1
|
Gookin TE, Chakravorty D, Assmann SM. Influence of expression and purification protocols on Gα biochemical activity: kinetics of plant and mammalian G protein cycles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.10.540258. [PMID: 37214830 PMCID: PMC10197700 DOI: 10.1101/2023.05.10.540258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Heterotrimeric G proteins are a class of signal transduction complexes with broad roles in human health and agriculturally important plant traits. In the classic paradigm, guanine nucleotide binding to the Gα subunit regulates the activation status of the complex. Using the Arabidopsis thaliana Gα subunit, GPA1, we developed a rapid StrepII-tag mediated purification method that facilitates isolation of protein with increased enzymatic activities as compared to conventional methods, and is demonstrably also applicable to mammalian Gα subunits. We subsequently utilized domain swaps of GPA1 and human GNAO1 to demonstrate the instability of recombinant GPA1 is a function of the interaction between the Ras and helical domains, and can be partially uncoupled from the rapid nucleotide binding kinetics displayed by GPA1.
Collapse
Affiliation(s)
- Timothy E. Gookin
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802
- These authors contributed equally to the article
| | - David Chakravorty
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802
- These authors contributed equally to the article
| | - Sarah M. Assmann
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
2
|
Shivangi, Khan Y, Ekka MK, Meena LS. Structural and functional characterization of mycobacterial PhoH2 and identification of potential inhibitor of its enzymatic activity. Braz J Microbiol 2024; 55:1033-1051. [PMID: 38386260 PMCID: PMC11153397 DOI: 10.1007/s42770-024-01267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Mycobacterium tuberculosis is composed of a cumbersome signaling and protein network which partakes in bacterial survival and augments its pathogenesis. Mycobacterial PhoH2 (Mt-PhoH2) is a signaling element and a predictive phosphate starvation protein that works in an ATP-dependent manner. Here, we elaborated the characterization of Mt-PhoH2 through biophysical, biochemical, and computational methods. In addition to its intrinsic ATPase activity, the biochemical experiments revealed its GTPase activity and both activities are metal ion dependent. Magnesium, manganese, copper, iron, nickel, zinc, cesium, calcium, and lithium were examined for their effect on activity, and the optimum activity was found with 10 mM of Mg2+ ions. The kinetic parameters of 3 µM Mt-PhoH2 were observed as Km 4.873 ± 0.44 µM, Vmax 12.3817 ± 0.084 µM/min/mg, Kcat 0.0075 ± 0.00005 s-1, and Kcat/Km 0.0015 ± 0.000001 µM-1 s-1 with GTP. In the case of GTP as a substrate, a 20% decrease in enzymatic activity and a 50% increase in binding affinity of Mt-PhoH2 were observed. The substrates ADP and GDP inhibit the ATPase and GTPase activity of Mt-PhoH2. CD spectroscopy showed the dominance of alpha helix in the secondary structure of Mt-PhoH2, and this structural pattern was altered upon addition of ATP and GTP. In silico inhibitor screening revealed ML141 and NAV_2729 as two potential inhibitors of the catalytic activity of Mt-PhoH2. Mt-PhoH2 is essential for mycobacterial growth as its knockdown strain showed a decreased growth effect. Overall, the present article emphasizes the factors essential for the proper functioning of Mt-PhoH2 which is a participant in the toxin-antitoxin machinery and may also play an important role in phosphate starvation.
Collapse
Affiliation(s)
- Shivangi
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Yasmeen Khan
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Mary Krishna Ekka
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Laxman S Meena
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, 201 002, India.
- CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- CSIR-Institute of Genomics and Integrative Biology, Academy of Scientific & Innovative Research (AcSIR), Mall Road, Delhi, 110007, India.
| |
Collapse
|
3
|
Navarro-Gómez C, León-Mediavilla J, Küpper H, Rodríguez-Simón M, Paganelli-López A, Wen J, Burén S, Mysore KS, Bokhari SNH, Imperial J, Escudero V, González-Guerrero M. Nodule-specific Cu + -chaperone NCC1 is required for symbiotic nitrogen fixation in Medicago truncatula root nodules. THE NEW PHYTOLOGIST 2024; 241:793-810. [PMID: 37915139 DOI: 10.1111/nph.19360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023]
Abstract
Cu+ -chaperones are a diverse group of proteins that allocate Cu+ ions to specific copper proteins, creating different copper pools targeted to specific physiological processes. Symbiotic nitrogen fixation carried out in legume root nodules indirectly requires relatively large amounts of copper, for example for energy delivery via respiration, for which targeted copper deliver systems would be required. MtNCC1 is a nodule-specific Cu+ -chaperone encoded in the Medicago truncatula genome, with a N-terminus Atx1-like domain that can bind Cu+ with picomolar affinities. MtNCC1 is able to interact with nodule-specific Cu+ -importer MtCOPT1. MtNCC1 is expressed primarily from the late infection zone to the early fixation zone and is located in the cytosol, associated with plasma and symbiosome membranes, and within nuclei. Consistent with its key role in nitrogen fixation, ncc1 mutants have a severe reduction in nitrogenase activity and a 50% reduction in copper-dependent cytochrome c oxidase activity. A subset of the copper proteome is also affected in the ncc1 mutant nodules. Many of these proteins can be pulled down when using a Cu+ -loaded N-terminal MtNCC1 moiety as a bait, indicating a role in nodule copper homeostasis and in copper-dependent physiological processes. Overall, these data suggest a pleiotropic role of MtNCC1 in copper delivery for symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Cristina Navarro-Gómez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Javier León-Mediavilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Hendrik Küpper
- Laboratory of Plant Biophysics and Biochemistry, Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
- Department of Experimental Plant Biology, Faculty of Sciences, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Mario Rodríguez-Simón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Alba Paganelli-López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agraria, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Stefan Burén
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agraria, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Kirankumar S Mysore
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Syed Nadeem Hussain Bokhari
- Laboratory of Plant Biophysics and Biochemistry, Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agraria, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| |
Collapse
|
4
|
Endogenous zinc nanoparticles in the rat olfactory epithelium are functionally significant. Sci Rep 2020; 10:18435. [PMID: 33116197 PMCID: PMC7595131 DOI: 10.1038/s41598-020-75430-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/13/2020] [Indexed: 11/29/2022] Open
Abstract
The role of zinc in neurobiology is rapidly expanding. Zinc is especially essential in olfactory neurobiology. Naturally occurring zinc nanoparticles were detected in olfactory and nasal respiratory epithelia and cilia in animals. The addition of these nanoparticles to a mixture of odorants, including ethyl butyrate, eugenol, and carvone, considerably increased the electrical responses of the olfactory sensory receptors. Studies of these nanoparticles by ransmission electron microscopy (TEM) and selected area electron diffraction revealed metal elemental crystalline zinc nanoparticles 2–4 nm in diameter. These particles did not contain oxidized zinc. The enhancement of the odorant responses induced by the endogenous zinc nanoparticles appears to be similar to the amplification produced by engineered zinc nanoparticles. Zinc nanoparticles produce no odor response but increase odor response if mixed with an odorant. These effects are dose-dependent and reversible. Some other metal nanoparticles, such as copper, silver, gold, and platinum, do not have the effects observed in the case of zinc nanoparticles. The olfactory enhancement was observed in young and mature mouse olfactory epithelium cultures, in the dissected olfactory epithelium of rodents, and in live conscious dogs. The physiological significance of the detected endogenous metal nanoparticles in an animal tissue has been demonstrated for the first time. Overall, our results may advance the understanding of the initial events in olfaction.
