1
|
Tirado-Sánchez A, Bonifaz A, Frías De León MG. Factors Associated with Candidiasis in Pemphigus Vulgaris Patients: Results from a Retrospective Study in Two Second-Care Level Hospitals in Mexico. Trop Med Infect Dis 2023; 8:521. [PMID: 38133453 PMCID: PMC10748257 DOI: 10.3390/tropicalmed8120521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Infections are a major cause of morbidity and mortality in patients with pemphigus vulgaris (PV). One of the most common infections in these patients is candidiasis. This is probably due to the use of systemic immunosuppressants, including oral and intravenous corticosteroids, mainly in megadoses (pulse therapy), although it is unknown if there are other associated factors, in addition to immunosuppressive treatment. We determine the factors associated with candidiasis in PV patients in two second-care level hospitals in Mexico. METHODS We reviewed 100 cases with PV. Cases were randomly selected from the databases of two second-care level hospitals between January 2010 and December 2019 (10 years). The primary endpoint was the incidence of candidiasis in patients with PV. RESULTS One hundred patients with PV were enrolled in this retrospective study. Candidiasis was observed in 79 patients (79%). A maximum corticosteroid dose of 55 mg/day during the last year (p = 0.001) and a higher neutrophil/lymphocyte ratio were associated with candidiasis in patients with PV (p = 0.001). CONCLUSION Risk factors favoring candidiasis in patients with PV are not only related to the use of corticosteroids, but also to demographic factors, the activity of the disease, and the systemic inflammation associated with autoimmunity.
Collapse
Affiliation(s)
- Andrés Tirado-Sánchez
- Internal Medicine Department, Hospital General de Zona 30, Instituto Mexicano del Seguro Social, Mexico City 08300, Mexico
| | - Alexandro Bonifaz
- Laboratorio de Micología, Hospital General de México, Mexico City 06720, Mexico;
| | | |
Collapse
|
2
|
Del Mondo A, Vinaccia A, Pistelli L, Brunet C, Sansone C. On the human health benefits of microalgal phytohormones: An explorative in silico analysis. Comput Struct Biotechnol J 2023; 21:1092-1101. [PMID: 36789263 PMCID: PMC9900276 DOI: 10.1016/j.csbj.2023.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Phytohormones represent a group of secondary metabolites with different chemical structures, in which belong auxins, cytokinins, gibberellins, or brassinosteroids. In higher plants, they cover active roles in growth or defense function, while their potential benefits for human health protection were noted for some phytohormones and little explored for many others. In this study, we developed a target fishing strategy on fifty-three selected naturally occurring phytohormones covering different families towards proteins involved in key cellular functions related to human metabolism and health protection/disease. This in silico analysis strategy aims to screen the potential human health-driven bioactivity of more than fifty phytohormones through the analysis of their interactions with specific targets. From this analysis, twenty-eight human targets were recovered. Some targets e.g., the proteins mitochondrial glutamate dehydrogenase (GLUD1) or nerve growth factor (NGF) bound many phytohormones, highlighting their involvement in amino acid metabolism and/or in the maintenance or survival of neurons. Conversely, some phytohormones specifically interacted with some proteins, e.g., SPRY domain-containing SOCS box protein 2 (SPSB2) or Inosine-5'-monophosphate dehydrogenase 1 (IMPDH1), both involved in human immune response. They were then investigated with a molecular docking analysis approach. Our bioprospecting study indicated that many phytohormones may endow human health benefits, with potential functional role in multiple cellular processes including immune response and cell cycle progression.
Collapse
|
3
|
Wolff DW, Bianchi-Smiraglia A, Nikiforov MA. Compartmentalization and regulation of GTP in control of cellular phenotypes. Trends Mol Med 2022; 28:758-769. [PMID: 35718686 PMCID: PMC9420775 DOI: 10.1016/j.molmed.2022.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
Genetic or pharmacological inhibition of enzymes involved in GTP biosynthesis has substantial biological effects, underlining the need to better understand the function of GTP levels in regulation of cellular processes and the significance of targeting GTP biosynthesis enzymes for therapeutic intervention. Our current understanding of spatiotemporal regulation of GTP metabolism and its role in physiological and pathological cellular processes is far from complete. Novel methodologies such as genetically encoded sensors of free GTP offered insights into intracellular distribution and function of GTP molecules. In the current Review, we provide analysis of recent discoveries in the field of GTP metabolism and evaluate the key enzymes as molecular targets.
Collapse
Affiliation(s)
- David W Wolff
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA.
| | - Anna Bianchi-Smiraglia
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Mikhail A Nikiforov
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA; Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Hoffmann CV, Nevez G, Moal MC, Quinio D, Le Nan N, Papon N, Bouchara JP, Le Meur Y, Le Gal S. Selection of Pneumocystis jirovecii Inosine 5'-Monophosphate Dehydrogenase Mutants in Solid Organ Transplant Recipients: Implication of Mycophenolic Acid. J Fungi (Basel) 2021; 7:jof7100849. [PMID: 34682270 PMCID: PMC8537117 DOI: 10.3390/jof7100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Mycophenolic acid (MPA) targets the inosine 5'-monophosphate dehydrogenase (IMPDH) of human lymphocytes. It is widely used as an immunosuppressant to prevent rejection in solid organ transplant (SOT) recipients who, incidentally, are at risk for Pneumocystis pneumonia (PCP). We hypothesized that MPA exerts selective pressure on P. jirovecii microorganisms considering its in vitro antifungal activity on other fungi. Thus, we analysed impdh gene in P. jirovecii isolates from SOT recipients. P. jirovecii specimens from 26 patients diagnosed with PCP from 2010 to 2020 were retrospectively examined: 10 SOT recipients treated with MPA and 16 non-SOT patients without prior exposure to MPA. The P. jirovecii impdh gene was amplified and sequenced. Nucleotide sequences were aligned with the reference sequences retrieved from available P. jirovecii whole genomes. The deduced IMPDH protein sequences were aligned with available IMPDH proteins from Pneumocystis spp. and other fungal species known to be in vitro sensitive or resistant to MPA. A total of nine SNPs was identified. One SNP (G1020A) that results in an Ala261Thr substitution was identified in all SOT recipients and in none of the non-SOT patients. Considering that IMPDHs of other fungi, resistant to MPA, harbour Thr (or Ser) at the analogous position, the Ala261Thr mutation observed in MPA-treated patients was considered to represent the signature of P. jirovecii exposure to MPA. These results suggest that MPA may be involved in the selection of specific P. jirovecii strains that circulate in the SOT recipient population.
Collapse
Affiliation(s)
- Claire V. Hoffmann
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, 29609 Brest, France; (C.V.H.); (D.Q.)
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP), Université d’Angers, Université de Brest, 29238 Brest, France;
| | - Gilles Nevez
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, 29609 Brest, France; (C.V.H.); (D.Q.)
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP), Université d’Angers, Université de Brest, 29238 Brest, France;
- Correspondence: (G.N.); (S.L.G.); Tel.: +33-(0)-2-98-14-51-02 (G.N. & S.L.G.); Fax: +33-(0)-2-98-14-51-49 (G.N. & S.L.G.)
| | - Marie-Christine Moal
- Département de Néphrologie, CHU de Brest, 29609 Brest, France; (M.-C.M.); (Y.L.M.)
| | - Dorothée Quinio
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, 29609 Brest, France; (C.V.H.); (D.Q.)
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP), Université d’Angers, Université de Brest, 29238 Brest, France;
| | - Nathan Le Nan
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP), Université d’Angers, Université de Brest, 29238 Brest, France;
| | - Nicolas Papon
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP), Université de Brest, Université d’Angers, 49035 Angers, France; (N.P.); (J.-P.B.)
| | - Jean-Philippe Bouchara
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP), Université de Brest, Université d’Angers, 49035 Angers, France; (N.P.); (J.-P.B.)
| | - Yannick Le Meur
- Département de Néphrologie, CHU de Brest, 29609 Brest, France; (M.-C.M.); (Y.L.M.)
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, Inserm, Labex IGO, 20609 Brest, France
| | - Solène Le Gal
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, 29609 Brest, France; (C.V.H.); (D.Q.)
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP), Université d’Angers, Université de Brest, 29238 Brest, France;
- Correspondence: (G.N.); (S.L.G.); Tel.: +33-(0)-2-98-14-51-02 (G.N. & S.L.G.); Fax: +33-(0)-2-98-14-51-49 (G.N. & S.L.G.)
| |
Collapse
|
5
|
Drug repurposing strategies in the development of potential antifungal agents. Appl Microbiol Biotechnol 2021; 105:5259-5279. [PMID: 34151414 PMCID: PMC8214983 DOI: 10.1007/s00253-021-11407-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Abstract The morbidity and mortality caused by invasive fungal infections are increasing across the globe due to developments in transplant surgery, the use of immunosuppressive agents, and the emergence of drug-resistant fungal strains, which has led to a challenge in terms of treatment due to the limitations of three classes of drugs. Hence, it is imperative to establish effective strategies to identify and design new antifungal drugs. Drug repurposing is a potential way of expanding the application of existing drugs. Recently, various existing drugs have been shown to be useful in the prevention and treatment of invasive fungi. In this review, we summarize the currently used antifungal agents. In addition, the most up-to-date information on the effectiveness of existing drugs with antifungal activity is discussed. Moreover, the antifungal mechanisms of existing drugs are highlighted. These data will provide valuable knowledge to stimulate further investigation and clinical application in this field. Key points • Conventional antifungal agents have limitations due to the occurrence of drug-resistant strains. • Non-antifungal drugs act as antifungal agents in various ways toward different targets. • Non-antifungal drugs with antifungal activity are demonstrated as effective antifungal strategies.
