in the human T-protein gene cause non-ketotic hyperglycinemia. To gain insights into the effect of disease-causing mutations and the catalytic mechanism at the molecular level, crystal structures of human T-protein in free form and that bound to 5-methyltetrahydrofolate (5-CH3-H4folate) have been determined at 2.0 A and 2.6 A resolution, respectively. The overall structure consists of three domains arranged in a cloverleaf-like structure with the central cavity, where 5-CH3-H4folate is bound in a kinked shape with the pteridine group deeply buried into the hydrophobic pocket and the glutamyl group pointed to the C-terminal side surface. Most of the disease-related residues cluster around the cavity, forming extensive hydrogen bonding networks. These hydrogen bonding networks are employed in holding not only the folate-binding space but also the positions and the orientations of alpha-helix G and the following loop in the middle region, which seems to play a pivotal role in the T-protein catalysis. Structural and mutational analyses demonstrated that Arg292 interacts through water molecules with the folate polyglutamate tail, and that the invariant Asp101, located close to the N10 group of 5-CH3-H4folate, might play a key role in the initiation of the catalysis by increasing the nucleophilic character of the N10 atom of the folate substrate for the nucleophilic attack on the aminomethyl lipoate intermediate. A clever mechanism of recruiting the aminomethyl lipoate arm to the reaction site seems to function as a way of avoiding the release of toxic formaldehyde.
Collapse
Affiliation(s)
- Kazuko Okamura-Ikeda
- Institute for Enzyme Research, The University of Tokushima, Tokushima 770-8503, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nakai T, Nakagawa N, Maoka N, Masui R, Kuramitsu S, Kamiya N. Structure of P-protein of the glycine cleavage system: implications for nonketotic hyperglycinemia. EMBO J 2005; 24:1523-36. [PMID: 15791207 PMCID: PMC1142568 DOI: 10.1038/sj.emboj.7600632] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 02/28/2005] [Indexed: 11/09/2022] Open
Abstract
The crystal structure of the P-protein of the glycine cleavage system from Thermus thermophilus HB8 has been determined. This is the first reported crystal structure of a P-protein, and it reveals that P-proteins do not involve the alpha(2)-type active dimer universally observed in the evolutionarily related pyridoxal 5'-phosphate (PLP)-dependent enzymes. Instead, novel alphabeta-type dimers associate to form an alpha(2)beta(2) tetramer, where the alpha- and beta-subunits are structurally similar and appear to have arisen by gene duplication and subsequent divergence with a loss of one active site. The binding of PLP to the apoenzyme induces large open-closed conformational changes, with residues moving up to 13.5 A. The structure of the complex formed by the holoenzyme bound to an inhibitor, (aminooxy)acetate, suggests residues that may be responsible for substrate recognition. The molecular surface around the lipoamide-binding channel shows conservation of positively charged residues, which are possibly involved in complex formation with the H-protein. These results provide insights into the molecular basis of nonketotic hyperglycinemia.
Collapse
Affiliation(s)
- Tadashi Nakai
- RIKEN Harima Institute at SPring-8, Mikazuki, Sayo, Hyogo, Japan.
| | | | | | | | | | | |
Collapse
|