Collapse
|
5
|
Wessels I, Maywald M, Rink L. Zinc as a Gatekeeper of Immune Function. Nutrients 2017; 9:E1286. [PMID: 29186856 PMCID: PMC5748737 DOI: 10.3390/nu9121286] [Citation(s) in RCA: 385] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/27/2022] Open
Abstract
After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc "importers" (ZIP 1-14), zinc "exporters" (ZnT 1-10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate "zinc waves", and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Martina Maywald
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| |
Collapse
|
6
|
Turan B, Tuncay E. Impact of Labile Zinc on Heart Function: From Physiology to Pathophysiology. Int J Mol Sci 2017; 18:ijms18112395. [PMID: 29137144 PMCID: PMC5713363 DOI: 10.3390/ijms18112395] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/02/2017] [Accepted: 11/08/2017] [Indexed: 12/15/2022] Open
Abstract
Zinc plays an important role in biological systems as bound and histochemically reactive labile Zn2+. Although Zn2+ concentration is in the nM range in cardiomyocytes at rest and increases dramatically under stimulation, very little is known about precise mechanisms controlling the intracellular distribution of Zn2+ and its variations during cardiac function. Recent studies are focused on molecular and cellular aspects of labile Zn2+ and its homeostasis in mammalian cells and growing evidence clarified the molecular mechanisms underlying Zn2+-diverse functions in the heart, leading to the discovery of novel physiological functions of labile Zn2+ in parallel to the discovery of subcellular localization of Zn2+-transporters in cardiomyocytes. Additionally, important experimental data suggest a central role of intracellular labile Zn2+ in excitation-contraction coupling in cardiomyocytes by shaping Ca2+ dynamics. Cellular labile Zn2+ is tightly regulated against its adverse effects through either Zn2+-transporters, Zn2+-binding molecules or Zn2+-sensors, and, therefore plays a critical role in cellular signaling pathways. The present review summarizes the current understanding of the physiological role of cellular labile Zn2+ distribution in cardiomyocytes and how a remodeling of cellular Zn2+-homeostasis can be important in proper cell function with Zn2+-transporters under hyperglycemia. We also emphasize the recent investigations on Zn2+-transporter functions from the standpoint of human heart health to diseases together with their clinical interest as target proteins in the heart under pathological condition, such as diabetes.
Collapse
Affiliation(s)
- Belma Turan
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey.
| | - Erkan Tuncay
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey.
| |
Collapse
|
7
|
Zinc Signals and Immunity. Int J Mol Sci 2017; 18:ijms18102222. [PMID: 29064429 PMCID: PMC5666901 DOI: 10.3390/ijms18102222] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/13/2017] [Accepted: 10/19/2017] [Indexed: 01/11/2023] Open
Abstract
Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as “zinc waves”, and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.
Collapse
|
8
|
Hagerty S, Daniels Y, Singletary M, Pustovyy O, Globa L, MacCrehan WA, Muramoto S, Stan G, Lau JW, Morrison EE, Sorokulova I, Vodyanoy V. After oxidation, zinc nanoparticles lose their ability to enhance responses to odorants. Biometals 2016; 29:1005-1018. [PMID: 27649965 DOI: 10.1007/s10534-016-9972-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/09/2016] [Indexed: 01/13/2023]
Abstract
Electrical responses of olfactory sensory neurons to odorants were examined in the presence of zinc nanoparticles of various sizes and degrees of oxidation. The zinc nanoparticles were prepared by the underwater electrical discharge method and analyzed by atomic force microscopy and X-ray photoelectron spectroscopy. Small (1.2 ± 0.3 nm) zinc nanoparticles significantly enhanced electrical responses of olfactory neurons to odorants. After oxidation, however, these small zinc nanoparticles were no longer capable of enhancing olfactory responses. Larger zinc oxide nanoparticles (15 nm and 70 nm) also did not modulate responses to odorants. Neither zinc nor zinc oxide nanoparticles produced olfactory responses when added without odorants. The enhancement of odorant responses by small zinc nanoparticles was explained by the creation of olfactory receptor dimers initiated by small zinc nanoparticles. The results of this work will clarify the mechanisms for the initial events in olfaction, as well as to provide new ways to alleviate anosmia related to the loss of olfactory receptors.