Collapse
|
6
|
Fedorovych DV, Dmytruk KV, Sibirny AA. Recent Advances in Construction of the Efficient Producers of Riboflavin and Flavin Nucleotides (FMN, FAD) in the Yeast Candida famata. Methods Mol Biol 2021; 2280:15-30. [PMID: 33751426 DOI: 10.1007/978-1-0716-1286-6_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The approaches used by the authors to design the Candida famata strains capable to overproduce riboflavin, flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD) are described. The metabolic engineering approaches include overexpression of SEF1 gene encoding positive regulator of riboflavin biosynthesis, IMH3 (coding for IMP dehydrogenase) orthologs from another species of flavinogenic yeast Debaryomyces hansenii, and the homologous genes RIB1 and RIB7 encoding GTP cyclohydrolase II and riboflavin synthase, the first and the last enzymes of riboflavin biosynthesis pathway, respectively. Overexpression of the above mentioned genes in the genetically stable riboflavin overproducer AF-4 obtained by classical selection resulted in fourfold increase of riboflavin production in shake flask experiments.Overexpression of engineered enzymes phosphoribosyl pyrophosphate synthetase and phosphoribosyl pyrophosphate amidotransferase catalyzing the initial steps of purine nucleotide biosynthesis enhances riboflavin synthesis in the flavinogenic yeast C. famata even more.Recombinant strains of C. famata containing FMN1 gene from D. hansenii encoding riboflavin kinase under control of the strong constitutive TEF1 promoter were constructed. Overexpression of the FMN1 gene in the riboflavin-producing mutant led to the 30-fold increase of the riboflavin kinase activity and 400-fold increase of FMN production in the resulting recombinant strains which reached maximally 318.2 mg/L.FAD overproducing strains of C. famata were also constructed. This was achieved by overexpression of FAD1 gene from D. hansenii in C. famata FMN overproducing strain. The 7- to 15-fold increase in FAD synthetase activity as compared to the wild-type strain and FAD accumulation into cultural medium were observed. The maximal FAD titer 451.5 mg/L was achieved.
Collapse
Affiliation(s)
- Dariya V Fedorovych
- Department of Molecular Biology and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Lviv, Ukraine
| | - Kostyantyn V Dmytruk
- Department of Molecular Biology and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Lviv, Ukraine
| | - Andriy A Sibirny
- Department of Molecular Biology and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Lviv, Ukraine.
- Department of Microbiology and Biotechnology, University of Rzeszow, Rzeszow, Poland.
| |
Collapse
|
7
|
Leitheiser S, Harner A, Waller JL, Turrentine J, Baer S, Kheda M, Nahman NS, Colombo RE. Risk Factors Associated With Invasive Fungal Infections in Kidney Transplant Patients. Am J Med Sci 2020; 359:108-116. [DOI: 10.1016/j.amjms.2019.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/12/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022]
|
8
|
Freedman R, Yu R, Sarkis AW, Hedstrom L. A structural determinant of mycophenolic acid resistance in eukaryotic inosine 5'-monophosphate dehydrogenases. Protein Sci 2019; 29:686-694. [PMID: 31675145 DOI: 10.1002/pro.3766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 01/21/2023]
Abstract
Mycophenolic acid (MPA) is a potent natural product inhibitor of fungal and other eukaryotic inosine 5'-monophosphate dehydrogenases (IMPDHs) originally isolated from spoiled corn silage. MPA is produced by the filamentous fungi Penicillium brevicompactum, which contains two IMPDHs, PbIMPDHA and PbIMPDHB, both of which are MPA-resistant. The MPA binding sites of these enzymes are identical to MPA-sensitive IMPDHs, so the structural determinants of resistance are unknown. Here we show that a single residue, Ser267, accounts for the MPA resistance of PbIMPDHA. Substitution of Ser267 with Ala, the residue most commonly found in this position in eukaryotic IMPDHs, makes PbIMPDHA sensitive to MPA. Conversely, Aspergillus nidulans IMPDH becomes MPA-resistant when the analogous Ala residue is substituted with Ser. These substitutions have little effect on the catalytic cycles of either enzyme, suggesting the fitness costs are negligible despite the strong conservation of Ala at this position. Intriguingly, while only 1% of fungal IMPDHs contain Ser or Thr at position 267, these residues are found in the IMPDHs from several Aspergillus species that grow at the low temperatures also favored by Penicillium. Perhaps Ser/Thr267 is an evolutionary signature of MPA exposure.
Collapse
Affiliation(s)
- Rebecca Freedman
- Graduate Program in Biochemistry and Biophysics, Brandeis University, Waltham, Massachusetts
| | - Runhan Yu
- Department of Chemistry, Brandeis University, Waltham, Massachusetts
| | - Alexander W Sarkis
- Graduate Program in Biochemistry and Biophysics, Brandeis University, Waltham, Massachusetts
| | - Lizbeth Hedstrom
- Department of Chemistry, Brandeis University, Waltham, Massachusetts.,Department of Biology, Brandeis University, Waltham, Massachusetts
| |
Collapse
|
9
|
Zhang M, Yan H, Lu M, Wang D, Sun S. Antifungal activity of ribavirin used alone or in combination with fluconazole against Candida albicans is mediated by reduced virulence. Int J Antimicrob Agents 2019; 55:105804. [PMID: 31605727 DOI: 10.1016/j.ijantimicag.2019.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/07/2019] [Accepted: 09/11/2019] [Indexed: 01/01/2023]
Abstract
The incidence of fungal infections has increased continuously in recent years, and drug resistance, especially resistance to fluconazole (FLC), has emerged. To overcome this challenge, research on the antifungal activities of non-antifungal agents has gained more attention. In this study, we determined the anti-Candida activity of ribavirin (RBV), an antiviral drug commonly used in the clinic, and found that RBV displayed potent antifungal activity when used alone or in combination with FLC in vitro and in vivo. In vitro, the MIC80 values of RBV were 2-4 µg/mL for FLC-susceptible Candida albicans and 8 µg/mL for FLC-resistant C. albicans. When RBV at a dose of 1 µg/mL was combined with FLC, significant synergistic effects were exhibited against FLC-resistant C. albicans, and the MICs of FLC decreased from >512 µg/mL to 0.25-1 µg/mL. Synergism was also exhibited against C. albicans biofilms. In vivo, RBV plus FLC significantly improved the survival of infected Galleria mellonella larvae compared with the FLC-treated group over a 4-day period and attenuated the damage of FLC-resistant C. albicans to G. mellonella larvae tissue. Furthermore, mechanistic studies indicated that the antifungal effects of RBV used alone or in combination with FLC might be associated with inhibition of biofilm formation, reduced extracellular phospholipase activity and inhibition of hyphal growth, but is not related to promotion of FLC uptake and inhibition of FLC efflux. These results provide a promising direction for overcoming drug resistance and for expanding the clinical application of existing drugs.
Collapse
Affiliation(s)
- Min Zhang
- School of Pharmaceutical Sciences, Shandong First Medical University, Tai'an, Shandong Province, China; Department of Pharmacy, Tai'an Municipal Hospital, Tai'an, Shandong Province, China
| | - Haiying Yan
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong Province, China
| | - Mengjiao Lu
- Department of Pharmacy, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Decai Wang
- School of Pharmaceutical Sciences, Shandong First Medical University, Tai'an, Shandong Province, China
| | - Shujuan Sun
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong Province, China.
| |
Collapse
|
10
|
Yang L, Ru Y, Cai X, Yin Z, Liu X, Xiao Y, Zhang H, Zheng X, Wang P, Zhang Z. MoImd4 mediates crosstalk between MoPdeH-cAMP signalling and purine metabolism to govern growth and pathogenicity in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2019; 20:500-518. [PMID: 30426699 PMCID: PMC6422694 DOI: 10.1111/mpp.12770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The high-affinity cyclic adenosine monophosphate (cAMP) phosphodiesterase MoPdeH is important not only for cAMP signalling and pathogenicity, but also for cell wall integrity (CWI) maintenance in the rice blast fungus Magnaporthe oryzae. To explore the underlying mechanism, we identified MoImd4 as an inosine-5'-monophosphate dehydrogenase (IMPDH) homologue that interacts with MoPdeH. Targeted deletion of MoIMD4 resulted in reduced de novo purine biosynthesis and growth, as well as attenuated pathogenicity, which were suppressed by exogenous xanthosine monophosphate (XMP). Treatment with mycophenolic acid (MPA), which specifically inhibits MoImd4 activity, resulted in reduced growth and virulence attenuation. Intriguingly, further analysis showed that MoImd4 promotes the phosphodiesterase activity of MoPdeH, thereby decreasing intracellular cAMP levels, and MoPdeH also promotes the IMPDH activity of MoImd4. Our studies revealed the presence of a novel crosstalk between cAMP regulation and purine biosynthesis in M. oryzae, and indicated that such a link is also important in the pathogenesis of M. oryzae.