Collapse
Affiliation(s)
- Samantha Hagerty
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Yasmine Daniels
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Melissa Singletary
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Oleg Pustovyy
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Ludmila Globa
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - William A MacCrehan
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Shin Muramoto
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Gheorghe Stan
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - June W Lau
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Edward E Morrison
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Iryna Sorokulova
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Vitaly Vodyanoy
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA.
- Auburn University, 109 Greene Hall, Auburn, AL, 36849, USA.
| |
Collapse
|
9
|
Zinc modulation of basal and β-adrenergically stimulated L-type Ca2+ current in rat ventricular cardiomyocytes: consequences in cardiac diseases. Pflugers Arch 2012; 464:459-70. [DOI: 10.1007/s00424-012-1162-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/11/2012] [Accepted: 09/15/2012] [Indexed: 10/27/2022]
|
10
|
Kimura T, Yoshida K, Yamamoto C, Suzuki M, Uno T, Isobe M, Naka H, Yasuike S, Satoh M, Kaji T, Uchiyama M. Bis(L-cysteinato)zincate(lI) as a coordination compound that induces metallothionein gene transcription without inducing cell-stress-related gene transcription. J Inorg Biochem 2012; 117:140-6. [PMID: 23085594 DOI: 10.1016/j.jinorgbio.2012.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 07/25/2012] [Accepted: 07/31/2012] [Indexed: 11/16/2022]
Abstract
Zinc is an essential micronutrient, deficiency of which results in growth retardation, immunodeficiency, and neurological diseases such as dysgeusia. Several zinc coordination compounds are used for zinc supplementation; however, supplemented zinc ions have no specificity and interact with various groups of molecules. Here, we found that, from a library of 30 zinc coordination compounds, bis(L-cysteinato)zincate(II), designated Z01, functioned as a metallothionein (MT) inducer. Z01 induced MT expression mediated by the transcription factor MTF-1, without inducing cell-stress-related heme oxygenase-1 gene expression at specific concentration. The zinc ion was necessary for the MT induction. (65)Zn incorporation following treatment with (65)Zn-labeled Z01 suggested that Z01 did not act as zinc ionophore despite its hydrophilicity. Electrophoretic mobility shift assays revealed that Z01 facilitates MTF-1-MRE complex formation, and, by inference, transfer of zinc from Z01 to MTF-1. Phosphorylated ERK levels were increased by ZnSO(4) treatment but not by Z01. Although our data do not definitely prove that Z01 is an MTF-1-specific activator, our observations suggest that zinc coordination compounds can regulate zinc distribution and act as zinc donors for specific molecules.
Collapse
Affiliation(s)
- Tomoki Kimura
- Department of Toxicology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dubben S, Hönscheid A, Winkler K, Rink L, Haase H. Cellular zinc homeostasis is a regulator in monocyte differentiation of HL-60 cells by 1 alpha,25-dihydroxyvitamin D3. J Leukoc Biol 2010; 87:833-44. [PMID: 20089671 DOI: 10.1189/jlb.0409241] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
It was reported previously that zinc-deficient mice show impaired lymphopoiesis. At the same time, monocyte numbers in these animals are increased, indicating a negative impact of zinc on monocyte development. Here, we investigate the role of zinc homeostasis in the differentiation of myeloid precursors into monocytes. Reduced gene expression of several zinc transporters, predominantly from the Zip family, was observed during 1 alpha, 25-dihydroxyvitamin D(3) (1,25D(3))-induced differentiation of HL-60 cells. This was accompanied by a reduction of intracellular-free zinc, measured by FluoZin-3. Amplifying this reduction with the zinc chelator TPEN or zinc-depleted cell-culture medium enhanced 1,25D(3)-induced expression of monocytic surface markers CD11b and CD14 on HL-60, THP-1, and NB4 cells. In contrast, differentiation of NB4 cells to granulocytes was not zinc-sensitive, pointing toward a specific effect of zinc on monocyte differentiation. Further, monocyte functions, such as TNF-alpha secretion, phagocytosis, and oxidative burst, were also augmented by differentiation in the presence of TPEN. The second messenger cAMP promotes monocyte differentiation. We could show that zinc inhibits the cAMP-synthesizing enzyme adenylate cyclase, and chelation of zinc by TPEN increases cAMP generation after stimulation with the adenylate cyclase activator forskolin. Based on our in vitro results and the in vivo observations from the literature, we suggest a model in which the intracellular-free zinc concentration limits AC activity, and the decrease of zinc after 1,25D(3) treatment promotes differentiation by relieving AC inhibition. Thus, cellular zinc homeostasis acts as an endogenous modulator of monocyte differentiation.
Collapse
Affiliation(s)
- Svenja Dubben
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | | | | | | | |
Collapse
|
12
|
Kolmakov NN, Hubbard PC, Lopes O, Canario AVM. Effect of acute copper sulfate exposure on olfactory responses to amino acids and pheromones in goldfish (Carassius auratus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:8393-8399. [PMID: 19924975 DOI: 10.1021/es901166m] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Exposure of olfactory epithelium to environmentally relevant concentrations of copper disrupts olfaction in fish. To examine the dynamics of recovery at both functional and morphological levels after acute copper exposure, unilateral exposure of goldfish olfactory epithelia to 100 microM CuSO(4) (10 min) was followed by electro-olfactogram (EOG) recording and scanning electron microscopy. Sensitivity to amino acids (l-arginine and l-serine), generally considered food-related odorants, recovered most rapidly (three days), followed by that to catecholamines (3-O-methoxytyramine), bile acids (taurolithocholic acid) and the steroid pheromone, 17,20beta-dihydroxy-4-pregnen-3-one 20-sulfate, which took 28 days to reach full recovery. Sensitivity to the postovulatory pheromone prostaglandin F(2alpha) had not fully recovered even at 28 days. These changes in sensitivity were correlated with changes in the recovery of ciliated and microvillous receptor cell types. Microvillous cells appeared largely unaffected by CuSO(4) treatment. Cilia in ciliated receptor neurones, however, appeared damaged one day post-treatment and were virtually absent after three days but had begun to recover after 14 days. Together, these results support the hypothesis that microvillous receptor neurones detect amino acids whereas ciliated receptor neurones were not functional and are responsible for detection of social stimuli (bile acids and pheromones). Furthermore, differences in sensitivity to copper may be due to different transduction pathways in the different cell types.
Collapse
Affiliation(s)
- Nikolay N Kolmakov
- Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | | | |
Collapse
|
13
|
Haase H, Rink L. Functional significance of zinc-related signaling pathways in immune cells. Annu Rev Nutr 2009; 29:133-52. [PMID: 19400701 DOI: 10.1146/annurev-nutr-080508-141119] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent years have brought a paradigm shift for the role of the essential trace element zinc in immunity. Although its function as a structural component of many enzymes has been known for decades, current experimental evidence points to an additional function of the concentration of free or loosely bound zinc ions as an intracellular signal. The activity of virtually all immune cells is modulated by zinc in vitro and in vivo. In this review, we discuss the interactions of zinc with major signaling pathways that regulate immune cell activity, and the implications of zinc deficiency or supplementation on zinc signaling as the molecular basis for an effect of zinc on immune cell function.