Collapse
Affiliation(s)
- Lina Yang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Yanyan Ru
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Xingjia Cai
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Ziyi Yin
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Yuhan Xiao
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Ping Wang
- Departments of Pediatrics, and Microbiology, Immunology, and ParasitologyLouisiana State University Health Sciences CenterNew OrleansLA70112USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| |
Collapse
|
11
|
Chitty JL, Fraser JA. Purine Acquisition and Synthesis by Human Fungal Pathogens. Microorganisms 2017; 5:microorganisms5020033. [PMID: 28594372 PMCID: PMC5488104 DOI: 10.3390/microorganisms5020033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 01/13/2023] Open
Abstract
While members of the Kingdom Fungi are found across many of the world's most hostile environments, only a limited number of species can thrive within the human host. The causative agents of the most common invasive fungal infections are Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans. During the infection process, these fungi must not only combat the host immune system while adapting to dramatic changes in temperature and pH, but also acquire sufficient nutrients to enable growth and dissemination in the host. One class of nutrients required by fungi, which is found in varying concentrations in their environmental niches and the human host, is the purines. These nitrogen-containing heterocycles are one of the most abundant organic molecules in nature and are required for roles as diverse as signal transduction, energy metabolism and DNA synthesis. The most common life-threatening fungal pathogens can degrade, salvage and synthesize de novo purines through a number of enzymatic steps that are conserved. While these enable them to adapt to the changing purine availability in the environment, only de novo purine biosynthesis is essential during infection and therefore an attractive antimycotic target.
Collapse
Affiliation(s)
- Jessica L Chitty
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, the University of Queensland, St Lucia, Queensland 4072, Australia.
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland 4072, Australia.
| | - James A Fraser
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, the University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
12
|
Kinoshita H, Wongsuntornpoj S, Ihara F, Nihira T. Anti-Rhodotorulaactivity of mycophenolic acid enhanced in the presence of polyene antibiotic nystatin. Lett Appl Microbiol 2016; 64:144-149. [DOI: 10.1111/lam.12692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 11/30/2022]
Affiliation(s)
- H. Kinoshita
- International Center for Biotechnology; Osaka University; Suita Japan
| | - S. Wongsuntornpoj
- International Center for Biotechnology; Osaka University; Suita Japan
| | - F. Ihara
- National Institute of Fruit Tree Science; Tsukuba Japan
| | - T. Nihira
- International Center for Biotechnology; Osaka University; Suita Japan
- MU-OU Collaborative Research Center for Bioscience and Biotechnology; Faculty of Science; Mahidol University; Bangkok Thailand
| |
Collapse
|
13
|
Defosse TA, Mélin C, Clastre M, Besseau S, Lanoue A, Glévarec G, Oudin A, Dugé de Bernonville T, Vandeputte P, Linder T, Bouchara JP, Courdavault V, Giglioli-Guivarc'h N, Papon N. An additionalMeyerozyma guilliermondii IMH3gene confers mycophenolic acid resistance in fungal CTG clade species. FEMS Yeast Res 2016; 16:fow078. [DOI: 10.1093/femsyr/fow078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2016] [Indexed: 01/11/2023] Open
|
14
|
Kim K, Zilbermintz L, Martchenko M. Repurposing FDA approved drugs against the human fungal pathogen, Candida albicans. Ann Clin Microbiol Antimicrob 2015; 14:32. [PMID: 26054754 PMCID: PMC4462072 DOI: 10.1186/s12941-015-0090-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/27/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The high cost and prolonged timeline of new drug discovery and development are major roadblocks to creating therapies for infectious diseases. Candida albicans is an opportunistic fungal pathogen that is the most common cause of fatal fungal infections in humans and costs $2-4 billion dollars to treat in the US alone. METHODS To accelerate drug discovery, we screened a library of 1581 existing FDA approved drugs, as well as drugs approved abroad, for inhibitors of C. albicans. The screen was done on YPD yeast growth media as well as on the serum plate assay developed in this study. RESULTS We discovered that fifteen drugs, all which were originally approved for treating various infectious and non-infectious diseases, were able to kill Candida albicans. Additionally, one of those drugs, Octodrine, displays wide-spectrum anti-microbial activity. Compared to other selected anti-Candida drugs, Octodrine was shown to be one of the most effective drugs in killing serum-grown Candida albicans without significantly affecting the survival of host macrophages and skin cells. CONCLUSIONS This approach is useful for the discovery of economically viable new therapies against infectious diseases.
Collapse
Affiliation(s)
- Kevin Kim
- Keck Graduate Institute, Claremont, CA, 91711, USA.
| | | | | |
Collapse
|
15
|
First EA. A continuous spectrophotometric assay for monitoring adenosine 5'-monophosphate production. Anal Biochem 2015; 483:34-9. [PMID: 25957126 DOI: 10.1016/j.ab.2015.04.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 11/18/2022]
Abstract
A number of biologically important enzymes release adenosine 5'-monophosphate (AMP) as a product, including aminoacyl-tRNA synthetases, cyclic AMP (cAMP) phosphodiesterases, ubiquitin and ubiquitin-like ligases, DNA ligases, coenzyme A (CoA) ligases, polyA deadenylases, and ribonucleases. In contrast to the abundance of assays available for monitoring the conversion of adenosine 5'-triphosphate (ATP) to ADP, there are relatively few assays for monitoring the conversion of ATP (or cAMP) to AMP. In this article, we describe a homogeneous assay that continuously monitors the production of AMP. Specifically, we have coupled the conversion of AMP to inosine 5'-monophosphate (IMP) (by AMP deaminase) to the oxidation of IMP (by IMP dehydrogenase). This results in the reduction of oxidized nicotine adenine dinucleotide (NAD(+)) to reduced nicotine adenine dinucleotide (NADH), allowing AMP formation to be monitored by the change in the absorbance at 340 nm. Changes in AMP concentrations of 5 μM or more can be reliably detected. The ease of use and relatively low expense make the AMP assay suitable for both high-throughput screening and kinetic analyses.
Collapse
Affiliation(s)
- Eric A First
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71130, USA.
| |
Collapse
|
16
|
Yamashita M, Saito T, Ise K, Ishii S, Satoh Y, Saito T, Oshibe I, Shimizu H, Kenjo A, Kimura T, Gotoh M. Mizoribine as sole immunosuppressive agent in islet xenotransplantation models: a candidate immunosuppressant causing no adverse effects on islets. Cell Transplant 2012; 21:535-45. [PMID: 22793062 DOI: 10.3727/096368911x605457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mizoribine (MZ) inhibits the differentiation and proliferation of helper T and B cells after antigen recognition by suppressing the purine biosynthesis pathway and nucleic acid synthesis. MZ has been used in kidney transplantation, but distinct data are unavailable for islet transplantation. The present study investigated the efficacy of MZ for islet xenotransplantation. Immunosuppressive effects of MZ were determined by mixed lymphocyte reaction (MLR) assay in vitro. Toxicities for Wistar rat islets were determined by adenosine triphosphate (ATP) contents of islets during 3-day culture and stimulation index in response to glucose after culture. Immunosuppressive effects in vivo were tested in a Wistar-to-B6 islet xenotransplantation model. MZ was administered continuously for 28 days subcutaneously or intramuscularly. MZ inhibited MLR response by approximately 50% at 0.1 μg/ml. ATP contents decreased with MZ >100 μg/ml, while stimulation index was maintained. Continuous infusion of MZ at 10 mg/kg maintained blood concentrations at 0.13-0.19 μg/ml, while intramuscular injection of MZ at 100 mg/kg/day (peak 520 μg/ml at 1 h postinjection) resulted in below measurable levels (<0.03 μg/ml) within 24 h. Graft survival was significantly prolonged following continuous infusion of 10 mg/kg/day compared to controls (31.0 ± 9.5 vs. 13.2 ± 5.2 days; p = 0.002). Furthermore, animals with intramuscular injection at doses of 3.2, 10, or 100 mg/kg/day showed significantly longer graft survival (20.0 ± 7.5, 22.0 ± 7.31, and 24.5 ± 8.1 days, respectively; p < 0.05 each). Histological examination showed significant suppression of lymphocyte infiltration by MZ administration. MZ showed immunosuppressive effects in an experimental islet xenotransplantation model without adverse effects on endocrine function of islet grafts.
Collapse
Affiliation(s)
- Michitoshi Yamashita
- Department of Surgery I, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Morrow CA, Valkov E, Stamp A, Chow EWL, Lee IR, Wronski A, Williams SJ, Hill JM, Djordjevic JT, Kappler U, Kobe B, Fraser JA. De novo GTP biosynthesis is critical for virulence of the fungal pathogen Cryptococcus neoformans. PLoS Pathog 2012; 8:e1002957. [PMID: 23071437 PMCID: PMC3469657 DOI: 10.1371/journal.ppat.1002957] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 08/26/2012] [Indexed: 01/01/2023] Open
Abstract
We have investigated the potential of the GTP synthesis pathways as chemotherapeutic targets in the human pathogen Cryptococcus neoformans, a common cause of fatal fungal meningoencephalitis. We find that de novo GTP biosynthesis, but not the alternate salvage pathway, is critical to cryptococcal dissemination and survival in vivo. Loss of inosine monophosphate dehydrogenase (IMPDH) in the de novo pathway results in slow growth and virulence factor defects, while loss of the cognate phosphoribosyltransferase in the salvage pathway yielded no phenotypes. Further, the Cryptococcus species complex displays variable sensitivity to the IMPDH inhibitor mycophenolic acid, and we uncover a rare drug-resistant subtype of C. gattii that suggests an adaptive response to microbial IMPDH inhibitors in its environmental niche. We report the structural and functional characterization of IMPDH from Cryptococcus, revealing insights into the basis for drug resistance and suggesting strategies for the development of fungal-specific inhibitors. The crystal structure reveals the position of the IMPDH moveable flap and catalytic arginine in the open conformation for the first time, plus unique, exploitable differences in the highly conserved active site. Treatment with mycophenolic acid led to significantly increased survival times in a nematode model, validating de novo GTP biosynthesis as an antifungal target in Cryptococcus.