Collapse
Affiliation(s)
- Hajo Haase
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
14
|
Tilton F, Tilton SC, Bammler TK, Beyer R, Farin F, Stapleton PL, Gallagher EP. Transcriptional biomarkers and mechanisms of copper-induced olfactory injury in zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:9404-11. [PMID: 19174923 PMCID: PMC3321378 DOI: 10.1021/es801636v] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Metals such as copper disrupt olfactory function in fish. Unfortunately, little is understood of the molecular consequences of copper olfactory impairment, thus hindering the development of relevant diagnostic tools of olfactory injury. To address this critical data gap, we analyzed gene expression within olfactory tissues of adult zebrafish exposed to CuCl2 (6, 16, 40 ppb) for 24 h. Transcriptional markers of copper impairment within the entire olfactory system were identified and specific genes of interest (e.g., S100a, parvalbumin 8, olfactory marker protein, and calbindin 2-like protein) were confirmed with quantitative real-time PCR. In addition, we performed gene set analysis (GSA) using both a priori and custom pathways of gene sets specifically targeting the olfactory signal transduction (OST) pathway. These analyses revealed down-regulated gene sets related to calcium channels and ion transport, g-proteins, and olfactory receptors. Collectively, these data demonstrate that copper causes a depression of transcription of key genes within the OST pathway and elsewhere within olfactory tissues, likely resulting in an olfactory system less responsive to odorants. Further, these data provide a mechanistic explanation in support of earlier studies of functional olfactory impairment in fish following copper exposure.
Collapse
Affiliation(s)
- Fred Tilton
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Tandogan B, Ulusu NN. Effects of cadmium and zinc ions on purified lamb kidney cortex glucose-6-phosphate dehydrogenase activity. J Enzyme Inhib Med Chem 2008; 21:225-30. [PMID: 16789437 DOI: 10.1080/14756360500480533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Glucose-6-phosphate dehydrogenase (G-6-PD) is the first enzyme in the pentose phosphate pathway. Cadmium is a toxic heavy metal that inhibits several enzymes. Zinc is an essential metal but overdoses of zinc have toxic effects on enzyme activities. In this study G-6-PD from lamb kidney cortex was competitively inhibited by zinc both with respect to glucose-6-phosphate (G-6-P) and NADP+ with Ki values of 1.066 +/- 0.106 and 0.111 +/- 0.007 mM respectively whereas cadmium was a non-competitive inhibitor with respect to both G-6-P and NADP+ Ki values of 2.028 +/- 0.175 and 2.044 +/- 0.289 mM respectively.
Collapse
Affiliation(s)
- Berivan Tandogan
- Hacettepe University, Faculty of Medicine, Department of Biochemistry, 06100 Ankara, Turkey
| | | |
Collapse
|
16
|
von Bülow V, Dubben S, Engelhardt G, Hebel S, Plümäkers B, Heine H, Rink L, Haase H. Zinc-dependent suppression of TNF-alpha production is mediated by protein kinase A-induced inhibition of Raf-1, I kappa B kinase beta, and NF-kappa B. THE JOURNAL OF IMMUNOLOGY 2007; 179:4180-6. [PMID: 17785857 DOI: 10.4049/jimmunol.179.6.4180] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Excessive and permanent cytokine production in response to bacterial LPS causes cell and tissue damage, and hence organ failure during sepsis. We have previously demonstrated that zinc treatment prevents LPS-induced TNF-alpha expression and production in human monocytes by inhibiting cyclic nucleotide phosphodiesterase (PDE) activity and expression, and subsequent elevation of the cyclic nucleotide cGMP. In the present study, we investigated the molecular mechanism by which cGMP signaling affects the LPS-induced signaling cascade to suppress TNF-alpha transcription and release from monocytes. Zinc-mediated cGMP elevation led to cross activation of protein kinase A. This zinc-induced protein kinase A activation inhibited Raf-1 activity by phosphorylation at serine 259, preventing activation of Raf-1 by phosphorylation of serine 338. By this mechanism, zinc suppressed LPS-induced activation of IkappaB kinase beta (IKKbeta) and NF-kappaB, and subsequent TNF-alpha production. Our study shows that PDE inhibition by zinc modulates the monocytic immune response by selectively intervening in the Raf-1/IKKbeta/NF-kappaB pathway, which may constitute a common mechanism for the anti-inflammatory action of PDE inhibitors.