Collapse
Affiliation(s)
- Carl A. Morrow
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Eugene Valkov
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Anna Stamp
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Eve W. L. Chow
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - I. Russel Lee
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Ania Wronski
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Simon J. Williams
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Justine M. Hill
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Julianne T. Djordjevic
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Sydney, New South Wales, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - James A. Fraser
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
18
|
Ochi K, Nishizawa T, Inaoka T, Yamada A, Hashimoto K, Hosaka T, Okamoto S, Ozeki Y. Heterologous expression of a plant RelA-SpoT homologue results in increased stress tolerance in Saccharomyces cerevisiae by accumulation of the bacterial alarmone ppGpp. MICROBIOLOGY-SGM 2012; 158:2213-2224. [PMID: 22679107 DOI: 10.1099/mic.0.057638-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The bacterial alarmone ppGpp is present only in bacteria and the chloroplasts of plants, but not in mammalian cells or eukaryotic micro-organisms such as yeasts and fungi. The importance of the ppGpp signalling system in eukaryotes has therefore been largely overlooked. Here, we demonstrated that heterologous expression of a relA-spoT homologue (Sj-RSH) isolated from the halophilic plant Suaeda japonica in the yeast Saccharomyces cerevisiae results in accumulation of ppGpp, accompanied by enhancement of tolerance against various stress stimuli, such as osmotic stress, ethanol, hydrogen peroxide, high temperature and freezing. Unlike bacterial ppGpp accumulation, ppGpp was accumulated in the early growth phase but not in the late growth phase. Moreover, nutritional downshift resulted in a decrease in ppGpp level, suggesting that the observed Sj-RSH activity to synthesize ppGpp is not starvation-dependent, contrary to our expectations based on bacteria. Accumulated ppGpp was found to be present solely in the cytosolic fraction and not in the mitochondrial fraction, perhaps reflecting the ribosome-independent ppGpp synthesis in S. cerevisiae cells. Unlike bacterial inosine monophosphate (IMP) dehydrogenases, the IMP dehydrogenase of S. cerevisiae was insensitive to ppGpp. Microarray analysis showed that ppGpp accumulation gave rise to marked changes in gene expression, with both upregulation and downregulation, including changes in mitochondrial gene expression. The most prominent upregulation (38-fold) was detected in the hypothetical gene YBR072C-A of unknown function, followed by many other known stress-responsive genes. S. cerevisiae may provide new opportunities to uncover and analyse the ppGpp signalling system in eukaryotic cells.
Collapse
Affiliation(s)
- Kozo Ochi
- National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan.,Department of Life Science, Hiroshima Institute of Technology, Miyake 2-1-1, Saeki-ku, Hiroshima 731-5193, Japan
| | | | - Takashi Inaoka
- National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| | - Akiyo Yamada
- Department of Biotechnology, Faculty of Technology, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo, 184-8588, Japan
| | - Kohsuke Hashimoto
- Department of Life Science, Hiroshima Institute of Technology, Miyake 2-1-1, Saeki-ku, Hiroshima 731-5193, Japan
| | - Takeshi Hosaka
- International Young Researchers Empowerment Center, Shinshu University, 8304, Minamiminowa, Nagano 399-4598, Japan
| | - Susumu Okamoto
- National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| | - Yoshihiro Ozeki
- Department of Biotechnology, Faculty of Technology, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|
19
|
Papon N, Courdavault V, Clastre M, Simkin AJ, Crèche J, Giglioli-Guivarc’h N. Deus ex Candida genetics: overcoming the hurdles for the development of a molecular toolbox in the CTG clade. Microbiology (Reading) 2012; 158:585-600. [DOI: 10.1099/mic.0.055244-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Nicolas Papon
- EA2106, Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, France
| | - Vincent Courdavault
- EA2106, Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, France
| | - Marc Clastre
- EA2106, Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, France
| | - Andrew J. Simkin
- EA2106, Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, France
| | - Joël Crèche
- EA2106, Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, France
| | | |
Collapse
|
20
|
Abstract
MPA (mycophenolic acid) is an immunosuppressive drug produced by several fungi in Penicillium subgenus Penicillium. This toxic metabolite is an inhibitor of IMPDH (IMP dehydrogenase). The MPA-biosynthetic cluster of Penicillium brevicompactum contains a gene encoding a B-type IMPDH, IMPDH-B, which confers MPA resistance. Surprisingly, all members of the subgenus Penicillium contain genes encoding IMPDHs of both the A and B types, regardless of their ability to produce MPA. Duplication of the IMPDH gene occurred before and independently of the acquisition of the MPAbiosynthetic cluster. Both P. brevicompactum IMPDHs are MPA-resistant, whereas the IMPDHs from a non-producer are MPA-sensitive. Resistance comes with a catalytic cost: whereas P. brevicompactum IMPDH-B is >1000-fold more resistant to MPA than a typical eukaryotic IMPDH, its kcat/Km value is 0.5% of 'normal'. Curiously, IMPDH-B of Penicillium chrysogenum, which does not produce MPA, is also a very poor enzyme. The MPA-binding site is completely conserved among sensitive and resistant IMPDHs. Mutational analysis shows that the C-terminal segment is a major structural determinant of resistance. These observations suggest that the duplication of the IMPDH gene in the subgenus Penicillium was permissive for MPA production and that MPA production created a selective pressure on IMPDH evolution. Perhaps MPA production rescued IMPDH-B from deleterious genetic drift.
Collapse
|
21
|
Hedstrom L. The dynamic determinants of reaction specificity in the IMPDH/GMPR family of (β/α)(8) barrel enzymes. Crit Rev Biochem Mol Biol 2012; 47:250-63. [PMID: 22332716 DOI: 10.3109/10409238.2012.656843] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The inosine monophosphate dehydrogenase (IMPDH)/guanosine monophosphate reductase (GMPR) family of (β/α)(8) enzymes presents an excellent opportunity to investigate how subtle changes in enzyme structure change reaction specificity. IMPDH and GMPR bind the same ligands with similar affinities and share a common set of catalytic residues. Both enzymes catalyze a hydride transfer reaction involving a nicotinamide cofactor hydride, and both reactions proceed via the same covalent intermediate. In the case of IMPDH, this intermediate reacts with water, while in GMPR it reacts with ammonia. In both cases, the two chemical transformations are separated by a conformational change. In IMPDH, the conformational change involves a mobile protein flap while in GMPR, the cofactor moves. Thus reaction specificity is controlled by differences in dynamics, which in turn are controlled by residues outside the active site. These findings have some intriguing implications for the evolution of the IMPDH/GMPR family.
Collapse
Affiliation(s)
- Lizbeth Hedstrom
- Departments of Biology and Chemistry, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
22
|
Sasse C, Morschhäuser J. Gene deletion in Candida albicans wild-type strains using the SAT1-flipping strategy. Methods Mol Biol 2012; 845:3-17. [PMID: 22328364 DOI: 10.1007/978-1-61779-539-8_1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Targeted gene inactivation is an important method to investigate gene function. In the diploid yeast Candida albicans, the generation of homozygous knock-out mutants requires the sequential replacement of both alleles of a gene by a selection marker. Targeted gene deletion is often performed in auxotrophic host strains, which are rendered prototrophic after the insertion of appropriate nutritional marker genes into the target locus. The SAT1-flipping strategy described in this chapter allows gene deletion in prototrophic C. albicans wild-type strains with the help of a recyclable dominant selection marker. The SAT1 flipper cassette used for this purpose consists of the caSAT1 marker, which confers resistance to the antibiotic nourseothricin, and the caFLP gene, which encodes the site-specific recombinase FLP. The addition of flanking sequences of the target gene allows specific genomic insertion of the SAT1 flipper cassette by homologous recombination and selection of nourseothricin-resistant transformants. Expression of the FLP recombinase results in subsequent excision of the cassette, which is bordered by direct repeats of the FLP recognition sequence FRT, from the genome. The homozygous mutants obtained after two rounds of insertion and recycling of the SAT1 flipper cassette differ from the wild-type parental strain only by the absence of the target gene and can be used for the inactivation of additional genes and the generation of complemented strains using the same strategy.
Collapse
Affiliation(s)
- Christoph Sasse
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | | |
Collapse
|
23
|
Sun XE, Hansen BG, Hedstrom L. Kinetically controlled drug resistance: how Penicillium brevicompactum survives mycophenolic acid. J Biol Chem 2011; 286:40595-600. [PMID: 21979957 PMCID: PMC3220510 DOI: 10.1074/jbc.m111.305235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 10/04/2011] [Indexed: 11/06/2022] Open
Abstract
The filamentous fungus Penicillium brevicompactum produces the immunosuppressive drug mycophenolic acid (MPA), which is a potent inhibitor of eukaryotic IMP dehydrogenases (IMPDHs). IMPDH catalyzes the conversion of IMP to XMP via a covalent enzyme intermediate, E-XMP*; MPA inhibits by trapping E-XMP*. P. brevicompactum (Pb) contains two MPA-resistant IMPDHs, PbIMPDH-A and PbIMPDH-B, which are 17- and 10(3)-fold more resistant to MPA than typically observed. Surprisingly, the active sites of these resistant enzymes are essentially identical to those of MPA-sensitive enzymes, so the mechanistic basis of resistance is not apparent. Here, we show that, unlike MPA-sensitive IMPDHs, formation of E-XMP* is rate-limiting for both PbIMPDH-A and PbIMPDH-B. Therefore, MPA resistance derives from the failure to accumulate the drug-sensitive intermediate.
Collapse
Affiliation(s)
- Xin E. Sun
- From the Graduate Program in Biochemistry and
| | - Bjarne Gram Hansen
- the Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Lizbeth Hedstrom
- Departments of Biology and Chemistry, Brandeis University, Waltham, Massachusetts 02453 and
| |
Collapse
|
24
|
Riera TV, Zheng L, Josephine HR, Min D, Yang W, Hedstrom L. Allosteric activation via kinetic control: potassium accelerates a conformational change in IMP dehydrogenase. Biochemistry 2011; 50:8508-18. [PMID: 21870820 PMCID: PMC3186055 DOI: 10.1021/bi200785s] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Allosteric activators are generally believed to shift the equilibrium distribution of enzyme conformations to favor a catalytically productive structure; the kinetics of conformational exchange is seldom addressed. Several observations suggested that the usual allosteric mechanism might not apply to the activation of IMP dehydrogenase (IMPDH) by monovalent cations. Therefore, we investigated the mechanism of K(+) activation in IMPDH by delineating the kinetic mechanism in the absence of monovalent cations. Surprisingly, the K(+) dependence of k(cat) derives from the rate of flap closure, which increases by ≥65-fold in the presence of K(+). We performed both alchemical free energy simulations and potential of mean force calculations using the orthogonal space random walk strategy to computationally analyze how K(+) accelerates this conformational change. The simulations recapitulate the preference of IMPDH for K(+), validating the computational models. When K(+) is replaced with a dummy ion, the residues of the K(+) binding site relax into ordered secondary structure, creating a barrier to conformational exchange. K(+) mobilizes these residues by providing alternate interactions for the main chain carbonyls. Potential of mean force calculations indicate that K(+) changes the shape of the energy well, shrinking the reaction coordinate by shifting the closed conformation toward the open state. This work suggests that allosteric regulation can be under kinetic as well as thermodynamic control.
Collapse
Affiliation(s)
- Thomas V. Riera
- Graduate Program in Biochemistry, Brandeis University, 415 South St., MS 009, Waltham, MA 02454 USA
| | - Lianqing Zheng
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306 USA
| | - Helen R. Josephine
- Department of Biology, Brandeis University, 415 South St., MS 009, Waltham, MA 02454 USA
| | - Donghong Min
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306 USA
| | - Wei Yang
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306 USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 USA
| | - Lizbeth Hedstrom
- Department of Biology, Brandeis University, 415 South St., MS 009, Waltham, MA 02454 USA
- Department of Chemistry, Brandeis University, 415 South St., MS 009, Waltham, MA 02454 USA
| |
Collapse
|
25
|
Hansen BG, Genee HJ, Kaas CS, Nielsen JB, Regueira TB, Mortensen UH, Frisvad JC, Patil KR. A new class of IMP dehydrogenase with a role in self-resistance of mycophenolic acid producing fungi. BMC Microbiol 2011; 11:202. [PMID: 21923907 PMCID: PMC3184278 DOI: 10.1186/1471-2180-11-202] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 09/16/2011] [Indexed: 11/18/2022] Open
Abstract
Background Many secondary metabolites produced by filamentous fungi have potent biological activities, to which the producer organism must be resistant. An example of pharmaceutical interest is mycophenolic acid (MPA), an immunosuppressant molecule produced by several Penicillium species. The target of MPA is inosine-5'-monophosphate dehydrogenase (IMPDH), which catalyses the rate limiting step in the synthesis of guanine nucleotides. The recent discovery of the MPA biosynthetic gene cluster from Penicillium brevicompactum revealed an extra copy of the IMPDH-encoding gene (mpaF) embedded within the cluster. This finding suggests that the key component of MPA self resistance is likely based on the IMPDH encoded by mpaF. Results In accordance with our hypothesis, heterologous expression of mpaF dramatically increased MPA resistance in a model fungus, Aspergillus nidulans, which does not produce MPA. The growth of an A. nidulans strain expressing mpaF was only marginally affected by MPA at concentrations as high as 200 μg/ml. To further substantiate the role of mpaF in MPA resistance, we searched for mpaF orthologs in six MPA producer/non-producer strains from Penicillium subgenus Penicillium. All six strains were found to hold two copies of IMPDH. A cladistic analysis based on the corresponding cDNA sequences revealed a novel group constituting mpaF homologs. Interestingly, a conserved tyrosine residue in the original class of IMPDHs is replaced by a phenylalanine residue in the new IMPDH class. Conclusions We identified a novel variant of the IMPDH-encoding gene in six different strains from Penicillium subgenus Penicillium. The novel IMPDH variant from MPA producer P. brevicompactum was shown to confer a high degree of MPA resistance when expressed in a non-producer fungus. Our study provides a basis for understanding the molecular mechanism of MPA resistance and has relevance for biotechnological and pharmaceutical applications.
Collapse
Affiliation(s)
- Bjarne G Hansen
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Gollapalli DR, Macpherson IS, Liechti G, Gorla SK, Goldberg JB, Hedstrom L. Structural determinants of inhibitor selectivity in prokaryotic IMP dehydrogenases. ACTA ACUST UNITED AC 2011; 17:1084-91. [PMID: 21035731 DOI: 10.1016/j.chembiol.2010.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 06/26/2010] [Accepted: 07/20/2010] [Indexed: 10/18/2022]
Abstract
The protozoan parasite Cryptosporidium parvum is a major cause of gastrointestinal disease; no effective drug therapy exists to treat this infection. Curiously, C. parvum IMPDH (CpIMPDH) is most closely related to prokaryotic IMPDHs, suggesting that the parasite obtained its IMPDH gene via horizontal transfer. We previously identified inhibitors of CpIMPDH that do not inhibit human IMPDHs. Here, we show that these compounds also inhibit IMPDHs from Helicobacter pylori, Borrelia burgdorferi, and Streptococcus pyogenes, but not from Escherichia coli. Residues Ala165 and Tyr358 comprise a structural motif that defines susceptible enzymes. Importantly, a second-generation CpIMPDH inhibitor has bacteriocidal activity on H. pylori but not E. coli. We propose that CpIMPDH-targeted inhibitors can be developed into a new class of antibiotics that will spare some commensal bacteria.
Collapse
|
27
|
Josephine HR, Ravichandran KR, Hedstrom L. The Cys319 loop modulates the transition between dehydrogenase and hydrolase conformations in inosine 5'-monophosphate dehydrogenase. Biochemistry 2010; 49:10674-81. [PMID: 21062060 DOI: 10.1021/bi101590c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
X-ray crystal structures of enzyme-ligand complexes are widely believed to mimic states in the catalytic cycle, but this presumption has seldom been carefully scrutinized. In the case of Tritrichomonas foetus inosine 5'-monophosphate dehydrogenase (IMPDH), 10 structures of various enzyme-substrate-inhibitor complexes have been determined. The Cys319 loop is found in at least three different conformations, suggesting that its conformation changes as the catalytic cycle progresses from the dehydrogenase step to the hydrolase reaction. Alternatively, only one conformation of the Cys319 loop may be catalytically relevant while the others are off-pathway. Here we differentiate between these two hypotheses by analyzing the effects of Ala substitutions at three residues of the Cys319 loop, Arg322, Glu323, and Gln324. These mutations have minimal effects on the value of k(cat) (≤5-fold) that obscure large effects (>10-fold) on the microscopic rate constants for individual steps. These substitutions increase the equilibrium constant for the dehydrogenase step but decrease the equilibrium between open and closed conformations of a mobile flap. More dramatic effects are observed when Arg322 is substituted with Glu, which decreases the rates of hydride transfer and hydrolysis by factors of 2000 and 130, respectively. These experiments suggest that the Cys319 loop does indeed have different conformations during the dehydrogenase and hydrolase reactions as suggested by the crystal structures. Importantly, these experiments reveal that the structure of the Cys319 loop modulates the closure of the mobile flap. This conformational change converts the enzyme from a dehydrogenase into hydrolase, suggesting that the conformation of the Cys319 loop may gate the catalytic cycle.
Collapse
Affiliation(s)
- Helen R Josephine
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | | | | |
Collapse
|
28
|
Dmytruk KV, Yatsyshyn VY, Sybirna NO, Fedorovych DV, Sibirny AA. Metabolic engineering and classic selection of the yeast Candida famata (Candida flareri) for construction of strains with enhanced riboflavin production. Metab Eng 2010; 13:82-8. [PMID: 21040798 DOI: 10.1016/j.ymben.2010.10.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 10/21/2010] [Accepted: 10/21/2010] [Indexed: 02/08/2023]
Abstract
Currently, the mutant of the flavinogenic yeast Candida famata dep8 isolated by classic mutagenesis and selection is used for industrial riboflavin production. Here we report on construction of a riboflavin overproducing strain of C. famata using a combination of random mutagenesis based on the selection of mutants resistant to different antimetabolites as well as rational approaches of metabolic engineering. The conventional mutagenesis involved consecutive selection for resistance to riboflavin structural analog 7-methyl-8-trifluoromethyl-10-(1'-d-ribityl)isoalloxazine), 8-azaguanine, 6-azauracil, 2-diazo-5-oxo-L-norleucine and guanosine as well as screening for yellow colonies at high pH. The metabolic engineering approaches involved introduction of additional copies of transcription factor SEF1 and IMH3 (coding for IMP dehydrogenase) orthologs from Debaryomyces hansenii, and the homologous genes RIB1 and RIB7, encoding GTP cyclohydrolase II and riboflavin synthetase, the first and the last enzymes of riboflavin biosynthesis pathway, respectively. Overexpression of the aforementioned genes in riboflavin overproducer AF-4 obtained by classical selection resulted in a 4.1-fold increase in riboflavin production in shake-flask experiments. D. hansenii IMH3 and modified ARO4 genes conferring resistance to mycophenolic acid and fluorophenylalanine, respectively, were successfully used as new dominant selection markers for C. famata.