Collapse
Affiliation(s)
- Verena von Bülow
- Institute of Immunology, University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Haase H, Rink L. Signal transduction in monocytes: the role of zinc ions. Biometals 2007; 20:579-85. [PMID: 17453150 DOI: 10.1007/s10534-006-9029-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 07/20/2006] [Indexed: 11/29/2022]
Abstract
The availability of zinc has a regulatory role in the immune system. It can have either pro- or anti-inflammatory effects, which both seem to be a consequence of a direct interaction of zinc with the cytokine secretion by monocytes. In this review, the molecular basis for this effect, the interaction of zinc with the signal transduction of monocytes, is discussed. In particular, zinc seems to activate or inhibit several signaling pathways that interact with the signal transduction of pathogen sensing receptors, the so-called Toll-like receptors (TLR), which sense pathogen-derived molecular structures and, upon activation, lead to secretion of pro-inflammatory cytokines. The interaction of zinc with protein tyrosine phosphatases and protein kinase C, and a direct modulation of lipopolysaccharide binding to its receptor (TLR-4) all result in enhanced cytokine production. On the other hand, a complex interaction between zinc, NO and cyclic nucleotide signaling, and inhibition of interleukin-1 receptor associated kinase-1, and inhibitor of kappa B kinase all counteract the production of pro-inflammatory cytokines. A role for the zinc binding protein metallothionein as a regulator for intracellular zinc signaling is discussed. By acting on all these signaling molecules, the zinc status of monocytes can have a direct effect on inflammation.
Collapse
Affiliation(s)
- Hajo Haase
- Institute of Immunology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | | |
Collapse
|
18
|
von Bülow V, Rink L, Haase H. Zinc-mediated inhibition of cyclic nucleotide phosphodiesterase activity and expression suppresses TNF-alpha and IL-1 beta production in monocytes by elevation of guanosine 3',5'-cyclic monophosphate. THE JOURNAL OF IMMUNOLOGY 2005; 175:4697-705. [PMID: 16177117 DOI: 10.4049/jimmunol.175.7.4697] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The trace element zinc affects several aspects of immune function, such as the release of proinflammatory cytokines from monocytes. We investigated the role of cyclic nucleotide signaling in zinc inhibition of LPS-induced TNF-alpha and IL-1beta release from primary human monocytes and the monocytic cell line Mono Mac1. Zinc reversibly inhibited enzyme activity of phosphodiesterase-1 (PDE-1), PDE-3, and PDE-4 in cellular lysate. It additionally reduced mRNA expression of PDE-1C, PDE-4A, and PDE-4B in intact cells. Although these PDE can also hydrolyze cAMP, only the cellular level of cGMP was increased after incubation with zinc, whereas cAMP was found to be even slightly reduced due to inhibition of its synthesis. To investigate whether an increase in cGMP alone is sufficient to inhibit cytokine release, the cGMP analogues 8-bromo-cGMP and dibutyryl cGMP as well as the NO donor S-nitrosocysteine were used. All three treatments inhibited TNF-alpha and IL-1beta release after stimulation with LPS. Inhibition of soluble guanylate cyclase-mediated cGMP synthesis with LY83583 reversed the inhibitory effect of zinc on LPS-induced cytokine release. In conclusion, inhibition of PDE by zinc abrogates the LPS-induced release of TNF-alpha and IL-1beta by increasing intracellular cGMP levels.
Collapse
Affiliation(s)
- Verena von Bülow
- Institute of Immunology, University Hospital, RWTH Aachen University, Aachen, Germany
| | | | | |
Collapse
|