Collapse
Affiliation(s)
- Kostyantyn V Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, Lviv 79005, Ukraine
| | | | | | | | | |
Collapse
|
29
|
Morrow CA, Stamp A, Valkov E, Kobe B, Fraser JA. Crystallization and preliminary X-ray analysis of mycophenolic acid-resistant and mycophenolic acid-sensitive forms of IMP dehydrogenase from the human fungal pathogen Cryptococcus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1104-7. [PMID: 20823538 PMCID: PMC2935239 DOI: 10.1107/s1744309110031659] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 08/06/2010] [Indexed: 11/10/2022]
Abstract
Fungal human pathogens such as Cryptococcus neoformans are becoming an increasingly prevalent cause of human morbidity and mortality owing to the increasing numbers of susceptible individuals. The few antimycotics available to combat these pathogens usually target fungal-specific cell-wall or membrane-related components; however, the number of these targets is limited. In the search for new targets and lead compounds, C. neoformans has been found to be susceptible to mycophenolic acid through its target inosine monophosphate dehydrogenase (IMPDH); in contrast, a rare subtype of the related C. gattii is naturally resistant. Here, the expression, purification, crystallization and preliminary crystallographic analysis of IMPDH complexed with IMP and NAD+ is reported for both of these Cryptococcus species. The crystals of IMPDH from both sources had the symmetry of the tetragonal space group I422 and diffracted to a resolution of 2.5 A for C. neoformans and 2.6 A for C. gattii.
Collapse
Affiliation(s)
- Carl A. Morrow
- Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Anna Stamp
- Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Eugene Valkov
- Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bostjan Kobe
- Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - James A. Fraser
- Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
30
|
Affiliation(s)
- Lizbeth Hedstrom
- Department of Biology, Brandeis University, MS009, 415 South Street, Waltham, Massachusetts 02454, USA.
| |
Collapse
|
31
|
An enzymatic atavist revealed in dual pathways for water activation. PLoS Biol 2008; 6:e206. [PMID: 18752347 PMCID: PMC2525682 DOI: 10.1371/journal.pbio.0060206] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 07/15/2008] [Indexed: 11/21/2022] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH) catalyzes an essential step in the biosynthesis of guanine nucleotides. This reaction involves two different chemical transformations, an NAD-linked redox reaction and a hydrolase reaction, that utilize mutually exclusive protein conformations with distinct catalytic residues. How did Nature construct such a complicated catalyst? Here we employ a “Wang-Landau” metadynamics algorithm in hybrid quantum mechanical/molecular mechanical (QM/MM) simulations to investigate the mechanism of the hydrolase reaction. These simulations show that the lowest energy pathway utilizes Arg418 as the base that activates water, in remarkable agreement with previous experiments. Surprisingly, the simulations also reveal a second pathway for water activation involving a proton relay from Thr321 to Glu431. The energy barrier for the Thr321 pathway is similar to the barrier observed experimentally when Arg418 is removed by mutation. The Thr321 pathway dominates at low pH when Arg418 is protonated, which predicts that the substitution of Glu431 with Gln will shift the pH-rate profile to the right. This prediction is confirmed in subsequent experiments. Phylogenetic analysis suggests that the Thr321 pathway was present in the ancestral enzyme, but was lost when the eukaryotic lineage diverged. We propose that the primordial IMPDH utilized the Thr321 pathway exclusively, and that this mechanism became obsolete when the more sophisticated catalytic machinery of the Arg418 pathway was installed. Thus, our simulations provide an unanticipated window into the evolution of a complex enzyme. Many enzymes have the remarkable ability to catalyze several different chemical transformations. For example, IMP dehydrogenase catalyzes both an NAD-linked redox reaction and a hydrolase reaction. These reactions utilize distinct catalytic residues and protein conformations. How did Nature construct such a complicated catalyst? While using computational methods to investigate the mechanism of the hydrolase reaction, we have discovered that IMP dehydrogenase contains two sets of catalytic residues to activate water. Importantly, the simulations are in good agreement with previous experimental observations and are further validated by subsequent experiments. Phylogenetic analysis suggests that the simpler, less efficient catalytic machinery was present in the ancestral enzyme, but was lost when the eukaryotic lineage diverged. We propose that the primordial IMP dehydrogenase utilized the less efficient machinery exclusively, and that this mechanism became obsolete when the more sophisticated catalytic machinery evolved. The presence of the less efficient machinery could facilitate adaptation, making the evolutionary challenge of the IMPDH reaction much less formidable. Thus our simulations provide an unanticipated window into the evolution of a complex enzyme. How does nature construct complex catalysts? Molecular simulations revealed two sets of catalytic residues in the enzyme IMPDH, one of which seems to represent a primitive catalytic machinery that may be a vestige of evolution.
Collapse
|
32
|
Riera TV, Wang W, Josephine HR, Hedstrom L. A kinetic alignment of orthologous inosine-5'-monophosphate dehydrogenases. Biochemistry 2008; 47:8689-96. [PMID: 18642884 PMCID: PMC2646883 DOI: 10.1021/bi800674a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
IMP dehydrogenase (IMPDH) catalyzes two very different chemical transformations, a dehydrogenase reaction and a hydrolysis reaction. The enzyme toggles between the open conformation required for the dehydrogenase reaction and the closed conformation of the hydrolase reaction by moving a mobile flap into the NAD site. Despite these multiple functional constraints, the residues of the flap and NAD site are highly diverged, and the equilibrium between open and closed conformations (Kc) varies widely. In order to understand how differences in the dynamic properties of the flap influence the catalytic cycle, we have delineated the kinetic mechanism of IMPDH from the pathogenic protozoan parasite Cryptosporidium parvum (CpIMPDH), which was obtained from a bacterial source through horizontal gene transfer, and its host counterpart, human IMPDH type 2 (hIMPDH2). Interestingly, the intrinsic binding energy of NAD+ differentially distributes across the dinucleotide binding sites of these two enzymes as well as in the previously characterized IMPDH from Tritrichomonas foetus (TfIMPDH). Both the dehydrogenase and hydrolase reactions display significant differences in the host and parasite enzymes, in keeping with the phylogenetic and structural divergence of their active sites. Despite large differences in Kc, the catalytic power of both the dehydrogenase and hydrolase conformations are similar in CpIMPDH and TfIMPDH. This observation suggests that the closure of the flap simply sets the stage for catalysis rather than plays a more active role in the chemical transformation. This work provides the essential mechanistic framework for drug discovery.
Collapse
Affiliation(s)
- Thomas V Riera
- Departments of Biochemistry and Chemistry, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | |
Collapse
|
33
|
Mechanism-of-action determination of GMP synthase inhibitors and target validation in Candida albicans and Aspergillus fumigatus. ACTA ACUST UNITED AC 2008; 14:1163-75. [PMID: 17961828 DOI: 10.1016/j.chembiol.2007.09.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 09/17/2007] [Accepted: 09/25/2007] [Indexed: 11/20/2022]
Abstract
Mechanism-of-action (MOA) studies of bioactive compounds are fundamental to drug discovery. However, in vitro studies alone may not recapitulate a compound's MOA in whole cells. Here, we apply a chemogenomics approach in Candida albicans to evaluate compounds affecting purine metabolism. They include the IMP dehydrogenase inhibitors mycophenolic acid and mizoribine and the previously reported GMP synthase inhibitors acivicin and 6-diazo-5-oxo-L-norleucine (DON). We report important aspects of their whole-cell activity, including their primary target, off-target activity, and drug metabolism. Further, we describe ECC1385, an inhibitor of GMP synthase, and provide biochemical and genetic evidence supporting its MOA to be distinct from acivicin or DON. Importantly, GMP synthase activity is conditionally essential in C. albicans and Aspergillus fumigatus and is required for virulence of both pathogens, thus constituting an unexpected antifungal target.
Collapse
|
34
|
Gunter JH, Thomas EC, Lengefeld N, Kruger SJ, Worton L, Gardiner EM, Jones A, Barnett NL, Whitehead JP. Characterisation of inosine monophosphate dehydrogenase expression during retinal development: differences between variants and isoforms. Int J Biochem Cell Biol 2008; 40:1716-28. [PMID: 18295529 DOI: 10.1016/j.biocel.2007.12.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 12/19/2007] [Accepted: 12/23/2007] [Indexed: 02/07/2023]
Abstract
In mammals there are two ubiquitous, catalytically indistinguishable isoforms of inosine monophosphate dehydrogenase and mutations in the type I isoform, but not type II, cause retina-specific disorders. We have characterised the spatio-temporal expression of these proteins during development of the rat retina and performed functional investigations of the recently described retinal type I variants. Inosine monophosphate dehydrogenase was present in all immature cells throughout the retina during embryonic and neonatal development. Following eye opening and cell differentiation its distribution was restricted to the photoreceptors and bipolar cells, becoming prominent in Müller cells with aging. Type II was present in early, developing retinae whilst type I was undetectable. An isoform switch occurred around P10, after which the type I variants, type Ialpha and type Igamma, were the major forms. Functional investigations indicate type Igamma has greater catalytic activity compared with other variants and isoforms. Finally, all forms of type I show an increased propensity to form intracellular macrostructures compared to type II and these structures appear to be regulated in response to changing intracellular GTP levels. Collectively these data demonstrate that (i) type I does not play a role in early retinal development, (ii) type Igamma has greater activity and (iii) there are differences between type I and type II isoforms. These observations are consistent with the aetiology of retinitis pigmentosa and raise the possibility that programmed expression of specific inosine monophosphate dehydrogenase proteins may have arisen to meet the requirements of the cellular environment.
Collapse
Affiliation(s)
- Jennifer H Gunter
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD 4102, Brisbane, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Goodwin TJD, Busby JN, Poulter RTM. A yeast model for target-primed (non-LTR) retrotransposition. BMC Genomics 2007; 8:263. [PMID: 17683538 PMCID: PMC1965478 DOI: 10.1186/1471-2164-8-263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 08/03/2007] [Indexed: 01/27/2023] Open
Abstract
Background Target-primed (non-LTR) retrotransposons, such as the human L1 element, are mobile genetic elements found in many eukaryotic genomes. They are often present in large numbers and their retrotransposition can cause mutations and genomic rearrangements. Despite their importance, many aspects of their replication are not well understood. Results We have developed a yeast model system for studying target-primed retrotransposons. This system uses the Zorro3 element from Candida albicans. A cloned copy of Zorro3, tagged with a retrotransposition indicator gene, retrotransposes at a high frequency when introduced into an appropriate C. albicans host strain. Retrotransposed copies of the tagged element exhibit similar features to the native copies, indicating that the natural retrotransposition pathway is being used. Retrotransposition is dependent on the products of the tagged element's own genes and is highly temperature-regulated. The new assay permits the analysis of the effects of specific mutations introduced into the cloned element. Conclusion This Zorro3 retrotransposition assay system complements previously available target-primed retrotransposition assays. Due to the relative simplicity of the growth, manipulation and analysis of yeast cells, the system should advance our understanding of target-primed retrotransposition.
Collapse
Affiliation(s)
| | - Jason N Busby
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
36
|
Dobie F, Berg A, Boitz JM, Jardim A. Kinetic characterization of inosine monophosphate dehydrogenase of Leishmania donovani. Mol Biochem Parasitol 2006; 152:11-21. [PMID: 17173987 DOI: 10.1016/j.molbiopara.2006.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2006] [Revised: 11/08/2006] [Accepted: 11/14/2006] [Indexed: 11/27/2022]
Abstract
Trypanosomatid protozoan pathogens are purine auxotrophs that are highly dependent on the enzyme inosine monophosphate dehydrogenase (IMPDH) for the synthesis of guanylate nucleotides. Enzymatic characterization of the Leishmania donovani IMPDH (LdIMPDH) overexpressed in E. coli revealed that this enzyme was highly specific for the substrates IMP and NAD(+) with K(m)(app) values of 33 and 390 microM, respectively. In contrast to other IMPDHs, LdIMPDH exhibits no substrate inhibition in high concentrations of NAD(+). Kinetic studies revealed that XMP and GMP were inhibitors with K(i) values of approximately 26 and 210 microM, respectively, suggesting that these nucleotides may regulate LdIMPDH activity. Mycophenolic acid was also a potent inhibitor of L. donovani IMPDH with a K(i) value of approximately 25 nM. Confocal immunofluorescence microscopy and subcellular fractionation localized LdIMPDH to the glycosome. Protein-protein interaction assays revealed that LdIMPDH associated tightly with glycosomal protein sorting receptor LdPEX5.
Collapse
Affiliation(s)
- Fredrick Dobie
- Institute of Parasitology, Macdonald Campus of McGill University, 21, 111 Lakeshore Road, Ste. Anne-de-Bellevue, Quebec, Canada H9X 3V9
| | | | | | | |
Collapse
|
37
|
Köhler GA, Brenot A, Haas-Stapleton E, Agabian N, Deva R, Nigam S. Phospholipase A2 and phospholipase B activities in fungi. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1761:1391-9. [PMID: 17081801 PMCID: PMC2077850 DOI: 10.1016/j.bbalip.2006.09.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 09/20/2006] [Accepted: 09/25/2006] [Indexed: 10/24/2022]
Abstract
As saprophytes or disease causing microorganisms, fungi acquire nutrients from dead organic material or living host organisms. Lipids as structural components of cell membranes and storage compartments play an important role as energy-rich food source. In recent years, it also has become clear that lipids have a wide range of bioactive properties including signal transduction and cell to cell communication. Thus, it is not surprising that fungi possess a broad range of hydrolytic enzymes that attack neutral lipids and phospholipids. Especially during infection of a mammalian host, phospholipase A(2) (PLA(2)) enzymes released by fungi could play important roles not only for nutrient acquisition and tissue invasion, but for intricate modulation of the host's immune response. Sequencing of fungal genomes has revealed a wide range of genes encoding PLA(2) activities in fungi. We are just beginning to become aware of the significance these enzymes could have for the fungal cells and their interaction with the host.
Collapse
Affiliation(s)
- Gerwald A. Köhler
- Department of Cell and Tissue Biology, University of California, San Francisco, U.S.A
| | - Audrey Brenot
- Department of Cell and Tissue Biology, University of California, San Francisco, U.S.A
| | - Eric Haas-Stapleton
- Department of Cell and Tissue Biology, University of California, San Francisco, U.S.A
| | - Nina Agabian
- Department of Cell and Tissue Biology, University of California, San Francisco, U.S.A
| | - Rupal Deva
- Eicosanoid Research Division and Center for Experimental Gynecology & Breast Research, Charité - Univ.-Klinikum Benjamin Franklin, D-12200 Berlin, Germany
| | - Santosh Nigam
- Eicosanoid Research Division and Center for Experimental Gynecology & Breast Research, Charité - Univ.-Klinikum Benjamin Franklin, D-12200 Berlin, Germany
| |
Collapse
|
38
|
Shimmura H, Tanabe K, Habiro K, Abe R, Toma H. Combination effect of mycophenolate mofetil with mizoribine on cell proliferation assays and in a mouse heart transplantation model. Transplantation 2006; 82:175-9. [PMID: 16858279 DOI: 10.1097/01.tp.0000226227.79142.31] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mycophenolate mofetil (MMF) is a highly potent immunosuppressant that suppresses the proliferation of T and B cells by the uncompetitive inhibition of inosine monophosphate dehydrogenase (IMPDH). Consequently, under MMF immunosuppression, good graft survival has been achieved in clinical organ transplantation, although MMF shows adverse gastrointestinal effects. Mizoribine (MZ) also inhibits IMPDH in a competitive manner and is used clinically for organ transplantation in Japan as an immunosuppressant with fewer adverse gastrointestinal effects. Therefore, in this study we investigated the synergistic effects on in vitro and in vivo assays of mice of a combination of MMF with MZ immunosuppression. METHODS Mixed lymphocyte reaction (MLR) assay and a mouse heart transplantation model were used to evaluate the immunosuppressive effect of MMF with MZ. The median-effect principle and a combination index (CI) were employed to determine synergism, an additive effect, or antagonism. RESULTS Combination of MMF with MZ resulted in mild synergistic effects in the inhibition of MLR (CI = 0.854-1.143). In the mouse heart transplantation model, C57BL/6 recipients who received a BALB/c heart under the combination of MMF and MZ at 40 + 40 or 80 + 80 mg/kg/day showed a strong synergistic prolongation of graft survival with 19.7 +/- 18.9 (P = 0.0012, CI = 0.438) and 78.4 +/- 36.9 days (P = 0.0002, CI = 0.317), respectively, compared with recipients treated with MMF or MZ monotherapy. CONCLUSIONS.: The combination of MMF and MZ showed mild synergistic effects in the inhibition of MLR and strong synergistic effects in a mouse heart transplantation model.
Collapse
Affiliation(s)
- Hiroaki Shimmura
- Department of Urology, Kidney Center, Tokyo Women's Medical University, Shinjuku, Japan
| | | | | | | | | |
Collapse
|
39
|
Bader T, Schröppel K, Bentink S, Agabian N, Köhler G, Morschhäuser J. Role of calcineurin in stress resistance, morphogenesis, and virulence of a Candida albicans wild-type strain. Infect Immun 2006; 74:4366-9. [PMID: 16790813 PMCID: PMC1489686 DOI: 10.1128/iai.00142-06] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
By generating a calcineurin mutant of the Candida albicans wild-type strain SC5314 with the help of a new recyclable dominant selection marker, we confirmed that calcineurin mediates tolerance to a variety of stress conditions but is not required for the ability of C. albicans to switch to filamentous growth in response to hypha-inducing environmental signals. While calcineurin was essential for virulence of C. albicans in a mouse model of disseminated candidiasis, deletion of CMP1 did not significantly affect virulence during vaginal or pulmonary infection, demonstrating that the requirement for calcineurin for a successful infection depends on the host niche.
Collapse
Affiliation(s)
- Teresa Bader
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Theiss S, Ishdorj G, Brenot A, Kretschmar M, Lan CY, Nichterlein T, Hacker J, Nigam S, Agabian N, Köhler GA. Inactivation of the phospholipase B gene PLB5 in wild-type Candida albicans reduces cell-associated phospholipase A2 activity and attenuates virulence. Int J Med Microbiol 2006; 296:405-20. [PMID: 16759910 PMCID: PMC2481510 DOI: 10.1016/j.ijmm.2006.03.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 03/15/2006] [Accepted: 03/15/2006] [Indexed: 11/24/2022] Open
Abstract
Phospholipases are critical for modification and redistribution of lipid substrates, membrane remodeling and microbial virulence. Among the many different classes of phospholipases, fungal phospholipase B (Plb) proteins show the broadest range of substrate specificity and hydrolytic activity, hydrolyzing acyl ester bonds in phospholipids and lysophospholipids and further catalyzing lysophospholipase-transacylase reactions. The genome of the opportunistic fungal pathogen Candida albicans encodes a PLB multigene family with five putative members; we present the first characterization of this group of potential virulence determinants. CaPLB5, the third member of this multigene family characterized herein is a putative secretory protein with a predicted GPI-anchor attachment site. Real-time RT-PCR gene expression analysis of CaPLB5 and the additional CaPLB gene family members revealed that filamentous growth and physiologically relevant environmental conditions are associated with increased PLB gene activity. The phenotypes expressed by null mutant and revertant strains of CaPLB5 indicate that this lipid hydrolase plays an important role for cell-associated phospholipase A(2) activity and in vivo organ colonization.
Collapse
Affiliation(s)
- Stephanie Theiss
- Zentrum für Infektionsforschung, Universität Würzburg, Würzburg, Germany
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Würzburg, Germany
| | - Ganchimeg Ishdorj
- Eicosanoid Research Division and Center for Experimental Gynecology & Breast Research, Universitäsklinikum Benjamin Franklin, Free University Berlin, Berlin, Germany
| | - Audrey Brenot
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | | | - Chung-Yu Lan
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Thomas Nichterlein
- Mikrobiologie und Hygiene, Klinikum der Stadt Mannheim, Mannheim, Germany
| | - Jörg Hacker
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | - Santosh Nigam
- Eicosanoid Research Division and Center for Experimental Gynecology & Breast Research, Universitäsklinikum Benjamin Franklin, Free University Berlin, Berlin, Germany
| | - Nina Agabian
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Gerwald A. Köhler
- Zentrum für Infektionsforschung, Universität Würzburg, Würzburg, Germany
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
- Corresponding author: Gerwald A. Köhler, Ph.D., Department of Biochemistry & Microbiology, Oklahoma State University, Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 U.S.A.. Phone: ++ 1 918 561 8302; Fax: ++ 1 918 561 5798; E-mail:
| |
Collapse
|
41
|
Guillén Schlippe YV, Hedstrom L. Guanidine derivatives rescue the Arg418Ala mutation of Tritrichomonas foetus IMP dehydrogenase. Biochemistry 2006; 44:16695-700. [PMID: 16342959 DOI: 10.1021/bi051603w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
IMP dehydrogenase (IMPDH) catalyzes the oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP) and the reduction of NAD(+). The reaction involves formation of an E-XMP covalent intermediate; hydrolysis of the E-XMP intermediate is rate-limiting and requires the enzyme to adopt a closed conformation. Arg418 appears to act as the base that activates water for the hydrolysis reaction [Guillen-Schlippe, Y. V., and Hedstrom, L. (2005) Biochemistry 44, 11700-11707]. Deprotonation of Arg418 also stabilizes the closed conformation. Here we show that guanidine derivatives rescue the activity of the Arg418Ala variant. Amines and imidazole do not rescue. The rescue reaction appears to be saturable, with the values of K(R) ranging from 40 to 400 mM. The value of k(rescue) for the best rescue agents approaches the value of k(cat) for the reaction of the wild-type enzyme. Guanidine derivatives also rescue the activity of the Arg418Ala/Tyr419Phe variant. Multiple-inhibitor experiments suggest that the guanidine derivatives do not restore the equilibrium between open and closed conformations. Therefore, rescue agents must accelerate the hydrolysis of the E-XMP intermediate. The rate of the rescue reaction increases with an increase in pH, consistent with the hypothesis that the reaction involves neutral guanidine. A solvent D(2)O isotope effect is observed at low concentrations of the rescue agent, consistent with rate-limiting transfer of a proton from water. The value of k(cat) (rescue)/K(R)(base) correlates with the pK(a) of the guanidine derivative (Bronsted coefficient beta approximately 1). These results suggest that proton transfer from water to guanidine is almost complete in the transition state.
Collapse
|
42
|
Jenks MH, Reines D. Dissection of the molecular basis of mycophenolate resistance in Saccharomyces cerevisiae. Yeast 2006; 22:1181-90. [PMID: 16278936 DOI: 10.1002/yea.1300] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
IMP dehydrogenase (IMPDH) is required for the de novo synthesis of guanine nucleotides. While most invertebrates have one IMPDH gene and humans and mice have two, Saccharomyces cerevisiae contains four, IMD1-IMD4. Although Imd2 is 92% identical to Imd3, it is the only S. cerevisiae IMPDH that is resistant to mycophenolic acid in vitro and is the only one of the four that supports drug-resistant growth. Thus, S. cerevisiae is unique in possessing two classes of IMPDH enzymes with very different drug susceptibilities. The mycophenolate-sensitive growth phenotype has become an important genetic tool in yeast, particularly as an indicator for mutations in the transcription elongation machinery. Here we exploit the distinct drug sensitivity of these two closely related IMPDH genes to identify the naturally occurring determinants of drug-resistant growth. Using chimeric IMD2-IMD3 genes in a strain null for IMD genes, we show that one of the 39 amino acid differences between these enzymes is responsible for much of its drug resistance. The IMP dehydrogenase activity of purified chimeric Imd3 containing the Imd2 residue at position 253 was eight-fold more resistant than native Imd3. The reciprocal change in Imd2 resulted in a 23-fold loss of resistance. Hence, acquisition of a hydroxyl side-chain at 523 is sufficient to confer a drug-resistant phenotype upon this organism. We identified the major determinant of the functional distinction between IMD genes in this yeast and suggest that selective pressure on this species forced divergence of one member of this gene family toward drug resistance.
Collapse
Affiliation(s)
- M Harley Jenks
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
43
|
Guillén Schlippe YV, Hedstrom L. Is Arg418 the catalytic base required for the hydrolysis step of the IMP dehydrogenase reaction? Biochemistry 2005; 44:11700-7. [PMID: 16128570 DOI: 10.1021/bi048342v] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first committed step of guanine nucleotide biosynthesis is the oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP) catalyzed by IMP dehydrogenase. The reaction involves the reduction of NAD(+) with the formation of a covalent enzyme intermediate (E-XMP). Hydrolysis of E-XMP requires the enzyme to adopt a closed conformation and is rate-limiting. Thr321, Arg418, and Tyr419 are candidates for the residue that activates water. The substitution of Thr321 has similar, but small, effects on both the hydride transfer and hydrolysis steps. This result suggests that Thr321 influences the reactivity of Cys319, either through a direct interaction or by stabilizing the structure of the active site loop. The hydrolysis of E-XMP is accelerated by the deprotonation of a residue with a pK(a) of approximately 8. A similar deprotonation stabilizes the closed conformation; this residue has a pK(a) of >or=6 in the closed conformation. The substitution of Tyr419 with Phe does not change the pH dependence of either the hydrolysis of E-XMP or the conformational change, which suggests that Tyr419 is not the residue that activates water. In contrast, the conformational change becomes pH-independent when Arg418 is substituted with Gln. Lys can replace the function of Arg418 in the hydrolysis reaction but does not stabilize the closed conformation. The simplest explanation for these observations is that Arg418 serves as the base that activates water in the IMPDH reaction.
Collapse
|
44
|
Ji Y, Gu J, Makhov AM, Griffith JD, Mitchell BS. Regulation of the interaction of inosine monophosphate dehydrogenase with mycophenolic Acid by GTP. J Biol Chem 2005; 281:206-12. [PMID: 16243838 DOI: 10.1074/jbc.m507056200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH), a rate-limiting enzyme in the de novo synthesis of guanine nucleotides, is a major therapeutic target. A prototypic uncompetitive inhibitor of IMPDH, mycophenolic acid (MPA), is the active form of mycophenolate mofeteil (CellCept), a widely used immunosuppressive drug. We have found that MPA interacts with intracellular IMPDH in vivo to alter its mobility on SDS-polyacrylamide gels. MPA also induces a striking conformational change in IMPDH protein in intact cells, resulting in the formation of annular aggregates of protein with concomitant inhibition of IMPDH activity. These aggregates are not associated with any known intracellular organelles and are reversible by incubating cells with guanosine, which repletes intracellular GTP, or with GTPgammaS. GTP also restores IMPDH activity. Treatment of highly purified IMPDH with MPA also results in the formation of large aggregates of protein, a process that is both prevented and reversed by the addition of GTP. Finally, GTP binds to IMPDH at physiologic concentrations, induces the formation of linear arrays of tetrameric protein, and prevents the aggregation of protein induced by MPA. We conclude that intracellular GTP acts as an antagonist to MPA by directly binding to IMPDH and reversing the conformational changes in the protein.
Collapse
Affiliation(s)
- YanShan Ji
- Department of Pharmacology and The Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | | | |
Collapse
|
45
|
Current awareness on yeast. Yeast 2005. [DOI: 10.1002/yea.1169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|